ComfyUI/comfy_api/latest/__init__.py
Deep Mehta 2049066cff refactor: expose CacheProvider API via comfy_api.latest.Caching
- Add Caching class to comfy_api/latest/__init__.py that re-exports
  from comfy_execution.cache_provider (source of truth)
- Fix docstring: "Skip large values" instead of "Skip small values"
  (small compute-heavy values are good cache targets)
- Maintain backward compatibility: comfy_execution.cache_provider
  imports still work

Usage:
    from comfy_api.latest import Caching

    class MyProvider(Caching.CacheProvider):
        def on_lookup(self, context): ...
        def on_store(self, context, value): ...

    Caching.register_provider(MyProvider())

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2026-01-29 19:42:34 +05:30

171 lines
5.5 KiB
Python

from __future__ import annotations
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING
from comfy_api.internal import ComfyAPIBase
from comfy_api.internal.singleton import ProxiedSingleton
from comfy_api.internal.async_to_sync import create_sync_class
from ._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput
from ._input_impl import VideoFromFile, VideoFromComponents
from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL
from . import _io_public as io
from . import _ui_public as ui
from comfy_execution.utils import get_executing_context
from comfy_execution.progress import get_progress_state, PreviewImageTuple
from PIL import Image
from comfy.cli_args import args
import numpy as np
class ComfyAPI_latest(ComfyAPIBase):
VERSION = "latest"
STABLE = False
class Execution(ProxiedSingleton):
async def set_progress(
self,
value: float,
max_value: float,
node_id: str | None = None,
preview_image: Image.Image | ImageInput | None = None,
ignore_size_limit: bool = False,
) -> None:
"""
Update the progress bar displayed in the ComfyUI interface.
This function allows custom nodes and API calls to report their progress
back to the user interface, providing visual feedback during long operations.
Migration from previous API: comfy.utils.PROGRESS_BAR_HOOK
"""
executing_context = get_executing_context()
if node_id is None and executing_context is not None:
node_id = executing_context.node_id
if node_id is None:
raise ValueError("node_id must be provided if not in executing context")
# Convert preview_image to PreviewImageTuple if needed
to_display: PreviewImageTuple | Image.Image | ImageInput | None = preview_image
if to_display is not None:
# First convert to PIL Image if needed
if isinstance(to_display, ImageInput):
# Convert ImageInput (torch.Tensor) to PIL Image
# Handle tensor shape [B, H, W, C] -> get first image if batch
tensor = to_display
if len(tensor.shape) == 4:
tensor = tensor[0]
# Convert to numpy array and scale to 0-255
image_np = (tensor.cpu().numpy() * 255).astype(np.uint8)
to_display = Image.fromarray(image_np)
if isinstance(to_display, Image.Image):
# Detect image format from PIL Image
image_format = to_display.format if to_display.format else "JPEG"
# Use None for preview_size if ignore_size_limit is True
preview_size = None if ignore_size_limit else args.preview_size
to_display = (image_format, to_display, preview_size)
get_progress_state().update_progress(
node_id=node_id,
value=value,
max_value=max_value,
image=to_display,
)
execution: Execution
class ComfyExtension(ABC):
async def on_load(self) -> None:
"""
Called when an extension is loaded.
This should be used to initialize any global resources needed by the extension.
"""
@abstractmethod
async def get_node_list(self) -> list[type[io.ComfyNode]]:
"""
Returns a list of nodes that this extension provides.
"""
class Input:
Image = ImageInput
Audio = AudioInput
Mask = MaskInput
Latent = LatentInput
Video = VideoInput
class InputImpl:
VideoFromFile = VideoFromFile
VideoFromComponents = VideoFromComponents
class Types:
VideoCodec = VideoCodec
VideoContainer = VideoContainer
VideoComponents = VideoComponents
MESH = MESH
VOXEL = VOXEL
class Caching:
"""
External cache provider API for distributed caching.
Enables sharing cached results across multiple ComfyUI instances
(e.g., Kubernetes pods) without monkey-patching internal methods.
Example usage:
from comfy_api.latest import Caching
class MyRedisProvider(Caching.CacheProvider):
def on_lookup(self, context):
# Check Redis for cached result
...
def on_store(self, context, value):
# Store to Redis (can be async internally)
...
Caching.register_provider(MyRedisProvider())
"""
# Import from comfy_execution.cache_provider (source of truth)
from comfy_execution.cache_provider import (
CacheProvider,
CacheContext,
CacheValue,
register_cache_provider as register_provider,
unregister_cache_provider as unregister_provider,
get_cache_providers as get_providers,
has_cache_providers as has_providers,
clear_cache_providers as clear_providers,
estimate_value_size,
)
ComfyAPI = ComfyAPI_latest
# Create a synchronous version of the API
if TYPE_CHECKING:
import comfy_api.latest.generated.ComfyAPISyncStub # type: ignore
ComfyAPISync: type[comfy_api.latest.generated.ComfyAPISyncStub.ComfyAPISyncStub]
ComfyAPISync = create_sync_class(ComfyAPI_latest)
# create new aliases for io and ui
IO = io
UI = ui
__all__ = [
"ComfyAPI",
"ComfyAPISync",
"Input",
"InputImpl",
"Types",
"Caching",
"ComfyExtension",
"io",
"IO",
"ui",
"UI",
]