ComfyUI/comfy/ldm/higgsv2/test_model.py
Yousef Rafat 254622d7c6 init
2025-09-05 23:47:56 +03:00

2381 lines
113 KiB
Python

"""Higgs-Audio is an end-to-end multimodal model with the capability to understand and generate text / audio."""
import torch
import torch.nn as nn
from transformers.models.auto import CONFIG_MAPPING
import math
import glob
import functools
import os
from collections import defaultdict, OrderedDict
from dataclasses import dataclass
from enum import Enum
from safetensors.torch import load_file
from typing import Optional, Tuple, Union, List, Dict, Any
from transformers import AutoTokenizer
from transformers.modeling_outputs import BaseModelOutput
from transformers.models.whisper.modeling_whisper import WhisperEncoderLayer
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.generation import GenerationMixin, GenerationConfig, LogitsProcessorList, StoppingCriteriaList
from transformers.generation.utils import GenerateNonBeamOutput
from transformers.utils import logging, ModelOutput
from transformers.configuration_utils import PretrainedConfig
from torch import nn
def _ceil_to_nearest(n, round_to):
return (n + round_to - 1) // round_to * round_to
from transformers.modeling_utils import PreTrainedModel
class HiggsAudioConfig(PretrainedConfig):
model_type = "higgs_audio"
is_composition = True
def __init__(
self,
text_config=None,
audio_encoder_config=None,
audio_tokenizer_config=None,
audio_adapter_type="stack",
audio_embed_avg=False,
audio_ffn_hidden_size=4096,
audio_ffn_intermediate_size=14336,
audio_dual_ffn_layers=None,
audio_decoder_proj_num_layers=0,
encode_whisper_embed=True,
encode_audio_in_tokens=False,
use_delay_pattern=False,
skip_audio_tower=False,
use_audio_out_embed_projector=False,
use_audio_out_self_attention=False,
use_rq_transformer=False,
rq_transformer_hidden_size=None,
rq_transformer_intermediate_size=None,
rq_transformer_num_attention_heads=None,
rq_transformer_num_key_value_heads=None,
rq_transformer_num_hidden_layers=3,
audio_num_codebooks=12,
audio_codebook_size=1024,
audio_stream_bos_id=1024,
audio_stream_eos_id=1025,
audio_bos_token="<|audio_bos|>",
audio_eos_token="<|audio_eos|>",
audio_out_bos_token="<|audio_out_bos|>",
audio_in_token="<|AUDIO|>",
audio_out_token="<|AUDIO_OUT|>",
audio_in_token_idx=128015,
audio_out_token_idx=128016,
pad_token_id=128001,
audio_out_bos_token_id=128013,
audio_eos_token_id=128012,
**kwargs,
):
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["llama"]()
assert audio_adapter_type in [
"stack",
"dual_ffn",
"dual_ffn_fast_forward",
], f"Invalid audio adapter type: {audio_adapter_type}"
if audio_adapter_type.startswith("dual_ffn"):
assert audio_dual_ffn_layers is not None, (
"audio_dual_ffn_layers must be specified when using dual_ffn adapter."
)
self.text_config = text_config
self.audio_encoder_config = audio_encoder_config
self.audio_tokenizer_config = audio_tokenizer_config
self.audio_adapter_type = audio_adapter_type
self.audio_embed_avg = audio_embed_avg
self.audio_ffn_hidden_size = audio_ffn_hidden_size
self.audio_ffn_intermediate_size = audio_ffn_intermediate_size
self.audio_dual_ffn_layers = audio_dual_ffn_layers
self.audio_decoder_proj_num_layers = audio_decoder_proj_num_layers
self.encode_whisper_embed = encode_whisper_embed
self.encode_audio_in_tokens = encode_audio_in_tokens
self.use_delay_pattern = use_delay_pattern
self.skip_audio_tower = skip_audio_tower
self.use_audio_out_embed_projector = use_audio_out_embed_projector
self.use_audio_out_self_attention = use_audio_out_self_attention
self.use_rq_transformer = use_rq_transformer
if self.use_rq_transformer:
assert not self.use_delay_pattern, "Delay pattern is not supported if you turned on RQ-Transformer!"
self.rq_transformer_hidden_size = rq_transformer_hidden_size
self.rq_transformer_intermediate_size = rq_transformer_intermediate_size
self.rq_transformer_num_attention_heads = rq_transformer_num_attention_heads
self.rq_transformer_num_key_value_heads = rq_transformer_num_key_value_heads
self.rq_transformer_num_hidden_layers = rq_transformer_num_hidden_layers
if use_rq_transformer:
# For RQ-Transformer, we set the hidden_size to the same as the text model's hidden size if it is not specified.
if self.rq_transformer_hidden_size is None:
self.rq_transformer_hidden_size = text_config.hidden_size
assert self.rq_transformer_hidden_size % 128 == 0
if self.rq_transformer_intermediate_size is None:
self.rq_transformer_intermediate_size = text_config.intermediate_size
if self.rq_transformer_num_attention_heads is None:
self.rq_transformer_num_attention_heads = self.rq_transformer_hidden_size // 128
if self.rq_transformer_num_key_value_heads is None:
self.rq_transformer_num_key_value_heads = self.rq_transformer_hidden_size // 128 // 4
assert self.rq_transformer_hidden_size % self.rq_transformer_num_attention_heads == 0
assert self.rq_transformer_hidden_size % self.rq_transformer_num_key_value_heads == 0
self.audio_num_codebooks = audio_num_codebooks
self.audio_codebook_size = audio_codebook_size
self.audio_bos_token = audio_bos_token
self.audio_eos_token = audio_eos_token
self.audio_out_bos_token = audio_out_bos_token
self.audio_in_token = audio_in_token
self.audio_out_token = audio_out_token
self.audio_in_token_idx = audio_in_token_idx
self.audio_out_token_idx = audio_out_token_idx
self.audio_stream_bos_id = audio_stream_bos_id
self.audio_stream_eos_id = audio_stream_eos_id
self.audio_out_bos_token_id = audio_out_bos_token_id
self.audio_eos_token_id = audio_eos_token_id
super().__init__(**kwargs)
self.pad_token_id = pad_token_id
class HiggsAudioPreTrainedModel(PreTrainedModel):
config_class = HiggsAudioConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = []
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
def merge_input_ids_with_audio_features(
audio_in_embed, audio_in_ids_start, audio_out_embed, audio_out_ids_start,
audio_in_token_idx, audio_out_token_idx, inputs_embeds, input_ids,
attention_mask, label_ids, pad_token_id, ignore_index=-100,
round_to=8, left_padding=True,
):
def compute_audio_codes_length(ids_start, embed):
return torch.concat([
ids_start[1:] - ids_start[:-1],
torch.tensor([embed.shape[0] - ids_start[-1]], device=ids_start.device, dtype=torch.long),
], dim=0).long()
def fill_audio_embeddings(final_embedding, final_input_ids, final_labels, final_audio_mask,
embed, token_idx, ids_start, codes_length, token_ends, batch_id,
skip_labels, ignore_index):
seq_indices = torch.arange(max_token_num, device=target_device).unsqueeze(0).expand(ids_start.shape[0], max_token_num)
token_starts = token_ends - codes_length + 1
batch_indices, col_indices = torch.where((seq_indices >= token_starts.unsqueeze(1)) & (seq_indices <= token_ends.unsqueeze(1)))
batch_indices = batch_id[batch_indices]
final_embedding[batch_indices, col_indices] = embed
final_input_ids[batch_indices, col_indices] = token_idx
if not skip_labels: final_labels[batch_indices, col_indices] = ignore_index
final_audio_mask[batch_indices, col_indices] = True
skip_labels = label_ids is None
if audio_in_embed is not None and audio_in_embed.shape[0] == 0: audio_in_embed = None
if audio_out_embed is not None and audio_out_embed.shape[0] == 0: audio_out_embed = None
batch_size, sequence_length, embed_dim = inputs_embeds.shape
target_device = inputs_embeds.device
if left_padding is None: left_padding = torch.any(attention_mask[:, 0] == 0)
audio_in_token_mask, audio_out_token_mask = input_ids == audio_in_token_idx, input_ids == audio_out_token_idx
text_token_mask = (input_ids != audio_in_token_idx) & (input_ids != audio_out_token_idx)
token_placeholder_num = torch.ones_like(input_ids)
if audio_in_embed is not None:
audio_in_codes_length = compute_audio_codes_length(audio_in_ids_start, audio_in_embed)
token_placeholder_num[audio_in_token_mask] = audio_in_codes_length
if audio_out_embed is not None:
audio_out_codes_length = compute_audio_codes_length(audio_out_ids_start, audio_out_embed)
token_placeholder_num[audio_out_token_mask] = audio_out_codes_length
new_token_positions = torch.cumsum(token_placeholder_num, -1) - 1
max_token_num = _ceil_to_nearest(token_placeholder_num.sum(-1).max(), round_to)
nb_audio_pad = max_token_num - 1 - new_token_positions[:, -1]
if left_padding: new_token_positions += nb_audio_pad[:, None]
final_embedding = torch.zeros((batch_size, max_token_num, embed_dim), dtype=inputs_embeds.dtype, device=target_device)
final_attention_mask = torch.zeros((batch_size, max_token_num), dtype=attention_mask.dtype, device=target_device)
final_input_ids = torch.full((batch_size, max_token_num), pad_token_id, dtype=input_ids.dtype, device=target_device)
final_labels = None if skip_labels else torch.full((batch_size, max_token_num), ignore_index, dtype=label_ids.dtype, device=target_device)
final_audio_in_mask = torch.zeros((batch_size, max_token_num), dtype=torch.bool, device=target_device)
final_audio_in_discrete_codes_mask = torch.zeros((batch_size, max_token_num), dtype=torch.bool, device=target_device)
final_audio_out_mask = torch.zeros((batch_size, max_token_num), dtype=torch.bool, device=target_device)
batch_id = torch.arange(batch_size, device=target_device).unsqueeze(1).expand(batch_size, sequence_length)
audio_in_batch_id, audio_out_batch_id = batch_id[audio_in_token_mask], batch_id[audio_out_token_mask]
audio_in_token_ends, audio_out_token_ends = new_token_positions[audio_in_token_mask], new_token_positions[audio_out_token_mask]
if audio_in_embed is not None:
fill_audio_embeddings(final_embedding, final_input_ids, final_labels, final_audio_in_mask,
audio_in_embed, audio_in_token_idx, audio_in_ids_start,
audio_in_codes_length, audio_in_token_ends, audio_in_batch_id,
skip_labels, ignore_index)
final_audio_in_discrete_codes_mask = final_audio_in_mask.clone()
if audio_out_embed is not None:
fill_audio_embeddings(final_embedding, final_input_ids, final_labels, final_audio_out_mask,
audio_out_embed, audio_out_token_idx, audio_out_ids_start,
audio_out_codes_length, audio_out_token_ends, audio_out_batch_id,
skip_labels, ignore_index)
batch_indices, text_indices = torch.where(text_token_mask)
text_to_overwrite = new_token_positions[batch_indices, text_indices]
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, text_indices]
if not skip_labels: final_labels[batch_indices, text_to_overwrite] = label_ids[batch_indices, text_indices]
final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, text_indices]
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, text_indices]
final_attention_mask |= final_audio_in_mask | final_audio_out_mask
if left_padding:
first_non_zero_loc = (final_attention_mask.sum(0).nonzero()[0] // round_to) * round_to
if first_non_zero_loc > 0:
final_attention_mask = final_attention_mask[:, first_non_zero_loc:]
final_embedding = final_embedding[:, first_non_zero_loc:]
if not skip_labels: final_labels = final_labels[:, first_non_zero_loc:]
final_input_ids = final_input_ids[:, first_non_zero_loc:]
final_audio_in_mask = final_audio_in_mask[:, first_non_zero_loc:]
final_audio_in_discrete_codes_mask = final_audio_in_discrete_codes_mask[:, first_non_zero_loc:]
final_audio_out_mask = final_audio_out_mask[:, first_non_zero_loc:]
else:
last_non_zero_loc = ((final_attention_mask.sum(0).nonzero()[-1] + 1 + round_to - 1) // round_to) * round_to
if last_non_zero_loc < max_token_num:
final_attention_mask = final_attention_mask[:, :last_non_zero_loc]
final_embedding = final_embedding[:, :last_non_zero_loc]
if not skip_labels: final_labels = final_labels[:, :last_non_zero_loc]
final_input_ids = final_input_ids[:, :last_non_zero_loc]
final_audio_in_mask = final_audio_in_mask[:, :last_non_zero_loc]
final_audio_in_discrete_codes_mask = final_audio_in_discrete_codes_mask[:, :last_non_zero_loc]
final_audio_out_mask = final_audio_out_mask[:, :last_non_zero_loc]
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_(final_attention_mask == 0, 1)
return (final_embedding, final_attention_mask, final_labels, position_ids, final_input_ids,
final_audio_in_mask, final_audio_in_discrete_codes_mask, final_audio_out_mask)
from torch.nn import RMSNorm
from cuda_graph_runner import CUDAGraphRunner
class HiggsAudioDecoderProjector(HiggsAudioPreTrainedModel):
"""Projection layers that map hidden states from the LLM component to audio / text logits.
We support two type of audio head:
- Basic Audio Head:
Directly map the hidden states to audio logits for all the codebooks.
"""
def __init__(self, config: HiggsAudioConfig, layer_idx: Optional[int] = None):
super().__init__(config)
self.text_lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
self.audio_lm_head = nn.Linear(
config.text_config.hidden_size, config.audio_num_codebooks * (config.audio_codebook_size + 2), bias=False
)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
hidden_states,
audio_out_mask,
label_audio_ids=None,
attention_mask=None,
position_ids=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
output_audio_hidden_states=False,
cache_position=None,
):
"""
Args:
hidden_states (`torch.Tensor` of shape `(batch_size, seq_len, hidden_size)`):
Hidden states from the LLM component
audio_out_mask (`torch.Tensor` of shape `(batch_size, seq_len)`):
Mask for identifying the audio out tokens.
label_audio_ids (`torch.Tensor` of shape `(num_codebooks, num_audio_out_tokens)`):
Label tokens for the audio-out part. This is used for calculating the logits if RQ-Transformer is used.
attention_mask (`torch.Tensor` of shape `(batch_size, seq_len)`):
Mask to avoid performing attention on padding token indices
position_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
Position ids for the input tokens
Returns:
logits (`torch.Tensor` of shape `(batch_size, seq_len, vocab_size)`):
Logits for text tokens
audio_logits (`torch.Tensor` of shape `(num_audio_out_tokens, audio_num_codebooks * audio_codebook_size)`):
Logits for audio tokens. We ensure `num_text_tokens + num_audio_tokens == batch_size * seq_len`
"""
logits = self.text_lm_head(hidden_states)
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
if self.config.audio_decoder_proj_num_layers > 0:
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for decoder_layer in self.transformer_layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
next_cache = next_decoder_cache if use_cache else None
audio_logits = self.audio_lm_head(hidden_states[audio_out_mask])
if output_audio_hidden_states:
audio_hidden_states = hidden_states[audio_out_mask]
else:
audio_hidden_states = None
return logits, audio_logits
logger = logging.get_logger(__name__)
class GenerationMode(Enum):
"""Enum for different generation modes in HiggsAudio model."""
TEXT = 0 # Text generation mode
AUDIO_INIT = 1 # Audio generation mode initialization
AUDIO_IN_PROGRESS = 2 # Audio generation mode in progress
def _whisper_encoder_zero_shape_forward(whisper_encoder, *args, **kwargs):
"""The whisper encoder does not support zero-shape tensor by default due to the following implementations
key_states = self._shape(self.k_proj(current_states), -1, bsz)
If `bsz` is 0, the "-1" dimension will be ambiguous and triggers error in the shape inference pass.
See also: https://github.com/huggingface/transformers/blob/30335093276212ce74938bdfd85bfd5df31a668a/src/transformers/models/whisper/modeling_whisper.py#L306-L307
This function monkey-patches all `_shape` functions in the whisper encoder's self-attention layers to ensure function supports zero-shape tensor.
#FIXME!!!! This is a temporary workaround and should be removed once the upstream issue is resolved.
"""
global _higgs_flash_attention_forward
def _patched_shape(tensor: torch.Tensor, seq_len: int, bsz: int, num_heads: int, head_dim: int):
if seq_len == -1:
return tensor.view(bsz, tensor.shape[1], num_heads, head_dim).transpose(1, 2).contiguous()
else:
return tensor.view(bsz, seq_len, num_heads, head_dim).transpose(1, 2).contiguous()
def _patched_scaled_dot_product_attention(
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None, enable_gqa=False
) -> torch.Tensor:
# IMPORTANT! Implementation here is wrong and is only for the purpose of obtaining the correct attn_weight shape
if enable_gqa:
key = key.repeat_interleave(query.size(-3) // key.size(-3), -3)
value = value.repeat_interleave(query.size(-3) // value.size(-3), -3)
attn_weight = query @ key.transpose(-2, -1)
return attn_weight @ value
# Apply monkey-patch
if whisper_encoder.config._attn_implementation != "flash_attention_2":
old_shape_functions = []
for layer in whisper_encoder.layers:
old_shape_functions.append(getattr(layer.self_attn, "_shape"))
layer.self_attn._shape = functools.partial(
_patched_shape, num_heads=layer.self_attn.num_heads, head_dim=layer.self_attn.head_dim
)
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
torch.nn.functional.scaled_dot_product_attention = _patched_scaled_dot_product_attention
out = whisper_encoder(*args, **kwargs)
torch.nn.functional.scaled_dot_product_attention = original_scaled_dot_product_attention
# Restore the original shape functions
if whisper_encoder.config._attn_implementation != "flash_attention_2":
for layer, old_shape_function in zip(whisper_encoder.layers, old_shape_functions):
layer.self_attn._shape = old_shape_function
return out
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
min_dtype: float,
cache_position: torch.Tensor,
batch_size: int,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
min_dtype (`float`):
The minimum value representable with the dtype `dtype`.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class HiggsAudioFeatureProjector(nn.Module):
"""Projector that maps audio features extracted by Whisper to hidden state of the text model."""
def __init__(self, config: HiggsAudioConfig):
super().__init__()
self.linear = nn.Linear(config.audio_encoder_config.d_model, config.text_config.hidden_size, bias=True)
def forward(self, audio_features):
hidden_states = self.linear(audio_features)
return hidden_states
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rope(xq, xk, freqs_cis):
cos = freqs_cis[0].unsqueeze(1)
sin = freqs_cis[1].unsqueeze(1)
q_embed = (xq * cos) + (rotate_half(xq) * sin)
k_embed = (xk * cos) + (rotate_half(xk) * sin)
return q_embed, k_embed, sin, cos
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
class LLama3RoPE(nn.Module):
def __init__(self, config, device = None, dtype = None):
super().__init__()
if config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(
self.config, device, seq_len=seq_len, **self.rope_kwargs
)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
import torch.nn.functional as F
class Attention(nn.Module):
def __init__(self, config, layer_idx: int, device, dtype, **kwargs):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.num_heads = config.num_attention_heads
self.num_kv_heads = config.num_key_value_heads
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
self.inner_size = config.num_attention_heads * self.head_dim
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
optimized_attention=None,
):
batch_size, seq_length, _ = hidden_states.shape
xq = self.q_proj(hidden_states)
xk = self.k_proj(hidden_states)
xv = self.v_proj(hidden_states)
xq = xq.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
xk = xk.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2)
xv = xv.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2)
xq, xk, sin, cos = apply_rope(xq, xk, freqs_cis=position_embeddings)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
xk, xv = past_key_value.update(xk, xv, self.layer_idx, cache_kwargs)
xk = xk.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
xv = xv.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
output = optimized_attention(xq, xk, xv, self.num_heads, mask=attention_mask, skip_reshape=True)
out = self.o_proj(output)
return out, None, past_key_value
class MLP(nn.Module):
def __init__(self, config, device=None, dtype=None, ops: Any = nn):
super().__init__()
ops = ops or nn
self.gate_proj = ops.Linear(config.hidden_size, config.intermediate_size, bias=False, device=device, dtype=dtype)
self.up_proj = ops.Linear(config.hidden_size, config.intermediate_size, bias=False, device=device, dtype=dtype)
self.down_proj = ops.Linear(config.intermediate_size, config.hidden_size, bias=False, device=device, dtype=dtype)
if config.mlp_activation == "silu":
self.activation = torch.nn.functional.silu
elif config.mlp_activation == "gelu_pytorch_tanh":
self.activation = lambda a: torch.nn.functional.gelu(a, approximate="tanh")
def forward(self, x):
return self.down_proj(self.activation(self.gate_proj(x)) * self.up_proj(x))
SDP_BATCH_LIMIT = 2**15
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, is_causal = False):
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
(q, k, v),
)
if mask is not None:
# add a batch dimension if there isn't already one
if mask.ndim == 2:
mask = mask.unsqueeze(0)
# add a heads dimension if there isn't already one
if mask.ndim == 3:
mask = mask.unsqueeze(1)
SDP_BATCH_LIMIT = b
if SDP_BATCH_LIMIT >= b:
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=is_causal)
if not skip_output_reshape:
out = (
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
)
else:
out = torch.empty((b, q.shape[2], heads * dim_head), dtype=q.dtype, layout=q.layout, device=q.device)
for i in range(0, b, SDP_BATCH_LIMIT):
m = mask
if mask is not None:
if mask.shape[0] > 1:
m = mask[i : i + SDP_BATCH_LIMIT]
out[i : i + SDP_BATCH_LIMIT] = torch.nn.functional.scaled_dot_product_attention(
q[i : i + SDP_BATCH_LIMIT],
k[i : i + SDP_BATCH_LIMIT],
v[i : i + SDP_BATCH_LIMIT],
attn_mask=m,
dropout_p=0.0, is_causal=False
).transpose(1, 2).reshape(-1, q.shape[2], heads * dim_head)
return out
from transformers.models.llama.modeling_llama import LlamaRMSNorm, LlamaMLP, LlamaRotaryEmbedding, LLAMA_ATTENTION_CLASSES
class HiggsAudioDualFFNDecoderLayer(nn.Module):
def __init__(
self, config, layer_idx: int, fast_forward: bool = False, use_audio_attention: bool = False, device = None, dtype = None,
):
super().__init__()
text_config = config.text_config
self.hidden_size = text_config.hidden_size
self.layer_idx = layer_idx
text_config.qkv_bias = text_config.mlp_bias
text_config.mlp_activation = text_config.hidden_act
self.self_attn = Attention(config=text_config, layer_idx=layer_idx, device = device, dtype = dtype)
#self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=text_config, layer_idx=layer_idx)
self.mlp = LlamaMLP(text_config)
if not fast_forward:
self.audio_mlp = LlamaMLP(text_config)#, device = device, dtype = dtype)
self.audio_input_layernorm = LlamaRMSNorm(text_config.hidden_size, eps=text_config.rms_norm_eps)#, device = device, dtype = dtype)
self.audio_post_attention_layernorm = LlamaRMSNorm(text_config.hidden_size, eps=text_config.rms_norm_eps)#, device = device, dtype = dtype)
self.use_audio_attention = use_audio_attention
self.fast_forward = fast_forward
if self.fast_forward:
assert not self.use_audio_attention, (
"We cannot use audio_attention if the layer is marked as fast-forward."
)
self.input_layernorm = LlamaRMSNorm(text_config.hidden_size, eps=text_config.rms_norm_eps)#, device = device, dtype = dtype)
self.post_attention_layernorm = LlamaRMSNorm(text_config.hidden_size, eps=text_config.rms_norm_eps)#, device = device, dtype = dtype)
self.text_config = text_config
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
fast_forward_attention_mask: Optional[torch.Tensor] = None,
audio_out_mask: Optional[torch.BoolTensor] = None,
is_decoding_audio_token: Optional[bool] = None,
past_key_value: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
is_using_cuda_graph: Optional[bool] = False,
position_embeddings = None,
**kwargs,
):
residual = hidden_states
target_length = hidden_states.shape[1]
use_static_cache = isinstance(past_key_value, StaticCache)
decode_stage = hidden_states.shape[1] == 1
if is_using_cuda_graph:
assert decode_stage and use_static_cache, (
"The CUDA graph mode should only be used in the decoding stage with static cache."
)
# If we are decoding an audio token and the layer is marked as fast-forward,
# we can skip it.
if is_decoding_audio_token and self.fast_forward:
return (hidden_states,)
has_audio_out = audio_out_mask is not None and audio_out_mask.shape[0] > 0
audio_out_mask_sq = audio_out_mask
# considering that hidden_state = audio + text, I chose to make small_input dynamic
small_input = target_length <= 2048
optimized_attention = attention_pytorch#optimized_attention_for_device(hidden_states.device, small_input = small_input)
if self.fast_forward and has_audio_out:
original_hidden_states = hidden_states.clone()
min_dtype = torch.finfo(hidden_states.dtype).min
if attention_mask is None:
attention_mask = ~audio_out_mask
if optimized_attention.__name__ != "attention_flash":
sequence_length = audio_out_mask.shape[1]
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask=attention_mask,
sequence_length=sequence_length,
target_length=sequence_length,
dtype=hidden_states.dtype,
min_dtype=min_dtype,
device=hidden_states.device,
cache_position=cache_position,
batch_size=hidden_states.shape[0],
)
if use_cache:
attention_mask = attention_mask[:, :, -target_length:, :]
elif len(attention_mask.shape) == 2:
# Attention mask has shape (batch_size, sequence_length)
# We should be using flash attention 2
attention_mask = attention_mask * ~audio_out_mask
elif len(attention_mask.shape) == 4:
# When using static cache, the attention mask was already preprocessed in the previous layer
if use_static_cache:
attention_mask = fast_forward_attention_mask
else:
if use_cache:
attention_mask = attention_mask.masked_fill(
audio_out_mask[:, -target_length:].reshape(audio_out_mask.shape[0], 1, target_length, 1)
| audio_out_mask.reshape(audio_out_mask.shape[0], 1, 1, audio_out_mask.shape[1]),
min_dtype,
)
else:
attention_mask = attention_mask.masked_fill(
audio_out_mask.reshape(audio_out_mask.shape[0], 1, audio_out_mask.shape[1], 1)
| audio_out_mask.reshape(audio_out_mask.shape[0], 1, 1, audio_out_mask.shape[1]),
min_dtype,
)
else:
raise NotImplementedError(f"Unsupported attention_mask format, attention_mask={attention_mask}")
if (
optimized_attention.__name__ == "attention_pytorch"
and attention_mask is not None
and attention_mask.device.type == "cuda"
):
attention_mask = attention_mask.mul(~torch.all(attention_mask == min_dtype, dim=-1, keepdim=True))
if has_audio_out and not self.fast_forward:
# Apply separate layernorm layers for audio tokens and text tokens
if use_cache:
hidden_states = torch.where(
audio_out_mask_sq[:, -target_length:].unsqueeze(-1),
self.audio_input_layernorm(hidden_states),
self.input_layernorm(hidden_states),
)
else:
hidden_states = torch.where(
audio_out_mask_sq.unsqueeze(-1),
self.audio_input_layernorm(hidden_states),
self.input_layernorm(hidden_states),
)
else:
hidden_states = self.input_layernorm(hidden_states)
# Text Attention
#freqs_cis = precompute_freqs_cis(self.text_config.head_dim, hidden_states.shape[1], self.text_config.rope_theta, device = hidden_states.device)
hidden_states, _, present_key_value = self.self_attn(
hidden_states = hidden_states,
attention_mask = attention_mask,
position_embeddings = position_embeddings,
past_key_value=past_key_value,
optimized_attention = optimized_attention,
cache_position=cache_position,
)
hidden_states = residual + hidden_states
residual = hidden_states
if has_audio_out and not self.fast_forward:
if use_cache:
real_audio_out_mask = audio_out_mask_sq[:, -target_length:]
else:
real_audio_out_mask = audio_out_mask_sq
# Make whole graph in decode stage
if decode_stage and is_using_cuda_graph:
assert is_decoding_audio_token is not None, (
"is_decoding_audio_token should be present in the decoding stage."
)
if is_decoding_audio_token:
hidden_states = self.audio_post_attention_layernorm(hidden_states)
hidden_states = self.audio_mlp(hidden_states)
else:
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
residual = residual + hidden_states
else:
text_hidden_states = self.post_attention_layernorm(hidden_states[~real_audio_out_mask])
audio_hidden_states = self.audio_post_attention_layernorm(hidden_states[real_audio_out_mask])
text_hidden_states = self.mlp(text_hidden_states)
residual[~real_audio_out_mask] += text_hidden_states
audio_hidden_states = self.audio_mlp(audio_hidden_states)
residual[real_audio_out_mask] += audio_hidden_states
hidden_states = residual
else:
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
if self.fast_forward and has_audio_out:
if use_cache:
hidden_states = torch.where(
audio_out_mask_sq[:, -target_length:].unsqueeze(-1), original_hidden_states, hidden_states
)
else:
hidden_states = torch.where(audio_out_mask_sq.unsqueeze(-1), original_hidden_states, hidden_states)
outputs = (hidden_states,)
if use_cache:
outputs += (present_key_value,)
return outputs
@dataclass
class HiggsAudioModelOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
llm_loss: Optional[torch.FloatTensor] = None
audio_loss: Optional[torch.FloatTensor] = None
codebook_losses: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
expanded_input_ids: Optional[torch.LongTensor] = None
expanded_labels: Optional[torch.LongTensor] = None
audio_in_mask: Optional[torch.BoolTensor] = None
audio_in_discrete_codes_mask: Optional[torch.BoolTensor] = None
audio_out_mask: Optional[torch.BoolTensor] = None
attention_mask: Optional[torch.BoolTensor] = None
audio_logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[Cache] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
audio_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class HiggsAudioGenerationOutput(ModelOutput):
"""
Outputs of HiggsAudio generation models, when using non-beam methods.
Args:
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
audio_sequences (`tuple(torch.LongTensor)` *optional*):
The generated discrete audio codes. These codes can be used to fill-in related locations of <|AUDIO_OUT|> at input sequences.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
each generated token).
If the generated token is a text token, the tensor will have shape `(batch_size, config.vocab_size)`.
If the generated token is an audio token, the tensor will have shape `(config.audio_num_codebooks, self.audio_codebook_size)`
logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`):
Unprocessed prediction scores of the language modeling head or the audio head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
each generated token).
If the generated token is a text token, the tensor will have shape `(batch_size, config.vocab_size)`.
If the generated token is an audio token, the tensor will have shape `(config.audio_num_codebooks, self.audio_codebook_size)`
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True`):
Returns the model cache, used to speed up decoding. Different models have a different cache format, check
the model's documentation. Usually, a [`~cache_utils.Cache`] instance.
"""
sequences: torch.LongTensor = None
audio_sequences: Optional[List[torch.LongTensor]] = None
scores: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
class HiggsAudioModel(HiggsAudioPreTrainedModel, GenerationMixin):
"""Higgs-Audio is an end-to-end multimodal model with the capability to understand and generate text / audio.
Consider the following example for mixed text/audio understanding / generation:
- input_tokens: <text_token1><|audio_bos|>[AUDIO]<|audio_eos|><text_token2><|audio_bos|>[AUDIO]<|audio_eos|><text_token4>
- input_tokens: <text_token1><|audio_bos|>[AUDIO]<|audio_eos|><text_token2><|audio_out_bos|>[AUDIO_OUT]<|audio_eos|><text_token4>
We will fill [AUDIO] with the audio features extracted by Whisper and fill [AUDIO_OUT] with the audio tokens.
Consider the following example for mixed text/audio generation:
text: <|audio_out_bos|> MASK MASK MASK MASK MASK <|audio_eos|> [text_token1]
audio: MASK <|audio_stream_bos|> [audio_token1] [audio_token2] [audio_token3] <|audio_stream_eos|> MASK MASK
token_type: 0 1 1 1 1 1 0 0
"""
_supports_cache_class = True
_supports_static_cache = True
def __init__(self, config: HiggsAudioConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.audio_in_token_idx = config.audio_in_token_idx
self.audio_out_token_idx = config.audio_out_token_idx
self.audio_out_bos_token_id = config.audio_out_bos_token_id if "audio_out_bos_token_id" in config else None
self.audio_eos_token_id = config.audio_eos_token_id if "audio_eos_token_id" in config else None
self.vocab_size = config.text_config.vocab_size
self.audio_num_codebooks = config.audio_num_codebooks
self.use_delay_pattern = config.use_delay_pattern
self.use_audio_out_embed_projector = config.use_audio_out_embed_projector
self.use_audio_out_self_attention = config.use_audio_out_self_attention
self.embed_tokens = nn.Embedding(self.vocab_size, config.text_config.hidden_size, self.padding_idx)
if config.audio_adapter_type == "dual_ffn":
layer_idx = 0
layers = []
for j in range(config.text_config.num_hidden_layers):
if j in config.audio_dual_ffn_layers:
layers.append(
HiggsAudioDualFFNDecoderLayer(
config, layer_idx, use_audio_attention=self.use_audio_out_self_attention
)
)
layer_idx += 2 if self.use_audio_out_self_attention else 1
else:
layers.append(LlamaDecoderLayer(config.text_config, layer_idx))
layer_idx += 1
self.layers = nn.ModuleList(layers)
elif config.audio_adapter_type == "dual_ffn_fast_forward":
layer_idx = 0
layers = []
for j in range(config.text_config.num_hidden_layers):
if j in config.audio_dual_ffn_layers:
layers.append(
HiggsAudioDualFFNDecoderLayer(
config,
layer_idx,
fast_forward=False,
use_audio_attention=self.use_audio_out_self_attention,
)
)
layer_idx += 2 if self.use_audio_out_self_attention else 1
else:
layers.append(
HiggsAudioDualFFNDecoderLayer(config, layer_idx, fast_forward=True, use_audio_attention=False)
)
layer_idx += 1
self.layers = nn.ModuleList(layers)
elif config.audio_adapter_type == "stack":
self.layers = nn.ModuleList(
[
LlamaDecoderLayer(config.text_config, layer_idx)
for layer_idx in range(config.text_config.num_hidden_layers)
]
)
layer_idx = config.text_config.num_hidden_layers
else:
raise NotImplementedError(f"Audio adapter type {config.audio_adapter_type} not implemented.")
self.num_activation_checkpointing_layers = len(self.layers)
self.decode_graph_runners = defaultdict(dict[bool, CUDAGraphRunner])
self.norm = RMSNorm(config.text_config.hidden_size, eps=config.text_config.rms_norm_eps)
self.rotary_emb = LLama3RoPE(config = config.text_config)#LlamaRotaryEmbedding(config=config.text_config)
if not config.skip_audio_tower:
self.audio_tower = HiggsAudioEncoder(config.audio_encoder_config)
self.audio_encoder_proj = HiggsAudioFeatureProjector(config)
else:
self.audio_tower = None
self.audio_encoder_proj = None
self.audio_decoder_proj = HiggsAudioDecoderProjector(config, layer_idx=layer_idx)
self.audio_codebook_size = (
config.audio_codebook_size + 2
) # We add 1 for the audio_stream_bos token and 1 for the audio_stream_eos token
if config.use_audio_out_embed_projector:
self.audio_out_embed_projector = nn.Linear(
config.text_config.hidden_size, config.text_config.hidden_size, bias=False
)
self.audio_codebook_embeddings = nn.Embedding(
config.audio_num_codebooks * self.audio_codebook_size, config.text_config.hidden_size
)
self.audio_codebook_weights = (
torch.ones(config.audio_num_codebooks) / config.audio_num_codebooks
) # default to equal weights
self.post_init()
def set_num_activation_checkpointing_layers(self, num_layers):
self.num_activation_checkpointing_layers = num_layers
def set_delay_pattern(self):
self.config.use_delay_pattern = True
self.use_delay_pattern = True
def set_audio_special_tokens(self, tokenizer: AutoTokenizer):
self.audio_out_bos_token_id = tokenizer.convert_tokens_to_ids("<|audio_out_bos|>")
self.audio_eos_token_id = tokenizer.convert_tokens_to_ids("<|audio_eos|>")
def _embed_audio_ids(self, audio_ids):
"""Embed the audio ids
Args:
audio_ids: torch.LongTensor of shape (num_codebooks, audio_in_total_length)
Returns:
audio_embed: torch.LongTensor of shape (audio_in_total_length, hidden_size)
"""
codebook_shift = (
torch.arange(self.config.audio_num_codebooks, device=audio_ids.device) * self.audio_codebook_size
)
audio_embed = self.audio_codebook_embeddings(audio_ids + codebook_shift.unsqueeze(-1))
if self.config.audio_embed_avg:
audio_embed = torch.mean(audio_embed, dim=0)
else:
audio_embed = torch.sum(audio_embed, dim=0)
if self.use_audio_out_embed_projector:
audio_embed = self.audio_out_embed_projector(audio_embed)
return audio_embed
def _apply_audio_tower(self, audio_features, audio_feature_attention_mask):
"""Apply the audio tower to the audio features"""
if audio_features.shape[0] == 0:
if torch.is_grad_enabled():
# FIXME!!!!!!!!
# This is a hack to ensure that the forward+backward pass of audio_tower and audio_encoder_proj get triggered.
# The monkey patch won't overwrite the backward pass of nn.Module.
audio_outputs = _whisper_encoder_zero_shape_forward(
self.audio_tower, audio_features, attention_mask=None, check_seq_length=False
)
selected_audio_feature = audio_outputs.last_hidden_state
audio_features_embed = self.audio_encoder_proj(selected_audio_feature)
audio_feat_out_lengths = None
return audio_features_embed, audio_feat_out_lengths
else:
return None, None
audio_feat_lengths, audio_feat_out_lengths = self.audio_tower._get_feat_extract_output_lengths(
audio_feature_attention_mask.sum(-1)
)
batch_size, _, max_mel_seq_len = audio_features.shape
max_seq_len = (max_mel_seq_len - 1) // 2 + 1
# Create a sequence tensor of shape (batch_size, max_seq_len)
seq_range = (
torch.arange(0, max_seq_len, dtype=audio_feat_lengths.dtype, device=audio_feat_lengths.device)
.unsqueeze(0)
.expand(batch_size, max_seq_len)
)
lengths_expand = audio_feat_lengths.unsqueeze(1).expand(batch_size, max_seq_len)
# Create mask
padding_mask = seq_range < lengths_expand
if self.config._attn_implementation != "flash_attention_2":
audio_attention_mask = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
batch_size, 1, max_seq_len, max_seq_len
)
else:
audio_attention_mask = padding_mask
audio_outputs = self.audio_tower(audio_features, attention_mask=audio_attention_mask)
selected_audio_feature = audio_outputs.last_hidden_state
audio_features_embed = self.audio_encoder_proj(selected_audio_feature)
return audio_features_embed, audio_feat_out_lengths
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_length()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
def _prepare_all_static_kv_cache_masks(self, hidden_states, attention_mask, audio_out_mask, past_key_values):
target_length = hidden_states.shape[1]
cur_pos = audio_out_mask.shape[1]
min_dtype = torch.finfo(hidden_states.dtype).min
assert len(attention_mask.shape) == 4, "Only support SDPA for now"
kv_cache_len = past_key_values.get_max_cache_shape()
audio_out_mask_padded = torch.nn.functional.pad(audio_out_mask, (0, kv_cache_len - cur_pos), value=True)
fast_forward_attention_mask = attention_mask.masked_fill(
audio_out_mask_padded[:, audio_out_mask.shape[1] - target_length : audio_out_mask.shape[1]].reshape(
audio_out_mask_padded.shape[0], 1, target_length, 1
)
| audio_out_mask_padded.reshape(audio_out_mask_padded.shape[0], 1, 1, audio_out_mask_padded.shape[1]),
min_dtype,
)
no_audio_out_mask = ~audio_out_mask
no_audio_out_mask = torch.nn.functional.pad(
no_audio_out_mask, (0, kv_cache_len - audio_out_mask.shape[1]), value=False
)
no_audio_out_mask = no_audio_out_mask[
:, audio_out_mask.shape[1] - target_length : audio_out_mask.shape[1]
].reshape(audio_out_mask.shape[0], 1, target_length, 1) | no_audio_out_mask.reshape(
audio_out_mask.shape[0], 1, 1, kv_cache_len
)
audio_attention_mask = attention_mask.masked_fill(no_audio_out_mask, min_dtype)
return fast_forward_attention_mask, audio_attention_mask
def _forward_core(
self,
hidden_states: torch.Tensor,
causal_mask: torch.Tensor,
position_ids: torch.Tensor,
audio_discrete_codes_mask: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]],
use_cache: bool,
audio_attention_mask: torch.Tensor,
fast_forward_attention_mask: torch.Tensor,
output_attentions: bool,
output_hidden_states: bool,
is_decoding_audio_token: Optional[bool] = None,
is_using_cuda_graph: Optional[bool] = False,
):
# create position embeddings to be shared across the decoder layers
# When past_key_values is passed in, we need to offset the position ids when calculating the position embeddings.
# Therefore, cache_position is used.
position_id_offset = cache_position[0] if use_cache else 0
position_embeddings = self.rotary_emb(hidden_states, position_ids + position_id_offset)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if isinstance(decoder_layer, HiggsAudioDualFFNDecoderLayer):
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
audio_attention_mask=audio_attention_mask,
fast_forward_attention_mask=fast_forward_attention_mask,
position_ids=position_ids,
audio_out_mask=audio_discrete_codes_mask,
is_decoding_audio_token=is_decoding_audio_token,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
is_using_cuda_graph=is_using_cuda_graph,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
return hidden_states, all_hidden_states, all_self_attns
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
audio_in_ids: Optional[torch.LongTensor] = None,
audio_in_ids_start: Optional[torch.LongTensor] = None,
audio_out_ids: Optional[torch.LongTensor] = None,
audio_out_ids_start: Optional[torch.LongTensor] = None,
label_ids: Optional[torch.LongTensor] = None,
label_audio_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_audio_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
cache_audio_discrete_codes_mask: Optional[torch.LongTensor] = None,
past_key_values_buckets: Optional[OrderedDict[int, Cache]] = None,
reward = None,
audio_features = None,
**kwargs
#**kwargs
):
target_device = input_ids.device
inputs_embeds = self.embed_tokens(input_ids)
if self.config.encode_audio_in_tokens:
if audio_in_ids is not None and audio_in_ids.shape[-1] > 0:
audio_in_ids = audio_in_ids.to(target_device)
else:
audio_in_ids = torch.zeros((self.audio_num_codebooks, 0), device=target_device, dtype=torch.long)
audio_in_embed = self._embed_audio_ids(audio_in_ids)
else:
audio_in_embed = None
if audio_out_ids is not None and audio_out_ids.shape[-1] > 0:
audio_out_ids = audio_out_ids.to(target_device)
else:
audio_out_ids = torch.zeros((self.audio_num_codebooks, 0), device=target_device, dtype=torch.long)
audio_out_embed = self._embed_audio_ids(audio_out_ids)
round_to = 1 if use_cache else 8
left_padding = True if use_cache or input_ids.shape[0] == 1 else False
(
inputs_embeds,
attention_mask,
labels,
position_ids,
input_ids,
audio_in_mask,
audio_in_discrete_codes_mask,
audio_out_mask,
) = merge_input_ids_with_audio_features(
audio_in_embed,
audio_in_ids_start,
audio_out_embed,
audio_out_ids_start,
self.audio_in_token_idx,
self.audio_out_token_idx,
inputs_embeds,
input_ids,
attention_mask,
label_ids,
pad_token_id=self.padding_idx,
round_to=round_to,
left_padding=left_padding,
)
# re-check if we use the correct kv cache bucket after
# the input_embeds has been merged with audio features
if past_key_values_buckets is not None and inputs_embeds.shape[1] > past_key_values.get_max_cache_shape():
past_key_values, self.current_past_key_values_bucket = self._prepare_kv_cache(
inputs_embeds.shape[1], None, past_key_values_buckets
)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if isinstance(past_key_values, StaticCache) and past_seen_tokens >= past_key_values.get_max_cache_shape():
raise ValueError(
f"The current sequence length ({past_seen_tokens}) exceeds "
f"the maximum cache shape. "
f"Please consider increasing the cache size."
)
# Use torch compile
use_static_cache = isinstance(past_key_values, StaticCache)
# Apply the LLM component
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
audio_discrete_codes_mask = audio_in_discrete_codes_mask | audio_out_mask
if cache_audio_discrete_codes_mask is not None and use_cache:
audio_discrete_codes_mask = torch.concat(
[cache_audio_discrete_codes_mask, audio_discrete_codes_mask], dim=1
)
# Generate the audio attention mask outside the layer to avoid recompilation
if use_static_cache:
fast_forward_attention_mask, audio_attention_mask = self._prepare_all_static_kv_cache_masks(
hidden_states, causal_mask, audio_discrete_codes_mask, past_key_values
)
# Set the audio out mask to the last token
if hidden_states.shape[1] == 1:
audio_discrete_codes_mask = audio_discrete_codes_mask[:, -1:]
audio_discrete_codes_mask = audio_discrete_codes_mask.reshape((-1, 1)).contiguous()
is_decoding_audio_token = audio_discrete_codes_mask.item()
else:
is_decoding_audio_token = False
if (
past_key_values is not None
and past_key_values.get_max_cache_shape() in self.decode_graph_runners
and (input_ids.shape[-1] == 1)
):
_forward_core = self.decode_graph_runners[past_key_values.get_max_cache_shape()][is_decoding_audio_token]
is_using_cuda_graph = True
else:
_forward_core = self._forward_core
is_using_cuda_graph = False
hidden_states = _forward_core(
hidden_states=hidden_states,
causal_mask=causal_mask,
position_ids=position_ids,
audio_discrete_codes_mask=audio_discrete_codes_mask,
is_decoding_audio_token=is_decoding_audio_token if use_static_cache else None,
cache_position=cache_position,
past_key_values=past_key_values,
use_cache=use_cache,
audio_attention_mask=audio_attention_mask if use_static_cache else None,
fast_forward_attention_mask=fast_forward_attention_mask if use_static_cache else None,
is_using_cuda_graph=is_using_cuda_graph,
output_hidden_states = False,
output_attentions = False
)
#print(hidden_states)
hidden_states = self.norm(hidden_states[0])
# Apply the audio decoder projector
logits, audio_logits = (
self.audio_decoder_proj(
hidden_states,
audio_out_mask,
label_audio_ids=label_audio_ids,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_audio_hidden_states=output_audio_hidden_states,
cache_position=cache_position,
)
)
if audio_logits is not None:
audio_logits = audio_logits.view(
audio_logits.shape[0], self.audio_num_codebooks, self.audio_codebook_size
).float()
next_cache = past_key_values if use_cache else None
ret = HiggsAudioModelOutputWithPast(
logits=logits,
audio_logits=audio_logits,
past_key_values=next_cache,
audio_out_mask = audio_out_mask,
audio_in_discrete_codes_mask = audio_in_discrete_codes_mask
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if not return_dict:
outputs = ret.to_tuple()
return outputs
return ret
# Overwrite GenerationMixin._update_model_kwargs_for_generation
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
num_new_tokens: int = 1,
extend_attention_mask: bool = True,
) -> Dict[str, Any]:
"""Update the model kwargs for each step."""
model_kwargs["past_key_values"] = outputs.past_key_values
# update attention mask
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
if extend_attention_mask:
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
)
if "cache_audio_discrete_codes_mask" in model_kwargs:
if model_kwargs["cache_audio_discrete_codes_mask"] is None:
model_kwargs["cache_audio_discrete_codes_mask"] = (
outputs.audio_in_discrete_codes_mask | outputs.audio_out_mask
)
else:
model_kwargs["cache_audio_discrete_codes_mask"] = torch.concat(
[
model_kwargs["cache_audio_discrete_codes_mask"],
outputs.audio_in_discrete_codes_mask | outputs.audio_out_mask,
],
1,
)
return model_kwargs
def _copy_kv_cache(self, from_cache: Cache, to_cache: Cache):
num_layers = self.config.text_config.num_hidden_layers
if self.config.audio_dual_ffn_layers is not None:
num_layers += len(self.config.audio_dual_ffn_layers)
""" Copy the key-value pairs from one cache to another. """
for layer_idx in range(num_layers):
from_cache_size = from_cache.get_max_cache_shape()
assert to_cache.get_max_cache_shape() >= from_cache_size, (
f"The target cache size {to_cache.get_max_cache_shape()} is smaller than the source cache size {from_cache_size}."
)
to_cache.key_cache[layer_idx][:, :, :from_cache_size, :] = from_cache.key_cache[layer_idx]
to_cache.value_cache[layer_idx][:, :, :from_cache_size, :] = from_cache.value_cache[layer_idx]
def _prepare_kv_cache(
self,
current_sequence_length: int,
current_past_key_values_bucket: Optional[int],
past_key_values_buckets: OrderedDict[int, Cache],
) -> Tuple[Optional[Cache], Optional[int]]:
"""Prepare the KV cache for the current sequence length."""
for cache_length in past_key_values_buckets.keys():
if cache_length >= current_sequence_length:
# Promote to the next KV cache bucket, copy the current KV cache bucket
# to the new one.
if current_past_key_values_bucket is not None and cache_length != current_past_key_values_bucket:
self._copy_kv_cache(
past_key_values_buckets[current_past_key_values_bucket], past_key_values_buckets[cache_length]
)
return past_key_values_buckets[cache_length], cache_length
raise ValueError(
f"The current sequence length {current_sequence_length} is larger than "
f"all past key values buckets {past_key_values_buckets.keys()}."
)
def _sample_audio_tokens(
self,
hidden_states: torch.Tensor,
audio_logits: torch.Tensor,
audio_out_ids: torch.Tensor,
do_sample: bool,
logits_processor: LogitsProcessorList,
device: torch.device,
torch_generator: Optional[torch.Generator],
generation_config: GenerationConfig,
num_delay: int,
num_remaining_delays: Optional[int],
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, int, Optional[int]]:
"""Sample audio tokens and its corresponding text tokens from the logits"""
# parameters related to repetition aware sampling
ras_win_len = generation_config.generation_kwargs.get("ras_win_len", None)
ras_win_max_num_repeat = generation_config.generation_kwargs.get("ras_win_max_num_repeat", 2)
audio_eos_token_id = generation_config.generation_kwargs.get("audio_eos_token_id", None)
# In the audio generation mode, we sample from audio_logits and keep updating audio_out_ids.
next_audio_token_logits = audio_logits.clone()[-1, :, :].float().to(device)
# TopP, TopK logits processor supports empty input_ids
next_audio_token_scores = logits_processor(None, next_audio_token_logits)
# token selection
if do_sample:
# next_audio_token_scores has been applied top_p, top_k, and temperature.
probs = nn.functional.softmax(next_audio_token_scores, dim=-1)
# TODO (joao): this OP throws "skipping cudagraphs due to ['incompatible ops']", find solution
next_audio_tokens = torch.multinomial(probs, num_samples=1, generator=torch_generator).squeeze(1)
else:
next_audio_tokens = torch.argmax(next_audio_token_scores, dim=-1)
# next_tokens: (num_codebooks, )
if ras_win_len is not None:
# check if there are repetitions over a window of tokens.
rep_num = (audio_out_ids[:, -ras_win_len:] == next_audio_tokens.unsqueeze(1)).sum(dim=1)
# if we saw repeated tokens in the most recent window of tokens, resample without temperature.
row_indices = torch.nonzero(rep_num >= ras_win_max_num_repeat).squeeze(1)
resampled_next_tokens = (
next_audio_token_logits[row_indices]
.softmax(dim=-1)
.multinomial(1, replacement=True, generator=torch_generator)
.squeeze(1)
)
next_audio_tokens[row_indices] = resampled_next_tokens
# Force the next text tokens to be <|AUDIO_OUT|> in audio generation mode
next_tokens = torch.full(
(audio_logits.shape[0],),
self.config.audio_out_token_idx,
dtype=torch.long,
device=device,
)
# Handle delay_pattern
if self.use_delay_pattern:
if num_delay + 1 < next_audio_tokens.shape[0]:
next_audio_tokens[(num_delay + 1) :] = self.config.audio_stream_bos_id
num_delay += 1
if num_remaining_delays is not None:
next_audio_tokens[: (self.audio_num_codebooks - num_remaining_delays)] = (
self.config.audio_stream_eos_id
)
num_remaining_delays -= 1
else:
all_eos_indices = (next_audio_tokens == self.config.audio_stream_eos_id).nonzero()
if torch.numel(all_eos_indices) > 0:
all_eos_indices = all_eos_indices[0]
last_eos_idx = all_eos_indices[-1]
next_audio_tokens[:last_eos_idx] = self.config.audio_stream_eos_id
num_remaining_delays = self.audio_num_codebooks - last_eos_idx - 1
if num_remaining_delays is not None and num_remaining_delays <= 0:
next_tokens[...] = audio_eos_token_id
num_delay = 0
num_remaining_delays = None
return (
next_tokens,
next_audio_tokens,
next_audio_token_logits,
next_audio_token_scores,
num_delay,
num_remaining_delays,
)
def _sample_text_tokens(
self,
logits: torch.Tensor,
input_ids: torch.Tensor,
do_sample: bool,
logits_processor: LogitsProcessorList,
device: torch.device,
generation_mode: GenerationMode,
torch_generator: Optional[torch.Generator],
) -> torch.Tensor:
"""Sample text tokens from the logits"""
# Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
# (the clone itself is always small)
next_token_logits = logits.clone()[:, -1, :].float()
next_token_logits = next_token_logits.to(input_ids.device)
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
if generation_mode == GenerationMode.AUDIO_INIT:
# See the audio bos token, we should start generating audio tokens
next_tokens = torch.full(
(input_ids.shape[0],),
self.audio_out_token_idx,
dtype=torch.long,
device=device,
)
next_audio_tokens = torch.full(
(self.config.audio_num_codebooks,),
self.config.audio_stream_bos_id,
dtype=torch.long,
device=device,
)
else:
if do_sample:
probs = nn.functional.softmax(next_token_scores, dim=-1)
# TODO (joao): this OP throws "skipping cudagraphs due to ['incompatible ops']", find solution
next_tokens = torch.multinomial(probs, num_samples=1, generator=torch_generator).squeeze(1)
else:
next_tokens = torch.argmax(next_token_scores, dim=-1)
next_audio_tokens = None
return next_tokens, next_audio_tokens, next_token_logits, next_token_scores
# Built on top of GenerationMixin._sample.
# We revise the implementation to support generating both audio / text.
def _sample(
self,
input_ids: torch.LongTensor,
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
streamer: Optional["BaseStreamer"],
past_key_values_buckets: Optional[OrderedDict[int, Cache]],
**model_kwargs,
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for joint text/audio models using **multinomial sampling**.
This function may also be revised to support generating samples from HiggsAudio-like end-to-end text/audio models built on top of LLMs.
If the input_ids ends with <|audio_out_bos|>, we will switch to the audio-generation mode.
```
...<|start_header_id|>assistant<|end_header_id|>\n\n<|audio_out_bos|>
```
Otherwise, we will keep generating the text tokens.
Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
stopping_criteria (`StoppingCriteriaList`):
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
used to tell if the generation loop should stop.
generation_config ([`~generation.GenerationConfig`]):
The generation configuration to be used as parametrization of the decoding method.
synced_gpus (`bool`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
model_kwargs:
Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`:
A `torch.LongTensor` containing the generated tokens (default behaviour) or a
[`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
"""
assert input_ids.shape[0] == 1, "Only support batch_size=1 in _sample()"
audio_out_bos_token_id = generation_config.generation_kwargs.get("audio_out_bos_token_id", None)
# torch generator for sampling
seed = generation_config.generation_kwargs.get("seed", None)
if seed is not None:
torch_generator = torch.Generator(device=input_ids.device).manual_seed(seed)
else:
torch_generator = None
# init values
pad_token_id = generation_config._pad_token_tensor
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
max_length = generation_config.max_length
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
do_sample = generation_config.do_sample
# Used to track which past_key_va
self.current_past_key_values_bucket = None
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# keep track of which sequences are already finished
batch_size, cur_len = input_ids.shape
this_peer_finished = False
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
if generation_config.use_cache:
model_kwargs["cache_audio_discrete_codes_mask"] = None
init_model_input = True
num_delay = 0
num_remaining_delays = None
audio_sequences = []
# A tensor to keep track of all the audio placeholder tokens.
input_ids_full = input_ids.clone()
# Initialize the audio variables based on the input prompt.
if input_ids[0][-1] == self.config.audio_out_token_idx:
audio_sequences = [model_kwargs["audio_out_ids"][:, model_kwargs["audio_out_ids_start"][-1] :]]
if self.use_delay_pattern:
num_delay = (
self.audio_num_codebooks
- (model_kwargs["audio_out_ids"][:, -1] == self.config.audio_stream_bos_id).sum()
)
all_eos_indices = (model_kwargs["audio_out_ids"][:, -1] == self.config.audio_stream_eos_id).nonzero()
if torch.numel(all_eos_indices) > 0:
all_eos_indices = all_eos_indices[0]
last_eos_idx = all_eos_indices[-1]
num_remaining_delays = self.audio_num_codebooks - last_eos_idx - 1
while self._has_unfinished_sequences(
this_peer_finished, synced_gpus, device=input_ids.device, cur_len=cur_len, max_length=max_length
):
# Check which multimodal stage we are in
# FIXME: Assume single input generation
if input_ids[0][-1] == audio_out_bos_token_id:
generation_mode = GenerationMode.AUDIO_INIT
elif input_ids[0][-1] == self.audio_out_token_idx:
generation_mode = GenerationMode.AUDIO_IN_PROGRESS
else:
generation_mode = GenerationMode.TEXT
is_audio_generation_mode = generation_mode == GenerationMode.AUDIO_IN_PROGRESS
if init_model_input or not generation_config.use_cache:
model_inputs = {"input_ids": input_ids, **model_kwargs}
else:
model_inputs = {"input_ids": input_ids[:, -1:], **model_kwargs}
if is_audio_generation_mode and generation_config.use_cache:
model_inputs["audio_out_ids"] = model_kwargs["audio_out_ids"][:, -1:]
model_inputs["audio_out_ids_start"] = torch.tensor([0], dtype=torch.long, device=input_ids.device)
elif not is_audio_generation_mode:
del model_inputs["audio_out_ids"]
del model_inputs["audio_out_ids_start"]
if generation_config.use_cache:
if "audio_features" in model_inputs and model_inputs["audio_features"] is not None:
model_inputs["audio_features"] = model_inputs["audio_features"][:0, ...]
model_inputs["audio_feature_attention_mask"] = model_inputs["audio_feature_attention_mask"][
:0, ...
]
if "audio_in_ids" in model_inputs and model_inputs["audio_in_ids"] is not None:
model_inputs["audio_in_ids"] = None
model_inputs["audio_in_ids_start"] = None
# prepare variable output controls (note: some models won't accept all output controls)
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
if past_key_values_buckets is not None:
past_key_values, self.current_past_key_values_bucket = self._prepare_kv_cache(
cur_len, self.current_past_key_values_bucket, past_key_values_buckets
)
if past_key_values is not None:
model_inputs.update({"past_key_values": past_key_values})
model_inputs["past_key_values_buckets"] = past_key_values_buckets
# forward pass to get next token
outputs = self(**model_inputs, return_dict=True)
# Update the actual sequence length after the first forward pass
if init_model_input and past_key_values_buckets is not None:
cur_len = past_key_values_buckets[self.current_past_key_values_bucket].get_seq_length().item()
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
model_kwargs = self._update_model_kwargs_for_generation(
outputs,
model_kwargs,
is_encoder_decoder=self.config.is_encoder_decoder,
extend_attention_mask=True,
)
# After the first forward pass, we can set init_model_input to False.
init_model_input = False
if synced_gpus and this_peer_finished:
continue
if is_audio_generation_mode:
# In audio generation mode, we sample the audio tokens from audio logits.
# It might also generate the audio eos token to end the audio generation.
(
next_tokens,
next_audio_tokens,
next_audio_token_logits,
next_audio_token_scores,
num_delay,
num_remaining_delays,
) = self._sample_audio_tokens(
hidden_states=outputs.audio_hidden_states,
audio_logits=outputs.audio_logits,
audio_out_ids=model_kwargs["audio_out_ids"],
do_sample=do_sample,
logits_processor=logits_processor,
device=input_ids.device,
torch_generator=torch_generator,
generation_config=generation_config,
num_delay=num_delay,
num_remaining_delays=num_remaining_delays,
)
# update generated ids, model inputs, and length for next step
model_kwargs["audio_out_ids"] = torch.cat(
[model_kwargs["audio_out_ids"], next_audio_tokens[:, None]], dim=-1
)
audio_sequences[-1] = torch.cat([audio_sequences[-1], next_audio_tokens[:, None]], dim=-1)
if streamer is not None:
streamer.put(next_audio_tokens.cpu())
else:
# In text generation mode, we sample the text tokens from text logits.
# It might also generate the audio placeholder token to start the audio generation.
next_tokens, next_audio_tokens, next_token_logits, next_token_scores = self._sample_text_tokens(
input_ids=input_ids,
logits=outputs.logits,
do_sample=do_sample,
logits_processor=logits_processor,
device=input_ids.device,
generation_mode=generation_mode,
torch_generator=torch_generator,
)
if streamer is not None:
streamer.put(next_tokens.cpu())
if next_audio_tokens is not None:
# If the token is audio bos token, we will generate the audio placeholder token
# and the corrensponding audio stream bos token to start the audio generation.
audio_sequences.append(next_audio_tokens[:, None])
if streamer is not None:
streamer.put(next_audio_tokens.cpu())
if model_kwargs["audio_out_ids"] is None or model_kwargs["audio_out_ids"].shape[0] == 0:
# Initialize audio_out_ids
model_kwargs["audio_out_ids"] = next_audio_tokens[:, None]
model_kwargs["audio_out_ids_start"] = torch.tensor(
[0], dtype=torch.long, device=input_ids.device
)
else:
model_kwargs["audio_out_ids_start"] = torch.concat(
[
model_kwargs["audio_out_ids_start"],
torch.tensor(
[model_kwargs["audio_out_ids"].shape[1]], dtype=torch.long, device=input_ids.device
),
],
dim=0,
)
model_kwargs["audio_out_ids"] = torch.concat(
[model_kwargs["audio_out_ids"], next_audio_tokens[:, None]], dim=1
)
if return_dict_in_generate:
if output_scores:
if is_audio_generation_mode:
scores += (next_audio_token_scores,)
else:
scores += (next_token_scores,)
if output_logits:
if is_audio_generation_mode:
raw_logits += (next_audio_token_logits,)
else:
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += (outputs.attentions,)
if output_hidden_states:
decoder_hidden_states += (outputs.hidden_states,)
# finished sentences should have their next token be a padding token
if has_eos_stopping_criteria:
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
if "tokenizer_length" in generation_config.generation_kwargs:
tokenizer_length = generation_config.generation_kwargs["tokenizer_length"]
if torch.max(next_tokens) >= tokenizer_length:
raise ValueError(
f"Next generated token has max value {torch.max(next_tokens)} which is greater than the tokenizer's vocabulary size {tokenizer_length}, this is undesired behavior."
)
# update generated ids, model inputs, and length for next step
if not is_audio_generation_mode or next_tokens[0] != self.audio_out_token_idx:
# We only add one <|AUDIO_OUT|> token to the input_ids for simplicity.
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
input_ids_full = torch.cat([input_ids_full, next_tokens[:, None]], dim=-1)
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids_full, scores)
this_peer_finished = unfinished_sequences.max() == 0
cur_len += 1
# This is needed to properly delete outputs.logits which may be very large for first iteration
# Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
del outputs
if streamer is not None:
streamer.end()
if return_dict_in_generate:
return HiggsAudioGenerationOutput(
sequences=input_ids,
audio_sequences=audio_sequences,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return input_ids, audio_sequences
@torch.inference_mode()
def generate(
self,
input_ids: Optional[torch.LongTensor] = None,
audio_features: Optional[torch.FloatTensor] = None,
audio_feature_attention_mask: Optional[torch.BoolTensor] = None,
audio_in_ids: Optional[torch.LongTensor] = None,
audio_in_ids_start: Optional[torch.LongTensor] = None,
audio_out_ids: Optional[torch.LongTensor] = None,
audio_out_ids_start: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
audio_out_bos_token_id: int = None,
audio_eos_token_id: int = None,
past_key_values_buckets: Optional[OrderedDict[int, Cache]] = None,
seed: Optional[int] = None,
**kwargs,
):
"""
The generate function in huggingface generally follows these steps:
for sample_step in 1, 2, 3, 4, 5, ...
...
"""
# Right now, it's a very simplified version of generate, we should revisit this after our model architecture stabilizes.
assert input_ids.shape[0] == 1, (
"Currently HiggsAudioModel.generate() only supports batch_size=1. See the implementation of "
)
generation_config, kwargs = self._prepare_generation_config(kwargs.pop("generation_config", None), **kwargs)
if audio_out_bos_token_id is not None:
generation_config.generation_kwargs["audio_out_bos_token_id"] = audio_out_bos_token_id
else:
try:
generation_config.generation_kwargs["audio_out_bos_token_id"] = self.audio_out_bos_token_id
except:
generation_config.generation_kwargs["audio_out_bos_token_id"] = None
if audio_eos_token_id is not None:
generation_config.generation_kwargs["audio_eos_token_id"] = audio_eos_token_id
else:
try:
generation_config.generation_kwargs["audio_eos_token_id"] = self.audio_eos_token_id
except:
generation_config.generation_kwargs["audio_eos_token_id"] = None
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
generation_config.generation_kwargs["ras_win_len"] = kwargs.pop("ras_win_len", None)
generation_config.generation_kwargs["ras_win_max_num_repeat"] = kwargs.pop("ras_win_max_num_repeat", 2)
# Set generation seed if determinstic generation is required
if seed is not None:
generation_config.generation_kwargs["seed"] = seed
# Store tokenizer in generation config if it is in kwargs without popping it
if "tokenizer" in kwargs:
generation_config.generation_kwargs["tokenizer_length"] = len(kwargs["tokenizer"])
# input_ids: [bsz, seq_len]
# The merging of audio features happens inside the forward path. The input_ids does not need to change.
# TODO: prepare the final input embeddings to improve generation performance
input_ids_length = input_ids.shape[-1]
generation_config = self._prepare_generated_length(
generation_config=generation_config,
has_default_max_length=has_default_max_length,
has_default_min_length=has_default_min_length,
model_input_name=None,
inputs_tensor=None,
input_ids_length=input_ids_length,
)
assert generation_config.num_beams == 1, "Currently, we only support beam search with num_beams=1"
return_dict_in_generate = generation_config.return_dict_in_generate
output_scores = generation_config.output_scores
# When attn_implement is spda or flash-attention, it will create causal mask automatically.
attention_mask = kwargs.pop("attention_mask", None)
return super().generate(
input_ids=input_ids,
attention_mask=attention_mask,
audio_features=audio_features,
audio_feature_attention_mask=audio_feature_attention_mask,
audio_in_ids=audio_in_ids,
audio_in_ids_start=audio_in_ids_start,
audio_out_ids=audio_out_ids,
audio_out_ids_start=audio_out_ids_start,
past_key_values=past_key_values,
generation_config=generation_config,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
past_key_values_buckets=past_key_values_buckets,
**kwargs,
)
def parameter_count_per_component(self):
"""Count the number of parameters per component in the model.
HiggsAudio has the following main components:
audio_tower: For mapping audio features to hidden states),
llm_embed: The size of embedding layer of the LLM
llm_non_embed: The size of non-embedding layer of the LLM
audio_adapter: The overall size of additional layers for audio generation
"""
trainable_stats = {
"audio_tower": 0,
"llm_embed": 0,
"llm_non_embed": 0,
"audio_embed": 0,
"audio_adapter": 0,
"overall": 0,
}
total_stats = {
"audio_tower": 0,
"llm_embed": 0,
"llm_non_embed": 0,
"audio_embed": 0,
"audio_adapter": 0,
"overall": 0,
}
total_stats["overall"] = count_parameters(self, trainable_only=False)
trainable_stats["overall"] = count_parameters(self, trainable_only=True)
for mod in [self.audio_tower]:
if mod is not None:
total_stats["audio_tower"] += count_parameters(mod, trainable_only=False)
trainable_stats["audio_tower"] += count_parameters(mod, trainable_only=True)
total_stats["llm_embed"] = count_parameters(self.embed_tokens, trainable_only=False)
trainable_stats["llm_embed"] = count_parameters(self.embed_tokens, trainable_only=True)
total_stats["audio_embed"] = count_parameters(self.audio_codebook_embeddings, trainable_only=False)
trainable_stats["audio_embed"] = count_parameters(self.audio_codebook_embeddings, trainable_only=True)
# Calculate number of parameters for LLM
for layer in self.layers:
if isinstance(layer, HiggsAudioDualFFNDecoderLayer):
total_param_count = count_parameters(layer, trainable_only=False)
total_trainable_param_count = count_parameters(layer, trainable_only=True)
total_stats["llm_non_embed"] += total_param_count
trainable_stats["llm_non_embed"] += total_trainable_param_count
if not layer.fast_forward:
audio_mlp_param_count = count_parameters(layer.audio_mlp, trainable_only=False)
audio_mlp_trainable_param_count = count_parameters(layer.audio_mlp, trainable_only=True)
audio_norm_param_count = count_parameters(
layer.audio_post_attention_layernorm, trainable_only=False
) + count_parameters(layer.audio_input_layernorm, trainable_only=False)
audio_norm_trainable_param_count = count_parameters(
layer.audio_post_attention_layernorm, trainable_only=True
) + count_parameters(layer.audio_input_layernorm, trainable_only=True)
total_stats["llm_non_embed"] -= audio_mlp_param_count + audio_norm_param_count
trainable_stats["llm_non_embed"] -= (
audio_mlp_trainable_param_count + audio_norm_trainable_param_count
)
total_stats["audio_adapter"] += audio_mlp_param_count + audio_norm_param_count
trainable_stats["audio_adapter"] += (
audio_mlp_trainable_param_count + audio_norm_trainable_param_count
)
if layer.use_audio_attention:
audio_attn_param_count = count_parameters(
layer.audio_attn, trainable_only=False
) + count_parameters(layer.audio_post_audio_attn_layer_norm, trainable_only=False)
audio_attn_trainable_param_count = count_parameters(
layer.audio_attn, trainable_only=True
) + count_parameters(layer.audio_post_audio_attn_layer_norm, trainable_only=True)
total_stats["llm_non_embed"] -= audio_attn_param_count
trainable_stats["llm_non_embed"] -= audio_attn_trainable_param_count
total_stats["audio_adapter"] += audio_attn_param_count
trainable_stats["audio_adapter"] += audio_attn_trainable_param_count
else:
total_stats["llm_non_embed"] += count_parameters(layer, trainable_only=False)
trainable_stats["llm_non_embed"] += count_parameters(layer, trainable_only=True)
total_stats["llm_non_embed"] += count_parameters(self.norm, trainable_only=False)
trainable_stats["llm_non_embed"] += count_parameters(self.norm, trainable_only=True)
total_stats["audio_adapter"] += count_parameters(self.audio_decoder_proj.audio_lm_head, trainable_only=False)
trainable_stats["audio_adapter"] += count_parameters(
self.audio_decoder_proj.audio_lm_head, trainable_only=True
)
total_stats["llm_embed"] += count_parameters(self.audio_decoder_proj.text_lm_head, trainable_only=False)
trainable_stats["llm_embed"] += count_parameters(self.audio_decoder_proj.text_lm_head, trainable_only=True)
other_audio_modules = [self.audio_encoder_proj]
if self.use_audio_out_embed_projector:
other_audio_modules.append(self.audio_out_embed_projector)
for mod in other_audio_modules:
if mod is not None:
total_stats["audio_adapter"] += count_parameters(mod, trainable_only=False)
trainable_stats["audio_adapter"] += count_parameters(mod, trainable_only=True)
return {"trainable": trainable_stats, "total": total_stats}
def set_skip_audio_tower(self):
self.config.skip_audio_tower = True
self.config.encode_whisper_embed = False
def set_encode_audio_in_tokens(self):
self.config.encode_audio_in_tokens = True
def freeze_audio_tower(self):
if self.audio_tower is not None:
for param in self.audio_tower.parameters():
param.requires_grad = False
def freeze_audio_encoder_proj(self):
if self.audio_encoder_proj is not None:
for param in self.audio_encoder_proj.parameters():
param.requires_grad = False
def freeze_llm(self, freeze_embed=True, freeze_embed_until_idx: Optional[int] = None):
for layer in self.layers:
if isinstance(layer, HiggsAudioDualFFNDecoderLayer):
for param in layer.self_attn.parameters():
param.requires_grad = False
for param in layer.mlp.parameters():
param.requires_grad = False
for param in layer.post_attention_layernorm.parameters():
param.requires_grad = False
for param in layer.input_layernorm.parameters():
param.requires_grad = False
else:
for param in layer.parameters():
param.requires_grad = False
for param in self.norm.parameters():
param.requires_grad = False
if freeze_embed:
if freeze_embed_until_idx is None:
for param in self.embed_tokens.parameters():
param.requires_grad = False
else:
assert isinstance(self.embed_tokens, nn.Embedding)
self.embed_tokens = PartiallyFrozenEmbedding(
original_embedding=self.embed_tokens, freeze_until_idx=freeze_embed_until_idx
)
def freeze_text_head(self, freeze_text_head_until_idx: Optional[int] = None):
"""Freeze the final text head"""
if freeze_text_head_until_idx is None:
for param in self.audio_decoder_proj.text_lm_head.parameters():
param.requires_grad = False
else:
assert isinstance(self.audio_decoder_proj.text_lm_head, nn.Linear)
self.audio_decoder_proj.text_lm_head = PartiallyFrozenLinear(
original_linear=self.audio_decoder_proj.text_lm_head, freeze_until_idx=freeze_text_head_until_idx
)
@classmethod
def merge_weights_from_checkpoint(cls, checkpoint_dir: str, merged_output_dir: str, *model_args, **kwargs):
# For users' convenience, we merge back embedding and text_lm_head if they are splitted
splitted_model = super().from_pretrained(
checkpoint_dir,
*model_args,
torch_dtype=torch.bfloat16,
device_map="cpu",
**{**kwargs, "state_dict": None}, # Prevent auto-loading state_dict
)
# Load all safetensor shards
state_dict = {}
shard_paths = sorted(glob.glob(os.path.join(checkpoint_dir, "*.safetensors")))
for shard_path in shard_paths:
shard_dict = load_file(shard_path) # Load each shard
state_dict.update(shard_dict) # Merge into a single dict
# Merge weights
if (
"audio_decoder_proj.text_lm_head.linear_frozen.weight" in state_dict
and "audio_decoder_proj.text_lm_head.linear_trainable.weight" in state_dict
):
state_dict["audio_decoder_proj.text_lm_head.weight"] = torch.cat(
[
state_dict["audio_decoder_proj.text_lm_head.linear_frozen.weight"],
state_dict["audio_decoder_proj.text_lm_head.linear_trainable.weight"],
],
dim=0,
)
del state_dict["audio_decoder_proj.text_lm_head.linear_frozen.weight"]
del state_dict["audio_decoder_proj.text_lm_head.linear_trainable.weight"]
if (
"embed_tokens.embedding_frozen.weight" in state_dict
and "embed_tokens.embedding_trainable.weight" in state_dict
):
state_dict["embed_tokens.weight"] = torch.cat(
[
state_dict["embed_tokens.embedding_frozen.weight"],
state_dict["embed_tokens.embedding_trainable.weight"],
],
dim=0,
)
del state_dict["embed_tokens.embedding_frozen.weight"]
del state_dict["embed_tokens.embedding_trainable.weight"]
# Load the final state_dict
splitted_model.load_state_dict(state_dict, strict=True)
if merged_output_dir:
splitted_model.save_pretrained(merged_output_dir, is_main_process=True, state_dict=state_dict)
@torch.inference_mode()
def capture_model(self, past_key_values: list[Union[Cache, List[torch.FloatTensor]]]) -> None:
"""Capture CUDA graphs for the model's forward pass with different KV cache lengths.
Args:
past_key_values: List of KV caches to capture graphs for
"""
for past_key_value in past_key_values:
kv_cache_length = past_key_value.get_max_cache_shape()
# We capture two graphs, one for decoding audio tokens and one for decoding text tokens
for is_decoding_audio_token in [True, False]:
runner = CUDAGraphRunner(self._forward_core)
# Create dummy inputs for graph capture
batch_size = 1
hidden_dim = self.config.hidden_size
hidden_states = torch.zeros(
(batch_size, 1, hidden_dim), dtype=None, device=self.device
)
causal_mask = torch.ones(
(batch_size, 1, 1, kv_cache_length), dtype=None, device=self.device
)
position_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=self.device)
audio_discrete_codes_mask = torch.tensor(
[[is_decoding_audio_token]], dtype=torch.bool, device=self.device
)
cache_position = torch.tensor([kv_cache_length - 1], dtype=torch.long, device=self.device)
audio_attention_mask = torch.ones_like(causal_mask)
fast_forward_attention_mask = torch.ones_like(causal_mask)
runner.capture(
hidden_states=hidden_states,
causal_mask=causal_mask,
position_ids=position_ids,
audio_discrete_codes_mask=audio_discrete_codes_mask,
cache_position=cache_position,
past_key_values=past_key_value,
use_cache=True,
audio_attention_mask=audio_attention_mask,
fast_forward_attention_mask=fast_forward_attention_mask,
output_attentions=False,
output_hidden_states=False,
is_decoding_audio_token=is_decoding_audio_token,
is_using_cuda_graph=True,
#stream=torch.cuda.Stream(device=self.device),
)
self.decode_graph_runners[kv_cache_length][is_decoding_audio_token] = runner