ComfyUI/comfy/sd.py

1670 lines
86 KiB
Python

from __future__ import annotations
import dataclasses
import json
import logging
import math
import os
import os.path
from enum import Enum
from typing import Any, Optional
import torch
import yaml
from . import clip_vision
from . import diffusers_convert
from . import gligen
from . import model_detection
from . import model_management
from . import model_patcher
from . import model_sampling
from . import sd1_clip
from . import sdxl_clip
from . import utils
from .component_model.deprecation import _deprecate_method
from .hooks import EnumHookMode
from .ldm.ace.vae.music_dcae_pipeline import MusicDCAE
from .ldm.audio.autoencoder import AudioOobleckVAE
from .ldm.cascade.stage_a import StageA
from .ldm.cascade.stage_c_coder import StageC_coder
from .ldm.cosmos.vae import CausalContinuousVideoTokenizer
from .ldm.flux.redux import ReduxImageEncoder
from .ldm.genmo.vae import model as genmo_model
from .ldm.hunyuan3d.vae import ShapeVAE
from .ldm.lightricks.vae import causal_video_autoencoder as lightricks
from .ldm.mmaudio.vae.autoencoder import AudioAutoencoder
from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
from .ldm.wan import vae as wan_vae
from .ldm.wan import vae2_2 as wan_vae2_2
from .lora import load_lora, model_lora_keys_unet, model_lora_keys_clip
from .lora_convert import convert_lora
from .model_management import load_models_gpu, module_size
from .model_patcher import ModelPatcher
from .pixel_space_convert import PixelspaceConversionVAE
from .t2i_adapter import adapter
from .taesd import taesd
from .text_encoders import ace
from .text_encoders import aura_t5
from .text_encoders import cosmos
from .text_encoders import flux
from .text_encoders import genmo
from .text_encoders import hidream
from .text_encoders import hunyuan_image
from .text_encoders import hunyuan_video
from .text_encoders import hydit
from .text_encoders import kandinsky5
from .text_encoders import long_clipl
from .text_encoders import lt
from .text_encoders import lumina2
from .text_encoders import omnigen2
from .text_encoders import ovis
from .text_encoders import pixart_t5
from .text_encoders import qwen_image
from .text_encoders import sa_t5
from .text_encoders import sd2_clip
from .text_encoders import sd3_clip
from .text_encoders import wan
from .text_encoders import z_image
from .text_encoders import jina_clip_2
from .text_encoders import newbie
from .utils import ProgressBar, FileMetadata, state_dict_prefix_replace
from .taesd.taehv import TAEHV
from .latent_formats import HunyuanVideo15, HunyuanVideo
logger = logging.getLogger(__name__)
def load_lora_for_models(model, clip, lora, strength_model, strength_clip, lora_name=None):
key_map = {}
if model is not None:
key_map = model_lora_keys_unet(model.model, key_map)
if clip is not None:
key_map = model_lora_keys_clip(clip.cond_stage_model, key_map)
lora = convert_lora(lora)
loaded = load_lora(lora, key_map, lora_name=lora_name)
if model is not None:
new_modelpatcher: ModelPatcher = model.clone()
k = new_modelpatcher.add_patches(loaded, strength_model)
else:
k = ()
new_modelpatcher = None
if clip is not None:
new_clip = clip.clone()
k1 = new_clip.add_patches(loaded, strength_clip)
else:
k1 = ()
new_clip = None
k = set(k)
k1 = set(k1)
for x in loaded:
if (x not in k) and (x not in k1):
logger.warning(f"[{lora_name}] clip keys not loaded {x}".format(x))
return (new_modelpatcher, new_clip)
class CLIP:
def __init__(self, target: CLIPTarget = None, embedding_directory=None, no_init=False, textmodel_json_config=None, tokenizer_data: dict | None = None, parameters=0, state_dict=[], model_options={}):
if tokenizer_data is None:
tokenizer_data = dict()
if no_init:
return
params = target.params.copy()
clip = target.clip
tokenizer = target.tokenizer
load_device = model_options.get("load_device", model_management.text_encoder_device())
offload_device = model_options.get("offload_device", model_management.text_encoder_offload_device())
dtype = model_options.get("dtype", None)
if dtype is None:
dtype = model_management.text_encoder_dtype(load_device)
params['dtype'] = dtype
params['device'] = model_options.get("initial_device", model_management.text_encoder_initial_device(load_device, offload_device, parameters * model_management.dtype_size(dtype)))
if "textmodel_json_config" not in params and textmodel_json_config is not None:
params['textmodel_json_config'] = textmodel_json_config
params['model_options'] = model_options
self.cond_stage_model = clip(**(params))
for dt in self.cond_stage_model.dtypes:
if not model_management.supports_cast(load_device, dt):
load_device = offload_device
if params['device'] != offload_device:
self.cond_stage_model.to(offload_device)
logger.warning("Had to shift TE back.")
self.tokenizer: "sd1_clip.SD1Tokenizer" = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.patcher = model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
# Match torch.float32 hardcode upcast in TE implemention
self.patcher.set_model_compute_dtype(torch.float32)
self.patcher.hook_mode = EnumHookMode.MinVram
self.patcher.is_clip = True
self.apply_hooks_to_conds = None
if len(state_dict) > 0:
if isinstance(state_dict, list):
for c in state_dict:
m, u = self.load_sd(c)
if len(m) > 0:
logger.warning("clip missing: {}".format(m))
if len(u) > 0:
logger.debug("clip unexpected: {}".format(u))
else:
m, u = self.load_sd(state_dict, full_model=True)
if len(m) > 0:
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
if len(m_filter) > 0:
logger.warning("clip missing: {}".format(m))
else:
logger.debug("clip missing: {}".format(m))
if len(u) > 0:
logger.debug("clip unexpected {}:".format(u))
if params['device'] == load_device:
model_management.load_models_gpu([self.patcher], force_full_load=True)
self.layer_idx = None
self.use_clip_schedule = False
logger.debug("CLIP/text encoder model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype))
self.tokenizer_options = {}
def clone(self):
n = CLIP(no_init=True)
n.patcher = self.patcher.clone()
n.cond_stage_model = self.cond_stage_model
# cloning the tokenizer allows the vocab updates to work more idiomatically
n.tokenizer = self.tokenizer.clone()
n.layer_idx = self.layer_idx
n.tokenizer_options = self.tokenizer_options.copy()
n.use_clip_schedule = self.use_clip_schedule
n.apply_hooks_to_conds = self.apply_hooks_to_conds
return n
def get_ram_usage(self):
return self.patcher.get_ram_usage()
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
return self.patcher.add_patches(patches, strength_patch, strength_model)
def set_tokenizer_option(self, option_name, value):
self.tokenizer_options[option_name] = value
def clip_layer(self, layer_idx):
self.layer_idx = layer_idx
def tokenize(self, text, return_word_ids=False, **kwargs):
tokenizer_options = kwargs.get("tokenizer_options", {})
if len(self.tokenizer_options) > 0:
tokenizer_options = {**self.tokenizer_options, **tokenizer_options}
if len(tokenizer_options) > 0:
kwargs["tokenizer_options"] = tokenizer_options
return self.tokenizer.tokenize_with_weights(text, return_word_ids, **kwargs)
def add_hooks_to_dict(self, pooled_dict: dict[str]):
if self.apply_hooks_to_conds:
pooled_dict["hooks"] = self.apply_hooks_to_conds
return pooled_dict
def encode_from_tokens_scheduled(self, tokens, unprojected=False, add_dict: dict[str] = {}, show_pbar=True):
all_cond_pooled: list[tuple[torch.Tensor, dict[str]]] = []
all_hooks = self.patcher.forced_hooks
if all_hooks is None or not self.use_clip_schedule:
# if no hooks or shouldn't use clip schedule, do unscheduled encode_from_tokens and perform add_dict
return_pooled = "unprojected" if unprojected else True
pooled_dict = self.encode_from_tokens(tokens, return_pooled=return_pooled, return_dict=True)
cond = pooled_dict.pop("cond")
# add/update any keys with the provided add_dict
pooled_dict.update(add_dict)
all_cond_pooled.append([cond, pooled_dict])
else:
scheduled_keyframes = all_hooks.get_hooks_for_clip_schedule()
self.cond_stage_model.reset_clip_options()
if self.layer_idx is not None:
self.cond_stage_model.set_clip_options({"layer": self.layer_idx})
if unprojected:
self.cond_stage_model.set_clip_options({"projected_pooled": False})
self.load_model()
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
all_hooks.reset()
self.patcher.patch_hooks(None)
if show_pbar:
pbar = ProgressBar(len(scheduled_keyframes))
for scheduled_opts in scheduled_keyframes:
t_range = scheduled_opts[0]
# don't bother encoding any conds outside of start_percent and end_percent bounds
if "start_percent" in add_dict:
if t_range[1] < add_dict["start_percent"]:
continue
if "end_percent" in add_dict:
if t_range[0] > add_dict["end_percent"]:
continue
hooks_keyframes = scheduled_opts[1]
for hook, keyframe in hooks_keyframes:
hook.hook_keyframe._current_keyframe = keyframe
# apply appropriate hooks with values that match new hook_keyframe
self.patcher.patch_hooks(all_hooks)
# perform encoding as normal
o = self.cond_stage_model.encode_token_weights(tokens)
cond, pooled = o[:2]
pooled_dict = {"pooled_output": pooled}
# add clip_start_percent and clip_end_percent in pooled
pooled_dict["clip_start_percent"] = t_range[0]
pooled_dict["clip_end_percent"] = t_range[1]
# add/update any keys with the provided add_dict
pooled_dict.update(add_dict)
# add hooks stored on clip
self.add_hooks_to_dict(pooled_dict)
all_cond_pooled.append([cond, pooled_dict])
if show_pbar:
pbar.update(1)
model_management.throw_exception_if_processing_interrupted()
all_hooks.reset()
return all_cond_pooled
def encode_from_tokens(self, tokens, return_pooled=False, return_dict=False):
self.cond_stage_model.reset_clip_options()
if self.layer_idx is not None:
self.cond_stage_model.set_clip_options({"layer": self.layer_idx})
if return_pooled == "unprojected":
self.cond_stage_model.set_clip_options({"projected_pooled": False})
self.load_model()
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
o = self.cond_stage_model.encode_token_weights(tokens)
cond, pooled = o[:2]
if return_dict:
out = {"cond": cond, "pooled_output": pooled}
if len(o) > 2:
for k in o[2]:
out[k] = o[2][k]
self.add_hooks_to_dict(out)
return out
if return_pooled:
return cond, pooled
return cond
def encode(self, text):
tokens = self.tokenize(text)
return self.encode_from_tokens(tokens)
def load_sd(self, sd, full_model=False):
if full_model:
return self.cond_stage_model.load_state_dict(sd, strict=False)
else:
return self.cond_stage_model.load_sd(sd)
def get_sd(self):
sd_clip = self.cond_stage_model.state_dict()
sd_tokenizer = self.tokenizer.state_dict()
for k in sd_tokenizer:
sd_clip[k] = sd_tokenizer[k]
return sd_clip
def load_model(self):
load_models_gpu([self.patcher])
return self.patcher
def get_key_patches(self):
return self.patcher.get_key_patches()
class VAE:
def __init__(self, sd=None, device=None, config=None, dtype=None, metadata=None, no_init=False, ckpt_name: Optional[str] = ""):
self.ckpt_name = ckpt_name
if no_init:
return
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): # diffusers format
sd = diffusers_convert.convert_vae_state_dict(sd)
if model_management.is_amd():
VAE_KL_MEM_RATIO = 2.73
else:
VAE_KL_MEM_RATIO = 1.0
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) * VAE_KL_MEM_RATIO # These are for AutoencoderKL and need tweaking (should be lower)
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype) * VAE_KL_MEM_RATIO
self.downscale_ratio = 8
self.upscale_ratio = 8
self.latent_channels = 4
self.latent_dim = 2
self.output_channels = 3
self.pad_channel_value = None
self.process_input = lambda image: image * 2.0 - 1.0
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
self.working_dtypes = [torch.bfloat16, torch.float32]
self.disable_offload = False
self.not_video = False
self.size = None
self.downscale_index_formula = None
self.upscale_index_formula = None
self.extra_1d_channel = None
self.crop_input = True
if config is None:
if "decoder.mid.block_1.mix_factor" in sd:
encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
decoder_config = encoder_config.copy()
decoder_config["video_kernel_size"] = [3, 1, 1]
decoder_config["alpha"] = 0.0
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config},
decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config})
elif "taesd_decoder.1.weight" in sd:
self.latent_channels = sd["taesd_decoder.1.weight"].shape[1]
self.first_stage_model = taesd.TAESD(latent_channels=self.latent_channels)
elif "vquantizer.codebook.weight" in sd: # VQGan: stage a of stable cascade
self.first_stage_model = StageA()
self.downscale_ratio = 4
self.upscale_ratio = 4
# TODO
# self.memory_used_encode
# self.memory_used_decode
self.process_input = lambda image: image
self.process_output = lambda image: image
elif "backbone.1.0.block.0.1.num_batches_tracked" in sd: # effnet: encoder for stage c latent of stable cascade
self.first_stage_model = StageC_coder()
self.downscale_ratio = 32
self.latent_channels = 16
new_sd = {}
for k in sd:
new_sd["encoder.{}".format(k)] = sd[k]
sd = new_sd
elif "blocks.11.num_batches_tracked" in sd: # previewer: decoder for stage c latent of stable cascade
self.first_stage_model = StageC_coder()
self.latent_channels = 16
new_sd = {}
for k in sd:
new_sd["previewer.{}".format(k)] = sd[k]
sd = new_sd
elif "encoder.backbone.1.0.block.0.1.num_batches_tracked" in sd: # combined effnet and previewer for stable cascade
self.first_stage_model = StageC_coder()
self.downscale_ratio = 32
self.latent_channels = 16
elif "decoder.conv_in.weight" in sd:
if sd['decoder.conv_in.weight'].shape[1] == 64:
ddconfig = {"block_out_channels": [128, 256, 512, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 32, "downsample_match_channel": True, "upsample_match_channel": True}
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
self.downscale_ratio = 32
self.upscale_ratio = 32
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
encoder_config={'target': "comfy.ldm.hunyuan_video.vae.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.hunyuan_video.vae.Decoder", 'params': ddconfig})
self.memory_used_encode = lambda shape, dtype: (700 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (700 * shape[2] * shape[3] * 32 * 32) * model_management.dtype_size(dtype)
elif sd['decoder.conv_in.weight'].shape[1] == 32 and sd['decoder.conv_in.weight'].ndim == 5:
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True, "refiner_vae": False}
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
self.latent_dim = 3
self.not_video = True
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
encoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig})
self.memory_used_encode = lambda shape, dtype: (2800 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (2800 * shape[-3] * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
else:
# default SD1.x/SD2.x VAE parameters
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
if 'encoder.down.2.downsample.conv.weight' not in sd and 'decoder.up.3.upsample.conv.weight' not in sd: # Stable diffusion x4 upscaler VAE
ddconfig['ch_mult'] = [1, 2, 4]
self.downscale_ratio = 4
self.upscale_ratio = 4
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
if 'decoder.post_quant_conv.weight' in sd:
sd = state_dict_prefix_replace(sd, {"decoder.post_quant_conv.": "post_quant_conv.", "encoder.quant_conv.": "quant_conv."})
if 'bn.running_mean' in sd:
ddconfig["batch_norm_latent"] = True
self.downscale_ratio *= 2
self.upscale_ratio *= 2
self.latent_channels *= 4
old_memory_used_decode = self.memory_used_decode
self.memory_used_decode = lambda shape, dtype: old_memory_used_decode(shape, dtype) * 4.0
if 'post_quant_conv.weight' in sd:
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
else:
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
elif "decoder.layers.1.layers.0.beta" in sd:
self.first_stage_model = AudioOobleckVAE()
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype)
self.latent_channels = 64
self.output_channels = 2
self.pad_channel_value = "replicate"
self.upscale_ratio = 2048
self.downscale_ratio = 2048
self.latent_dim = 1
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.disable_offload = True
elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd or "layers.4.layers.1.attn_block.attn.qkv.weight" in sd or "encoder.layers.4.layers.1.attn_block.attn.qkv.weight" in sd: # genmo mochi vae
if "blocks.2.blocks.3.stack.5.weight" in sd:
sd = utils.state_dict_prefix_replace(sd, {"": "decoder."})
if "layers.4.layers.1.attn_block.attn.qkv.weight" in sd:
sd = utils.state_dict_prefix_replace(sd, {"": "encoder."})
self.first_stage_model = genmo_model.VideoVAE()
self.latent_channels = 12
self.latent_dim = 3
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (1.5 * max(shape[2], 7) * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
self.upscale_ratio = (lambda a: max(0, a * 6 - 5), 8, 8)
self.upscale_index_formula = (6, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 5) / 6)), 8, 8)
self.downscale_index_formula = (6, 8, 8)
self.working_dtypes = [torch.float16, torch.float32]
elif "decoder.up_blocks.0.res_blocks.0.conv1.conv.weight" in sd: # lightricks ltxv
tensor_conv1 = sd["decoder.up_blocks.0.res_blocks.0.conv1.conv.weight"]
version = 0
if tensor_conv1.shape[0] == 512:
version = 0
elif tensor_conv1.shape[0] == 1024:
version = 1
if "encoder.down_blocks.1.conv.conv.bias" in sd:
version = 2
vae_config = None
if metadata is not None and "config" in metadata:
vae_config = json.loads(metadata["config"]).get("vae", None)
self.first_stage_model = lightricks.VideoVAE(version=version, config=vae_config)
self.latent_channels = 128
self.latent_dim = 3
self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (70 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 32, 32)
self.upscale_index_formula = (8, 32, 32)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 32, 32)
self.downscale_index_formula = (8, 32, 32)
self.working_dtypes = [torch.bfloat16, torch.float32]
elif "decoder.conv_in.conv.weight" in sd and sd['decoder.conv_in.conv.weight'].shape[1] == 32:
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True}
ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
self.latent_channels = 32
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
self.latent_dim = 3
self.not_video = False
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.EmptyRegularizer"},
encoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig})
self.memory_used_encode = lambda shape, dtype: (1400 * 9 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (3600 * 4 * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
elif "decoder.conv_in.conv.weight" in sd:
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
ddconfig["conv3d"] = True
ddconfig["time_compress"] = 4
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
self.upscale_index_formula = (4, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
self.downscale_index_formula = (4, 8, 8)
self.latent_dim = 3
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
# This is likely to significantly over-estimate with single image or low frame counts as the
# implementation is able to completely skip caching. Rework if used as an image only VAE
self.memory_used_decode = lambda shape, dtype: (2800 * min(8, ((shape[2] - 1) * 4) + 1) * shape[3] * shape[4] * (8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (1400 * min(9, shape[2]) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
elif "decoder.unpatcher3d.wavelets" in sd:
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 8, 8)
self.upscale_index_formula = (8, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 8, 8)
self.downscale_index_formula = (8, 8, 8)
self.latent_dim = 3
self.latent_channels = 16
ddconfig = {'z_channels': 16, 'latent_channels': self.latent_channels, 'z_factor': 1, 'resolution': 1024, 'in_channels': 3, 'out_channels': 3, 'channels': 128, 'channels_mult': [2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [32], 'dropout': 0.0, 'patch_size': 4, 'num_groups': 1, 'temporal_compression': 8, 'spacial_compression': 8}
self.first_stage_model = CausalContinuousVideoTokenizer(**ddconfig)
# TODO: these values are a bit off because this is not a standard VAE
self.memory_used_decode = lambda shape, dtype: (50 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (50 * (round((shape[2] + 7) / 8) * 8) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.working_dtypes = [torch.bfloat16, torch.float32]
elif "decoder.middle.0.residual.0.gamma" in sd:
if "decoder.upsamples.0.upsamples.0.residual.2.weight" in sd: # Wan 2.2 VAE
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
self.latent_dim = 3
self.latent_channels = 48
ddconfig = {"dim": 160, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
self.first_stage_model = wan_vae2_2.WanVAE(**ddconfig)
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: 3300 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 8000 * shape[3] * shape[4] * (16 * 16) * model_management.dtype_size(dtype)
else: # Wan 2.1 VAE
dim = sd["decoder.head.0.gamma"].shape[0]
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
self.upscale_index_formula = (4, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
self.downscale_index_formula = (4, 8, 8)
self.latent_dim = 3
self.latent_channels = 16
self.output_channels = sd["encoder.conv1.weight"].shape[1]
self.pad_channel_value = 1.0
ddconfig = {"dim": dim, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "image_channels": self.output_channels, "dropout": 0.0}
self.first_stage_model = wan_vae.WanVAE(**ddconfig)
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: (1500 if shape[2] <= 4 else 6000) * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (2200 if shape[2] <= 4 else 7000) * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
# Hunyuan 3d v2 2.0 & 2.1
elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd:
self.latent_dim = 1
def estimate_memory(shape, dtype, num_layers=16, kv_cache_multiplier=2):
batch, num_tokens, hidden_dim = shape
dtype_size = model_management.dtype_size(dtype)
total_mem = batch * num_tokens * hidden_dim * dtype_size * (1 + kv_cache_multiplier * num_layers)
return total_mem
# better memory estimations
self.memory_used_encode = lambda shape, dtype, num_layers=8, kv_cache_multiplier=0: \
estimate_memory(shape, dtype, num_layers, kv_cache_multiplier)
self.memory_used_decode = lambda shape, dtype, num_layers=16, kv_cache_multiplier=2: \
estimate_memory(shape, dtype, num_layers, kv_cache_multiplier)
self.first_stage_model = ShapeVAE()
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
elif "vocoder.backbone.channel_layers.0.0.bias" in sd: # Ace Step Audio
self.first_stage_model = MusicDCAE(source_sample_rate=44100)
self.memory_used_encode = lambda shape, dtype: (shape[2] * 330) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (shape[2] * shape[3] * 87000) * model_management.dtype_size(dtype)
self.latent_channels = 8
self.output_channels = 2
self.pad_channel_value = "replicate"
self.upscale_ratio = 4096
self.downscale_ratio = 4096
self.latent_dim = 2
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.disable_offload = True
self.extra_1d_channel = 16
elif "pixel_space_vae" in sd:
self.first_stage_model = PixelspaceConversionVAE()
self.memory_used_encode = lambda shape, dtype: (1 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (1 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.downscale_ratio = 1
self.upscale_ratio = 1
self.latent_channels = 3
self.latent_dim = 2
self.output_channels = 3
elif "vocoder.activation_post.downsample.lowpass.filter" in sd: # MMAudio VAE
sample_rate = 16000
if sample_rate == 16000:
mode = '16k'
else:
mode = '44k'
self.first_stage_model = AudioAutoencoder(mode=mode)
self.memory_used_encode = lambda shape, dtype: (30 * shape[2]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (90 * shape[2] * 1411.2) * model_management.dtype_size(dtype)
self.latent_channels = 20
self.output_channels = 2
self.upscale_ratio = 512 * (44100 / sample_rate)
self.downscale_ratio = 512 * (44100 / sample_rate)
self.latent_dim = 1
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
self.working_dtypes = [torch.float32]
self.crop_input = False
elif "decoder.22.bias" in sd: # taehv, taew and lighttae
self.latent_channels = sd["decoder.1.weight"].shape[1]
self.latent_dim = 3
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
if self.latent_channels == 48: # Wan 2.2
self.first_stage_model = TAEHV(latent_channels=self.latent_channels, latent_format=None) # taehv doesn't need scaling
self.process_input = lambda image: (_ for _ in ()).throw(NotImplementedError("This light tae doesn't support encoding currently"))
self.process_output = lambda image: image
self.memory_used_decode = lambda shape, dtype: (1800 * (max(1, (shape[-3] ** 0.7 * 0.1)) * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype))
elif self.latent_channels == 32 and sd["decoder.22.bias"].shape[0] == 12: # lighttae_hv15
self.first_stage_model = TAEHV(latent_channels=self.latent_channels, latent_format=HunyuanVideo15)
self.process_input = lambda image: (_ for _ in ()).throw(NotImplementedError("This light tae doesn't support encoding currently"))
self.memory_used_decode = lambda shape, dtype: (1200 * (max(1, (shape[-3] ** 0.7 * 0.05)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype))
else:
if sd["decoder.1.weight"].dtype == torch.float16: # taehv currently only available in float16, so assume it's not lighttaew2_1 as otherwise state dicts are identical
latent_format = HunyuanVideo
else:
latent_format = None # lighttaew2_1 doesn't need scaling
self.first_stage_model = TAEHV(latent_channels=self.latent_channels, latent_format=latent_format)
self.process_input = self.process_output = lambda image: image
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
self.upscale_index_formula = (4, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
self.downscale_index_formula = (4, 8, 8)
self.memory_used_encode = lambda shape, dtype: (700 * (max(1, (shape[-3] ** 0.66 * 0.11)) * shape[-2] * shape[-1]) * model_management.dtype_size(dtype))
self.memory_used_decode = lambda shape, dtype: (50 * (max(1, (shape[-3] ** 0.65 * 0.26)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype))
else:
logger.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None
return
else:
self.first_stage_model = AutoencoderKL(**(config['params']))
self.first_stage_model = self.first_stage_model.eval()
m, u = self.first_stage_model.load_state_dict(sd, strict=False)
if len(m) > 0:
logger.warning("Missing VAE keys {}".format(m))
if len(u) > 0:
logger.debug("Leftover VAE keys {}".format(u))
if device is None:
device = model_management.vae_device()
self.device = device
offload_device = model_management.vae_offload_device()
if dtype is None:
dtype = model_management.vae_dtype(self.device, self.working_dtypes)
self.vae_dtype = dtype
self.first_stage_model.to(self.vae_dtype)
self.output_device = model_management.intermediate_device()
self.patcher = model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
logger.debug("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
# todo: why is this being called here? for what side effects exactly?
self.model_size()
def clone(self):
n = VAE(no_init=True)
n.memory_used_encode = self.memory_used_encode
n.memory_used_decode = self.memory_used_decode
n.downscale_ratio = self.downscale_ratio
n.upscale_ratio = self.upscale_ratio
n.latent_channels = self.latent_channels
n.latent_dim = self.latent_dim
n.output_channels = self.output_channels
n.process_input = self.process_input
n.process_output = self.process_output
n.working_dtypes = self.working_dtypes.copy()
n.disable_offload = self.disable_offload
n.downscale_index_formula = self.downscale_index_formula
n.upscale_index_formula = self.upscale_index_formula
n.extra_1d_channel = self.extra_1d_channel
n.first_stage_model = self.first_stage_model
n.device = self.device
n.vae_dtype = self.vae_dtype
n.output_device = self.output_device
n.patcher = self.patcher.clone()
return n
def model_size(self):
if self.size is not None:
return self.size
self.size = module_size(self.first_stage_model)
return self.size
def get_ram_usage(self):
return self.model_size()
def throw_exception_if_invalid(self):
if self.first_stage_model is None:
raise RuntimeError("ERROR: VAE is invalid: None\n\nIf the VAE is from a checkpoint loader node your checkpoint does not contain a valid VAE.")
def vae_encode_crop_pixels(self, pixels):
if self.crop_input:
downscale_ratio = self.spacial_compression_encode()
dims = pixels.shape[1:-1]
for d in range(len(dims)):
x = (dims[d] // downscale_ratio) * downscale_ratio
x_offset = (dims[d] % downscale_ratio) // 2
if x != dims[d]:
pixels = pixels.narrow(d + 1, x_offset, x)
if pixels.shape[-1] > self.output_channels:
pixels = pixels[..., :self.output_channels]
elif pixels.shape[-1] < self.output_channels:
if self.pad_channel_value is not None:
if isinstance(self.pad_channel_value, str):
mode = self.pad_channel_value
value = None
else:
mode = "constant"
value = self.pad_channel_value
pixels = torch.nn.functional.pad(pixels, (0, self.output_channels - pixels.shape[-1]), mode=mode, value=value)
return pixels
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap=16):
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = utils.ProgressBar(steps)
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
output = self.process_output(
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount=self.upscale_ratio, output_device=self.output_device, pbar=pbar) +
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount=self.upscale_ratio, output_device=self.output_device, pbar=pbar) +
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount=self.upscale_ratio, output_device=self.output_device, pbar=pbar))
/ 3.0)
return output
def decode_tiled_1d(self, samples, tile_x=128, overlap=32):
if samples.ndim == 3:
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
else:
og_shape = samples.shape
samples = samples.reshape((og_shape[0], og_shape[1] * og_shape[2], -1))
decode_fn = lambda a: self.first_stage_model.decode(a.reshape((-1, og_shape[1], og_shape[2], a.shape[-1])).to(self.vae_dtype).to(self.device)).float()
return self.process_output(utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device))
def decode_tiled_3d(self, samples, tile_t=999, tile_x=32, tile_y=32, overlap=(1, 8, 8)):
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
return self.process_output(utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, index_formulas=self.upscale_index_formula, output_device=self.output_device))
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap=64):
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = utils.ProgressBar(steps)
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount=(1 / self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount=(1 / self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount=(1 / self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
samples /= 3.0
return samples
def encode_tiled_1d(self, samples, tile_x=256 * 2048, overlap=64 * 2048):
extra_channel_size = 0
if self.latent_dim == 1:
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
out_channels = self.latent_channels
upscale_amount = 1 / self.downscale_ratio
else:
extra_channel_size = self.extra_1d_channel
out_channels = self.latent_channels * extra_channel_size
tile_x = tile_x // extra_channel_size
overlap = overlap // extra_channel_size
upscale_amount = 1 / self.downscale_ratio
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).reshape(1, out_channels, -1).float()
out = utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=upscale_amount, out_channels=out_channels, output_device=self.output_device)
if self.latent_dim == 1:
return out
else:
return out.reshape(samples.shape[0], self.latent_channels, extra_channel_size, -1)
def encode_tiled_3d(self, samples, tile_t=9999, tile_x=512, tile_y=512, overlap=(1, 64, 64)):
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
return utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.downscale_ratio, out_channels=self.latent_channels, downscale=True, index_formulas=self.downscale_index_formula, output_device=self.output_device)
def decode(self, samples_in, vae_options={}):
self.throw_exception_if_invalid()
pixel_samples = None
do_tile = False
if self.latent_dim == 2 and samples_in.ndim == 5:
samples_in = samples_in[:, :, 0]
try:
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
for x in range(0, samples_in.shape[0], batch_number):
samples = samples_in[x:x + batch_number].to(self.vae_dtype).to(self.device)
out = self.process_output(self.first_stage_model.decode(samples, **vae_options).to(self.output_device).float())
if pixel_samples is None:
pixel_samples = torch.empty((samples_in.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
pixel_samples[x:x + batch_number] = out
except model_management.OOM_EXCEPTION:
logger.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
# NOTE: We don't know what tensors were allocated to stack variables at the time of the
# exception and the exception itself refs them all until we get out of this except block.
# So we just set a flag for tiler fallback so that tensor gc can happen once the
# exception is fully off the books.
do_tile = True
if do_tile:
dims = samples_in.ndim - 2
if dims == 1 or self.extra_1d_channel is not None:
pixel_samples = self.decode_tiled_1d(samples_in)
elif dims == 2:
pixel_samples = self.decode_tiled_(samples_in)
elif dims == 3:
tile = 256 // self.spacial_compression_decode()
overlap = tile // 4
pixel_samples = self.decode_tiled_3d(samples_in, tile_x=tile, tile_y=tile, overlap=(1, overlap, overlap))
pixel_samples = pixel_samples.to(self.output_device).movedim(1, -1)
return pixel_samples
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
self.throw_exception_if_invalid()
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) # TODO: calculate mem required for tile
load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
dims = samples.ndim - 2
args = {}
if tile_x is not None:
args["tile_x"] = tile_x
if tile_y is not None:
args["tile_y"] = tile_y
if overlap is not None:
args["overlap"] = overlap
if dims == 1:
args.pop("tile_y")
output = self.decode_tiled_1d(samples, **args)
elif dims == 2:
output = self.decode_tiled_(samples, **args)
elif dims == 3:
if overlap_t is None:
args["overlap"] = (1, overlap, overlap)
else:
args["overlap"] = (max(1, overlap_t), overlap, overlap)
if tile_t is not None:
args["tile_t"] = max(2, tile_t)
output = self.decode_tiled_3d(samples, **args)
else:
raise ValueError(f"invalid dims={dims}")
return output.movedim(1, -1)
def encode(self, pixel_samples):
self.throw_exception_if_invalid()
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
pixel_samples = pixel_samples.movedim(-1, 1)
do_tile = False
samples = None
if self.latent_dim == 3 and pixel_samples.ndim < 5:
if not self.not_video:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
else:
pixel_samples = pixel_samples.unsqueeze(2)
try:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / max(1, memory_used))
batch_number = max(1, batch_number)
samples = None
for x in range(0, pixel_samples.shape[0], batch_number):
pixels_in = self.process_input(pixel_samples[x:x + batch_number]).to(self.vae_dtype).to(self.device)
out = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
if samples is None:
samples = torch.empty((pixel_samples.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
samples[x:x + batch_number] = out
except model_management.OOM_EXCEPTION:
logger.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
# NOTE: We don't know what tensors were allocated to stack variables at the time of the
# exception and the exception itself refs them all until we get out of this except block.
# So we just set a flag for tiler fallback so that tensor gc can happen once the
# exception is fully off the books.
do_tile = True
if do_tile:
if self.latent_dim == 3:
tile = 256
overlap = tile // 4
samples = self.encode_tiled_3d(pixel_samples, tile_x=tile, tile_y=tile, overlap=(1, overlap, overlap))
elif self.latent_dim == 1 or self.extra_1d_channel is not None:
samples = self.encode_tiled_1d(pixel_samples)
else:
samples = self.encode_tiled_(pixel_samples)
return samples
def encode_tiled(self, pixel_samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
self.throw_exception_if_invalid()
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
dims = self.latent_dim
pixel_samples = pixel_samples.movedim(-1, 1)
if dims == 3:
if not self.not_video:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
else:
pixel_samples = pixel_samples.unsqueeze(2)
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) # TODO: calculate mem required for tile
load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
args = {}
if tile_x is not None:
args["tile_x"] = tile_x
if tile_y is not None:
args["tile_y"] = tile_y
if overlap is not None:
args["overlap"] = overlap
samples = None
if dims == 1:
args.pop("tile_y")
samples = self.encode_tiled_1d(pixel_samples, **args)
elif dims == 2:
samples = self.encode_tiled_(pixel_samples, **args)
elif dims == 3:
if tile_t is not None:
tile_t_latent = max(2, self.downscale_ratio[0](tile_t))
else:
tile_t_latent = 9999
args["tile_t"] = self.upscale_ratio[0](tile_t_latent)
if overlap_t is None:
args["overlap"] = (1, overlap, overlap)
else:
args["overlap"] = (self.upscale_ratio[0](max(1, min(tile_t_latent // 2, self.downscale_ratio[0](overlap_t)))), overlap, overlap)
maximum = pixel_samples.shape[2]
maximum = self.upscale_ratio[0](self.downscale_ratio[0](maximum))
samples = self.encode_tiled_3d(pixel_samples[:, :, :maximum], **args)
else:
raise ValueError(f"unsupported values dim {dims}")
return samples
def get_sd(self):
return self.first_stage_model.state_dict()
def spacial_compression_decode(self):
try:
return self.upscale_ratio[-1]
except:
return self.upscale_ratio
def spacial_compression_encode(self):
try:
return self.downscale_ratio[-1]
except:
return self.downscale_ratio
def temporal_compression_decode(self):
try:
return round(self.upscale_ratio[0](8192) / 8192)
except:
return None
def __str__(self):
info_str = f"dtype={self.vae_dtype} device={self.device}"
if self.ckpt_name == "":
return f"<VAE for {self.first_stage_model.__class__.__name__} {info_str}>"
else:
return f"<VAE for {self.ckpt_name} ({self.first_stage_model.__class__.__name__} {info_str})>"
class StyleModel:
def __init__(self, model, device="cpu"):
self.model = model
def get_cond(self, input):
return self.model(input.last_hidden_state)
def load_style_model(ckpt_path):
model_data = utils.load_torch_file(ckpt_path, safe_load=True)
keys = model_data.keys()
if "style_embedding" in keys:
model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
elif "redux_down.weight" in keys:
model = ReduxImageEncoder()
else:
raise Exception("invalid style model {}".format(ckpt_path))
model.load_state_dict(model_data)
return StyleModel(model)
class CLIPType(Enum):
STABLE_DIFFUSION = 1
STABLE_CASCADE = 2
SD3 = 3
STABLE_AUDIO = 4
HUNYUAN_DIT = 5
FLUX = 6
MOCHI = 7
LTXV = 8
HUNYUAN_VIDEO = 9
PIXART = 10
COSMOS = 11
LUMINA2 = 12
WAN = 13
HIDREAM = 14
CHROMA = 15
ACE = 16
OMNIGEN2 = 17
QWEN_IMAGE = 18
HUNYUAN_IMAGE = 19
HUNYUAN_VIDEO_15 = 20
OVIS = 21
KANDINSKY5 = 22
KANDINSKY5_IMAGE = 23
NEWBIE = 24
@dataclasses.dataclass
class CLIPTarget:
clip: Optional[Any] = None
vae: Optional[Any] = None
params: Optional[dict] = dataclasses.field(default_factory=dict)
tokenizer: Optional[Any] = None
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, textmodel_json_config: str | dict | None = None, model_options=None):
if model_options is None:
model_options = dict()
clip_data = []
for p in ckpt_paths:
sd, metadata = utils.load_torch_file(p, safe_load=True, return_metadata=True)
if model_options.get("custom_operations", None) is None:
sd, metadata = utils.convert_old_quants(sd, model_prefix="", metadata=metadata)
clip_data.append(sd)
return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options)
class TEModel(Enum):
CLIP_L = 1
CLIP_H = 2
CLIP_G = 3
T5_XXL = 4
T5_XL = 5
T5_BASE = 6
LLAMA3_8 = 7
T5_XXL_OLD = 8
GEMMA_2_2B = 9
QWEN25_3B = 10
QWEN25_7B = 11
BYT5_SMALL_GLYPH = 12
GEMMA_3_4B = 13
MISTRAL3_24B = 14
MISTRAL3_24B_PRUNED_FLUX2 = 15
QWEN3_4B = 16
QWEN3_2B = 17
JINA_CLIP_2 = 18
def detect_te_model(sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
return TEModel.CLIP_G
if "text_model.encoder.layers.22.mlp.fc1.weight" in sd:
return TEModel.CLIP_H
if "text_model.encoder.layers.0.mlp.fc1.weight" in sd:
return TEModel.CLIP_L
if "model.encoder.layers.0.mixer.Wqkv.weight" in sd:
return TEModel.JINA_CLIP_2
if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
if weight.shape[-1] == 4096:
return TEModel.T5_XXL
elif weight.shape[-1] == 2048:
return TEModel.T5_XL
if 'encoder.block.23.layer.1.DenseReluDense.wi.weight' in sd:
return TEModel.T5_XXL_OLD
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
weight = sd['encoder.block.0.layer.0.SelfAttention.k.weight']
if weight.shape[0] == 384:
return TEModel.BYT5_SMALL_GLYPH
return TEModel.T5_BASE
if 'model.layers.0.post_feedforward_layernorm.weight' in sd:
if 'model.layers.0.self_attn.q_norm.weight' in sd:
return TEModel.GEMMA_3_4B
return TEModel.GEMMA_2_2B
if 'model.layers.0.self_attn.k_proj.bias' in sd:
weight = sd['model.layers.0.self_attn.k_proj.bias']
if weight.shape[0] == 256:
return TEModel.QWEN25_3B
if weight.shape[0] == 512:
return TEModel.QWEN25_7B
if "model.layers.0.post_attention_layernorm.weight" in sd:
weight = sd['model.layers.0.post_attention_layernorm.weight']
if 'model.layers.0.self_attn.q_norm.weight' in sd:
if weight.shape[0] == 2560:
return TEModel.QWEN3_4B
elif weight.shape[0] == 2048:
return TEModel.QWEN3_2B
if weight.shape[0] == 5120:
if "model.layers.39.post_attention_layernorm.weight" in sd:
return TEModel.MISTRAL3_24B
else:
return TEModel.MISTRAL3_24B_PRUNED_FLUX2
return TEModel.LLAMA3_8
return None
def t5xxl_detect(clip_data):
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
weight_name_old = "encoder.block.23.layer.1.DenseReluDense.wi.weight"
for sd in clip_data:
if weight_name in sd or weight_name_old in sd:
return sd3_clip.t5_xxl_detect(sd)
return {}
def llama_detect(clip_data):
weight_name = "model.layers.0.self_attn.k_proj.weight"
for sd in clip_data:
if weight_name in sd:
return hunyuan_video.llama_detect(sd)
return {}
def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}, textmodel_json_config=None):
clip_data = state_dicts
class EmptyClass:
pass
for i in range(len(clip_data)):
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
clip_data[i] = utils.clip_text_transformers_convert(clip_data[i], "", "")
else:
if "text_projection" in clip_data[i]:
clip_data[i]["text_projection.weight"] = clip_data[i]["text_projection"].transpose(0, 1) # old models saved with the CLIPSave node
tokenizer_data = {}
clip_target = CLIPTarget()
clip_target.params = {}
if len(clip_data) == 1:
te_model = detect_te_model(clip_data[0])
if te_model == TEModel.CLIP_G:
if clip_type == CLIPType.STABLE_CASCADE:
clip_target.clip = sdxl_clip.StableCascadeClipModel
clip_target.tokenizer = sdxl_clip.StableCascadeTokenizer
elif clip_type == CLIPType.SD3:
clip_target.clip = sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
clip_target.tokenizer = sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None)
clip_target.tokenizer = hidream.HiDreamTokenizer
else:
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
elif te_model == TEModel.CLIP_H:
clip_target.clip = sd2_clip.SD2ClipModel
clip_target.tokenizer = sd2_clip.SD2Tokenizer
elif te_model == TEModel.T5_XXL:
if clip_type == CLIPType.SD3:
clip_target.clip = sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, **t5xxl_detect(clip_data))
clip_target.tokenizer = sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.LTXV:
clip_target.clip = lt.ltxv_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = lt.LTXVT5Tokenizer
elif clip_type == CLIPType.PIXART or clip_type == CLIPType.CHROMA:
clip_target.clip = pixart_t5.pixart_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = pixart_t5.PixArtTokenizer
elif clip_type == CLIPType.WAN:
clip_target.clip = wan.te(**t5xxl_detect(clip_data))
clip_target.tokenizer = wan.WanT5Tokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = hidream.hidream_clip(**t5xxl_detect(clip_data),
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None)
clip_target.tokenizer = hidream.HiDreamTokenizer
else: # CLIPType.MOCHI
clip_target.clip = genmo.mochi_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = genmo.MochiT5Tokenizer
elif te_model == TEModel.T5_XXL_OLD:
clip_target.clip = cosmos.te(**t5xxl_detect(clip_data))
clip_target.tokenizer = cosmos.CosmosT5Tokenizer
elif te_model == TEModel.T5_XL:
clip_target.clip = aura_t5.AuraT5Model
clip_target.tokenizer = aura_t5.AuraT5Tokenizer
elif te_model == TEModel.T5_BASE:
if clip_type == CLIPType.ACE or "spiece_model" in clip_data[0]:
clip_target.clip = ace.AceT5Model
clip_target.tokenizer = ace.AceT5Tokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
else:
clip_target.clip = sa_t5.SAT5Model
clip_target.tokenizer = sa_t5.SAT5Tokenizer
elif te_model == TEModel.GEMMA_2_2B:
clip_target.clip = lumina2.te(**llama_detect(clip_data))
clip_target.tokenizer = lumina2.LuminaTokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif te_model == TEModel.GEMMA_3_4B:
clip_target.clip = lumina2.te(**llama_detect(clip_data), model_type="gemma3_4b")
clip_target.tokenizer = lumina2.NTokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif te_model == TEModel.LLAMA3_8:
clip_target.clip = hidream.hidream_clip(**llama_detect(clip_data),
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None)
clip_target.tokenizer = hidream.HiDreamTokenizer
elif te_model == TEModel.QWEN25_3B:
clip_target.clip = omnigen2.te(**llama_detect(clip_data))
clip_target.tokenizer = omnigen2.Omnigen2Tokenizer
elif te_model == TEModel.QWEN25_7B:
if clip_type == CLIPType.HUNYUAN_IMAGE:
clip_target.clip = hunyuan_image.te(byt5=False, **llama_detect(clip_data))
clip_target.tokenizer = hunyuan_image.HunyuanImageTokenizer
else:
clip_target.clip = qwen_image.te(**llama_detect(clip_data))
clip_target.tokenizer = qwen_image.QwenImageTokenizer
elif te_model == TEModel.MISTRAL3_24B or te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2:
clip_target.clip = flux.flux2_te(**llama_detect(clip_data), pruned=te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2)
clip_target.tokenizer = flux.Flux2Tokenizer
tokenizer_data["tekken_model"] = clip_data[0].get("tekken_model", None)
elif te_model == TEModel.QWEN3_4B:
clip_target.clip = z_image.te(**llama_detect(clip_data))
clip_target.tokenizer = z_image.ZImageTokenizer
elif te_model == TEModel.QWEN3_2B:
clip_target.clip = ovis.te(**llama_detect(clip_data))
clip_target.tokenizer = ovis.OvisTokenizer
elif te_model == TEModel.JINA_CLIP_2:
clip_target.clip = jina_clip_2.JinaClip2TextModelWrapper
clip_target.tokenizer = jina_clip_2.JinaClip2TokenizerWrapper
else:
# clip_l
if clip_type == CLIPType.SD3:
clip_target.clip = sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
clip_target.tokenizer = sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None)
clip_target.tokenizer = hidream.HiDreamTokenizer
else:
clip_target.clip = sd1_clip.SD1ClipModel
clip_target.tokenizer = sd1_clip.SD1Tokenizer
elif len(clip_data) == 2:
if clip_type == CLIPType.SD3:
te_models = [detect_te_model(clip_data[0]), detect_te_model(clip_data[1])]
clip_target.clip = sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, **t5xxl_detect(clip_data))
clip_target.tokenizer = sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HUNYUAN_DIT:
clip_target.clip = hydit.HyditModel
clip_target.tokenizer = hydit.HyditTokenizer
elif clip_type == CLIPType.FLUX:
clip_target.clip = flux.flux_clip(**t5xxl_detect(clip_data))
clip_target.tokenizer = flux.FluxTokenizer
elif clip_type == CLIPType.HUNYUAN_VIDEO:
clip_target.clip = hunyuan_video.hunyuan_video_clip(**llama_detect(clip_data))
clip_target.tokenizer = hunyuan_video.HunyuanVideoTokenizer
elif clip_type == CLIPType.HIDREAM:
# Detect
hidream_dualclip_classes = []
for hidream_te in clip_data:
te_model = detect_te_model(hidream_te)
hidream_dualclip_classes.append(te_model)
clip_l = TEModel.CLIP_L in hidream_dualclip_classes
clip_g = TEModel.CLIP_G in hidream_dualclip_classes
t5 = TEModel.T5_XXL in hidream_dualclip_classes
llama = TEModel.LLAMA3_8 in hidream_dualclip_classes
# Initialize t5xxl_detect and llama_detect kwargs if needed
t5_kwargs = t5xxl_detect(clip_data) if t5 else {}
llama_kwargs = llama_detect(clip_data) if llama else {}
clip_target.clip = hidream.hidream_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, **t5_kwargs, **llama_kwargs)
clip_target.tokenizer = hidream.HiDreamTokenizer
elif clip_type == CLIPType.HUNYUAN_IMAGE:
clip_target.clip = hunyuan_image.te(**llama_detect(clip_data))
clip_target.tokenizer = hunyuan_image.HunyuanImageTokenizer
elif clip_type == CLIPType.HUNYUAN_VIDEO_15:
clip_target.clip = hunyuan_image.te(**llama_detect(clip_data))
clip_target.tokenizer = hunyuan_video.HunyuanVideo15Tokenizer
elif clip_type == CLIPType.KANDINSKY5:
clip_target.clip = kandinsky5.te(**llama_detect(clip_data))
clip_target.tokenizer = kandinsky5.Kandinsky5Tokenizer
elif clip_type == CLIPType.KANDINSKY5_IMAGE:
clip_target.clip = kandinsky5.te(**llama_detect(clip_data))
clip_target.tokenizer = kandinsky5.Kandinsky5TokenizerImage
elif clip_type == CLIPType.NEWBIE:
clip_target.clip = newbie.te(**llama_detect(clip_data))
clip_target.tokenizer = newbie.NewBieTokenizer
if "model.layers.0.self_attn.q_norm.weight" in clip_data[0]:
clip_data_gemma = clip_data[0]
clip_data_jina = clip_data[1]
else:
clip_data_gemma = clip_data[1]
clip_data_jina = clip_data[0]
tokenizer_data["gemma_spiece_model"] = clip_data_gemma.get("spiece_model", None)
tokenizer_data["jina_spiece_model"] = clip_data_jina.get("spiece_model", None)
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
elif len(clip_data) == 3:
clip_target.clip = sd3_clip.sd3_clip(**t5xxl_detect(clip_data))
clip_target.tokenizer = sd3_clip.SD3Tokenizer
elif len(clip_data) == 4:
clip_target.clip = hidream.hidream_clip(**t5xxl_detect(clip_data), **llama_detect(clip_data))
clip_target.tokenizer = hidream.HiDreamTokenizer
parameters = 0
for c in clip_data:
parameters += utils.calculate_parameters(c)
tokenizer_data, model_options = long_clipl.model_options_long_clip(c, tokenizer_data, model_options)
clip = CLIP(clip_target, textmodel_json_config=textmodel_json_config, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, state_dict=clip_data, model_options=model_options)
return clip
def load_gligen(ckpt_path):
data = utils.load_torch_file(ckpt_path, safe_load=True)
model = gligen.load_gligen(data)
if model_management.should_use_fp16():
model = model.half()
return model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
def model_detection_error_hint(path, state_dict):
filename = os.path.basename(path)
if 'lora' in filename.lower():
return "\nHINT: This seems to be a Lora file and Lora files should be put in the lora folder and loaded with a lora loader node.."
return ""
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
logger.warning("Warning: The load checkpoint with config function is deprecated and will eventually be removed, please use the other one.")
model, clip, vae, _ = load_checkpoint_guess_config(ckpt_path, output_vae=output_vae, output_clip=output_clip, output_clipvision=False, embedding_directory=embedding_directory, output_model=True)
# TODO: this function is a mess and should be removed eventually
if config is None:
with open(config_path, 'r') as stream:
config = yaml.safe_load(stream)
model_config_params = config['model']['params']
clip_config = model_config_params['cond_stage_config']
if "parameterization" in model_config_params:
if model_config_params["parameterization"] == "v":
m = model.clone()
class ModelSamplingAdvanced(model_sampling.ModelSamplingDiscrete, model_sampling.V_PREDICTION):
pass
m.add_object_patch("model_sampling", ModelSamplingAdvanced(model.model.model_config))
model = m
layer_idx = clip_config.get("params", {}).get("layer_idx", None)
if layer_idx is not None:
clip.clip_layer(layer_idx)
return (model, clip, vae)
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options=None, te_model_options=None):
if te_model_options is None:
te_model_options = {}
if model_options is None:
model_options = {}
sd, metadata = utils.load_torch_file(ckpt_path, return_metadata=True)
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options, ckpt_path=ckpt_path)
if out is None:
raise RuntimeError("Could not detect model type of: {}\n{}".format(ckpt_path, model_detection_error_hint(ckpt_path, sd)))
return out
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options=None, te_model_options=None, metadata: Optional[FileMetadata] = None, ckpt_path=""):
if te_model_options is None:
te_model_options = {}
if model_options is None:
model_options = {}
clip = None
clipvision = None
vae = None
model = None
_model_patcher = None
inital_load_device = None
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
parameters = utils.calculate_parameters(sd, diffusion_model_prefix)
weight_dtype = utils.weight_dtype(sd, diffusion_model_prefix)
load_device = model_management.get_torch_device()
custom_operations = model_options.get("custom_operations", None)
if custom_operations is None:
sd, metadata = utils.convert_old_quants(sd, diffusion_model_prefix, metadata=metadata)
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata)
if model_config is None:
logger.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.")
diffusion_model = load_diffusion_model_state_dict(sd, model_options={})
if diffusion_model is None:
return None
return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used'
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if model_config.quant_config is not None:
weight_dtype = None
if custom_operations is not None:
model_config.custom_operations = custom_operations
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
if unet_dtype is None:
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype)
if model_config.quant_config is not None:
manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes)
else:
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
if model_config.clip_vision_prefix is not None:
if output_clipvision:
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
if output_model:
inital_load_device = model_management.unet_initial_load_device(parameters, unet_dtype)
model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
model.load_model_weights(sd, diffusion_model_prefix)
if output_vae:
vae_sd = utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
vae_sd = model_config.process_vae_state_dict(vae_sd)
vae = VAE(sd=vae_sd, metadata=metadata)
if output_clip:
if te_model_options.get("custom_operations", None) is None:
scaled_fp8_list = []
for k in list(sd.keys()): # Convert scaled fp8 to mixed ops
if k.endswith(".scaled_fp8"):
scaled_fp8_list.append(k[:-len("scaled_fp8")])
if len(scaled_fp8_list) > 0:
out_sd = {}
for k in sd:
skip = False
for pref in scaled_fp8_list:
skip = skip or k.startswith(pref)
if not skip:
out_sd[k] = sd[k]
for pref in scaled_fp8_list:
quant_sd, qmetadata = utils.convert_old_quants(sd, pref, metadata={})
for k in quant_sd:
out_sd[k] = quant_sd[k]
sd = out_sd
clip_target = model_config.clip_target(state_dict=sd)
if clip_target is not None:
clip_sd = model_config.process_clip_state_dict(sd)
if len(clip_sd) > 0:
parameters = utils.calculate_parameters(clip_sd)
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, state_dict=clip_sd, model_options=te_model_options)
else:
logger.warning(f"no CLIP/text encoder weights in checkpoint {ckpt_path}, the text encoder model will not be loaded.")
left_over = sd.keys()
if len(left_over) > 0:
logger.debug("left over keys: {}".format(left_over))
if output_model:
_model_patcher = model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), ckpt_name=os.path.basename(ckpt_path))
if inital_load_device != torch.device("cpu"):
model_management.load_models_gpu([_model_patcher], force_full_load=True)
return (_model_patcher, clip, vae, clipvision)
def load_diffusion_model_state_dict(sd, model_options: dict = None, ckpt_path: Optional[str] = "", metadata: Optional[FileMetadata] = None): # load unet in diffusers or regular format
"""
Loads a UNet diffusion model from a state dictionary, supporting both diffusers and regular formats.
Args:
sd (dict): State dictionary containing model weights and configuration
model_options (dict, optional): Additional options for model loading. Supports:
- dtype: Override model data type
- custom_operations: Custom model operations
- fp8_optimizations: Enable FP8 optimizations
metadata: file metadata
Returns:
ModelPatcher: A wrapped model instance that handles device management and weight loading.
Returns None if the model configuration cannot be detected.
The function:
1. Detects and handles different model formats (regular, diffusers, mmdit)
2. Configures model dtype based on parameters and device capabilities
3. Handles weight conversion and device placement
4. Manages model optimization settings
5. Loads weights and returns a device-managed model instance
"""
if model_options is None:
model_options = {}
dtype = model_options.get("dtype", None)
# Allow loading unets from checkpoint files
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
temp_sd = utils.state_dict_prefix_replace(sd, {diffusion_model_prefix: ""}, filter_keys=True)
if len(temp_sd) > 0:
sd = temp_sd
custom_operations = model_options.get("custom_operations", None)
if custom_operations is None:
sd, metadata = utils.convert_old_quants(sd, "", metadata=metadata)
parameters = utils.calculate_parameters(sd)
weight_dtype = utils.weight_dtype(sd)
load_device = model_management.get_torch_device()
model_config = model_detection.model_config_from_unet(sd, "", metadata=metadata)
if model_config is not None:
new_sd = sd
else:
new_sd = model_detection.convert_diffusers_mmdit(sd, "")
if new_sd is not None: # diffusers mmdit
model_config = model_detection.model_config_from_unet(new_sd, "", metadata=metadata)
if model_config is None:
return None
else: # diffusers unet
model_config = model_detection.model_config_from_diffusers_unet(sd)
if model_config is None:
return None
diffusers_keys = utils.unet_to_diffusers(model_config.unet_config)
new_sd = {}
for k in diffusers_keys:
if k in sd:
new_sd[diffusers_keys[k]] = sd.pop(k)
else:
logger.warning("{} {}".format(diffusers_keys[k], k))
offload_device = model_management.unet_offload_device()
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if model_config.quant_config is not None:
weight_dtype = None
if dtype is None:
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype)
else:
unet_dtype = dtype
if model_config.quant_config is not None:
manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes)
else:
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
if custom_operations is not None:
model_config.custom_operations = custom_operations
if model_options.get("fp8_optimizations", False):
model_config.optimizations["fp8"] = True
model = model_config.get_model(new_sd, "")
model = model.to(offload_device)
model.load_model_weights(new_sd, "")
left_over = sd.keys()
if len(left_over) > 0:
logger.info("left over keys in diffusion model: {}".format(left_over))
return model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device, ckpt_name=os.path.basename(ckpt_path))
def load_diffusion_model(unet_path, model_options=None):
if model_options is None:
model_options = {}
sd, metadata = utils.load_torch_file(unet_path, return_metadata=True)
model = load_diffusion_model_state_dict(sd, model_options=model_options, ckpt_path=unet_path, metadata=metadata)
if model is None:
logger.error("ERROR UNSUPPORTED DIFFUSION MODEL {}".format(unet_path))
raise RuntimeError("ERROR: Could not detect model type of: {}\n{}".format(unet_path, model_detection_error_hint(unet_path, sd)))
return model
@_deprecate_method(message="The load_unet function has been deprecated and will be removed please switch to: load_diffusion_model", version="*")
def load_unet(unet_path, dtype=None):
return load_diffusion_model(unet_path, model_options={"dtype": dtype})
@_deprecate_method(message="The load_unet_state_dict function has been deprecated and will be removed please switch to: load_diffusion_model_state_dict", version="*")
def load_unet_state_dict(sd, dtype=None):
return load_diffusion_model_state_dict(sd, model_options={"dtype": dtype})
def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}):
clip_sd = None
load_models = [model]
if clip is not None:
load_models.append(clip.load_model())
clip_sd = clip.get_sd()
vae_sd = None
if vae is not None:
vae_sd = vae.get_sd()
if metadata is None:
metadata = {}
model_management.load_models_gpu(load_models, force_patch_weights=True)
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)
for k in extra_keys:
sd[k] = extra_keys[k]
for k in sd:
t = sd[k]
if not t.is_contiguous():
sd[k] = t.contiguous()
utils.save_torch_file(sd, output_path, metadata=metadata)