ComfyUI/comfy_extras/nodes/nodes_cosmos.py

129 lines
5.9 KiB
Python

import torch
import comfy.latent_formats
import comfy.model_management
import comfy.utils
from comfy.node_helpers import export_custom_nodes
from comfy.nodes.common import MAX_RESOLUTION
from comfy.nodes.package_typing import CustomNode
class EmptyCosmosLatentVideo(CustomNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"width": ("INT", {"default": 1280, "min": 16, "max": MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 704, "min": 16, "max": MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 121, "min": 1, "max": MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/video"
def generate(self, width, height, length, batch_size=1):
latent = torch.zeros([batch_size, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
return ({"samples": latent},)
def vae_encode_with_padding(vae, image, width, height, length, padding=0):
pixels = comfy.utils.common_upscale(image[..., :3].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
pixel_len = min(pixels.shape[0], length)
padded_length = min(length, (((pixel_len - 1) // 8) + 1 + padding) * 8 - 7)
padded_pixels = torch.ones((padded_length, height, width, 3)) * 0.5
padded_pixels[:pixel_len] = pixels[:pixel_len]
latent_len = ((pixel_len - 1) // 8) + 1
latent_temp = vae.encode(padded_pixels)
return latent_temp[:, :, :latent_len]
class CosmosImageToVideoLatent(CustomNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"vae": ("VAE",),
"width": ("INT", {"default": 1280, "min": 16, "max": MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 704, "min": 16, "max": MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 121, "min": 1, "max": MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"start_image": ("IMAGE",),
"end_image": ("IMAGE",),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "conditioning/inpaint"
def encode(self, vae, width, height, length, batch_size, start_image=None, end_image=None):
latent = torch.zeros([1, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
if start_image is None and end_image is None:
out_latent = {}
out_latent["samples"] = latent
return (out_latent,)
mask = torch.ones([latent.shape[0], 1, ((length - 1) // 8) + 1, latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device())
if start_image is not None:
latent_temp = vae_encode_with_padding(vae, start_image, width, height, length, padding=1)
latent[:, :, :latent_temp.shape[-3]] = latent_temp
mask[:, :, :latent_temp.shape[-3]] *= 0.0
if end_image is not None:
latent_temp = vae_encode_with_padding(vae, end_image, width, height, length, padding=0)
latent[:, :, -latent_temp.shape[-3]:] = latent_temp
mask[:, :, -latent_temp.shape[-3]:] *= 0.0
out_latent = {}
out_latent["samples"] = latent.repeat((batch_size,) + (1,) * (latent.ndim - 1))
out_latent["noise_mask"] = mask.repeat((batch_size,) + (1,) * (mask.ndim - 1))
return (out_latent,)
class CosmosPredict2ImageToVideoLatent(CustomNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"vae": ("VAE",),
"width": ("INT", {"default": 848, "min": 16, "max": MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 93, "min": 1, "max": MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"start_image": ("IMAGE",),
"end_image": ("IMAGE",),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "conditioning/inpaint"
def encode(self, vae, width, height, length, batch_size, start_image=None, end_image=None):
latent = torch.zeros([1, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
if start_image is None and end_image is None:
out_latent = {}
out_latent["samples"] = latent
return (out_latent,)
mask = torch.ones([latent.shape[0], 1, ((length - 1) // 4) + 1, latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device())
if start_image is not None:
latent_temp = vae_encode_with_padding(vae, start_image, width, height, length, padding=1)
latent[:, :, :latent_temp.shape[-3]] = latent_temp
mask[:, :, :latent_temp.shape[-3]] *= 0.0
if end_image is not None:
latent_temp = vae_encode_with_padding(vae, end_image, width, height, length, padding=0)
latent[:, :, -latent_temp.shape[-3]:] = latent_temp
mask[:, :, -latent_temp.shape[-3]:] *= 0.0
out_latent = {}
latent_format = comfy.latent_formats.Wan21()
latent = latent_format.process_out(latent) * mask + latent * (1.0 - mask)
out_latent["samples"] = latent.repeat((batch_size,) + (1,) * (latent.ndim - 1))
out_latent["noise_mask"] = mask.repeat((batch_size,) + (1,) * (mask.ndim - 1))
return (out_latent,)
export_custom_nodes()