mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-26 14:20:27 +08:00
* Add API of bypass forward module * bypass implementation * add bypass fwd into nodes list/trainer
438 lines
16 KiB
Python
438 lines
16 KiB
Python
"""
|
|
Bypass mode implementation for weight adapters (LoRA, LoKr, LoHa, etc.)
|
|
|
|
Bypass mode applies adapters during forward pass without modifying base weights:
|
|
bypass(f)(x) = g(f(x) + h(x))
|
|
|
|
Where:
|
|
- f(x): Original layer forward
|
|
- h(x): Additive component from adapter (LoRA path)
|
|
- g(y): Output transformation (identity for most adapters)
|
|
|
|
This is useful for:
|
|
- Training with gradient checkpointing
|
|
- Avoiding weight modifications when weights are offloaded
|
|
- Supporting multiple adapters with different strengths dynamically
|
|
"""
|
|
|
|
import logging
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from .base import WeightAdapterBase, WeightAdapterTrainBase
|
|
from comfy.patcher_extension import PatcherInjection
|
|
|
|
# Type alias for adapters that support bypass mode
|
|
BypassAdapter = Union[WeightAdapterBase, WeightAdapterTrainBase]
|
|
|
|
|
|
def get_module_type_info(module: nn.Module) -> dict:
|
|
"""
|
|
Determine module type and extract conv parameters from module class.
|
|
|
|
This is more reliable than checking weight.ndim, especially for quantized layers
|
|
where weight shape might be different.
|
|
|
|
Returns:
|
|
dict with keys: is_conv, conv_dim, stride, padding, dilation, groups
|
|
"""
|
|
info = {
|
|
"is_conv": False,
|
|
"conv_dim": 0,
|
|
"stride": (1,),
|
|
"padding": (0,),
|
|
"dilation": (1,),
|
|
"groups": 1,
|
|
"kernel_size": (1,),
|
|
"in_channels": None,
|
|
"out_channels": None,
|
|
}
|
|
|
|
# Determine conv type
|
|
if isinstance(module, nn.Conv1d):
|
|
info["is_conv"] = True
|
|
info["conv_dim"] = 1
|
|
elif isinstance(module, nn.Conv2d):
|
|
info["is_conv"] = True
|
|
info["conv_dim"] = 2
|
|
elif isinstance(module, nn.Conv3d):
|
|
info["is_conv"] = True
|
|
info["conv_dim"] = 3
|
|
elif isinstance(module, nn.Linear):
|
|
info["is_conv"] = False
|
|
info["conv_dim"] = 0
|
|
else:
|
|
# Try to infer from class name for custom/quantized layers
|
|
class_name = type(module).__name__.lower()
|
|
if "conv3d" in class_name:
|
|
info["is_conv"] = True
|
|
info["conv_dim"] = 3
|
|
elif "conv2d" in class_name:
|
|
info["is_conv"] = True
|
|
info["conv_dim"] = 2
|
|
elif "conv1d" in class_name:
|
|
info["is_conv"] = True
|
|
info["conv_dim"] = 1
|
|
elif "conv" in class_name:
|
|
info["is_conv"] = True
|
|
info["conv_dim"] = 2
|
|
|
|
# Extract conv parameters if it's a conv layer
|
|
if info["is_conv"]:
|
|
# Try to get stride, padding, dilation, groups, kernel_size from module
|
|
info["stride"] = getattr(module, "stride", (1,) * info["conv_dim"])
|
|
info["padding"] = getattr(module, "padding", (0,) * info["conv_dim"])
|
|
info["dilation"] = getattr(module, "dilation", (1,) * info["conv_dim"])
|
|
info["groups"] = getattr(module, "groups", 1)
|
|
info["kernel_size"] = getattr(module, "kernel_size", (1,) * info["conv_dim"])
|
|
info["in_channels"] = getattr(module, "in_channels", None)
|
|
info["out_channels"] = getattr(module, "out_channels", None)
|
|
|
|
# Ensure they're tuples
|
|
if isinstance(info["stride"], int):
|
|
info["stride"] = (info["stride"],) * info["conv_dim"]
|
|
if isinstance(info["padding"], int):
|
|
info["padding"] = (info["padding"],) * info["conv_dim"]
|
|
if isinstance(info["dilation"], int):
|
|
info["dilation"] = (info["dilation"],) * info["conv_dim"]
|
|
if isinstance(info["kernel_size"], int):
|
|
info["kernel_size"] = (info["kernel_size"],) * info["conv_dim"]
|
|
|
|
return info
|
|
|
|
|
|
class BypassForwardHook:
|
|
"""
|
|
Hook that wraps a layer's forward to apply adapter in bypass mode.
|
|
|
|
Stores the original forward and replaces it with bypass version.
|
|
|
|
Supports both:
|
|
- WeightAdapterBase: Inference adapters (uses self.weights tuple)
|
|
- WeightAdapterTrainBase: Training adapters (nn.Module with parameters)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
module: nn.Module,
|
|
adapter: BypassAdapter,
|
|
multiplier: float = 1.0,
|
|
):
|
|
self.module = module
|
|
self.adapter = adapter
|
|
self.multiplier = multiplier
|
|
self.original_forward = None
|
|
|
|
# Determine layer type and conv params from module class (works for quantized layers)
|
|
module_info = get_module_type_info(module)
|
|
|
|
# Set multiplier and layer type info on adapter for use in h()
|
|
adapter.multiplier = multiplier
|
|
adapter.is_conv = module_info["is_conv"]
|
|
adapter.conv_dim = module_info["conv_dim"]
|
|
adapter.kernel_size = module_info["kernel_size"]
|
|
adapter.in_channels = module_info["in_channels"]
|
|
adapter.out_channels = module_info["out_channels"]
|
|
# Store kw_dict for conv operations (like LyCORIS extra_args)
|
|
if module_info["is_conv"]:
|
|
adapter.kw_dict = {
|
|
"stride": module_info["stride"],
|
|
"padding": module_info["padding"],
|
|
"dilation": module_info["dilation"],
|
|
"groups": module_info["groups"],
|
|
}
|
|
else:
|
|
adapter.kw_dict = {}
|
|
|
|
def _bypass_forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
|
"""Bypass forward: uses adapter's bypass_forward or default g(f(x) + h(x))
|
|
|
|
Note:
|
|
Bypass mode does NOT access original model weights (org_weight).
|
|
This is intentional - bypass mode is designed for quantized models
|
|
where weights may not be in a usable format. All necessary shape
|
|
information is provided via adapter attributes set during inject().
|
|
"""
|
|
# Check if adapter has custom bypass_forward (e.g., GLoRA)
|
|
adapter_bypass = getattr(self.adapter, "bypass_forward", None)
|
|
if adapter_bypass is not None:
|
|
# Check if it's overridden (not the base class default)
|
|
# Need to check both base classes since adapter could be either type
|
|
adapter_type = type(self.adapter)
|
|
is_default_bypass = (
|
|
adapter_type.bypass_forward is WeightAdapterBase.bypass_forward
|
|
or adapter_type.bypass_forward is WeightAdapterTrainBase.bypass_forward
|
|
)
|
|
if not is_default_bypass:
|
|
return adapter_bypass(self.original_forward, x, *args, **kwargs)
|
|
|
|
# Default bypass: g(f(x) + h(x, f(x)))
|
|
base_out = self.original_forward(x, *args, **kwargs)
|
|
h_out = self.adapter.h(x, base_out)
|
|
return self.adapter.g(base_out + h_out)
|
|
|
|
def inject(self):
|
|
"""Replace module forward with bypass version."""
|
|
if self.original_forward is not None:
|
|
logging.debug(
|
|
f"[BypassHook] Already injected for {type(self.module).__name__}"
|
|
)
|
|
return # Already injected
|
|
|
|
# Move adapter weights to module's device to avoid CPU-GPU transfer on every forward
|
|
device = None
|
|
dtype = None
|
|
if hasattr(self.module, "weight") and self.module.weight is not None:
|
|
device = self.module.weight.device
|
|
dtype = self.module.weight.dtype
|
|
elif hasattr(self.module, "W_q"): # Quantized layers might use different attr
|
|
device = self.module.W_q.device
|
|
dtype = self.module.W_q.dtype
|
|
|
|
if device is not None:
|
|
self._move_adapter_weights_to_device(device, dtype)
|
|
|
|
self.original_forward = self.module.forward
|
|
self.module.forward = self._bypass_forward
|
|
logging.debug(
|
|
f"[BypassHook] Injected bypass forward for {type(self.module).__name__} (adapter={type(self.adapter).__name__})"
|
|
)
|
|
|
|
def _move_adapter_weights_to_device(self, device, dtype=None):
|
|
"""Move adapter weights to specified device to avoid per-forward transfers.
|
|
|
|
Handles both:
|
|
- WeightAdapterBase: has self.weights tuple of tensors
|
|
- WeightAdapterTrainBase: nn.Module with parameters, uses .to() method
|
|
"""
|
|
adapter = self.adapter
|
|
|
|
# Check if adapter is an nn.Module (WeightAdapterTrainBase)
|
|
if isinstance(adapter, nn.Module):
|
|
# In training mode we don't touch dtype as trainer will handle it
|
|
adapter.to(device=device)
|
|
logging.debug(
|
|
f"[BypassHook] Moved training adapter (nn.Module) to {device}"
|
|
)
|
|
return
|
|
|
|
# WeightAdapterBase: handle self.weights tuple
|
|
if not hasattr(adapter, "weights") or adapter.weights is None:
|
|
return
|
|
|
|
weights = adapter.weights
|
|
if isinstance(weights, (list, tuple)):
|
|
new_weights = []
|
|
for w in weights:
|
|
if isinstance(w, torch.Tensor):
|
|
if dtype is not None:
|
|
new_weights.append(w.to(device=device, dtype=dtype))
|
|
else:
|
|
new_weights.append(w.to(device=device))
|
|
else:
|
|
new_weights.append(w)
|
|
adapter.weights = (
|
|
tuple(new_weights) if isinstance(weights, tuple) else new_weights
|
|
)
|
|
elif isinstance(weights, torch.Tensor):
|
|
if dtype is not None:
|
|
adapter.weights = weights.to(device=device, dtype=dtype)
|
|
else:
|
|
adapter.weights = weights.to(device=device)
|
|
|
|
logging.debug(f"[BypassHook] Moved adapter weights to {device}")
|
|
|
|
def eject(self):
|
|
"""Restore original module forward."""
|
|
if self.original_forward is None:
|
|
logging.debug(f"[BypassHook] Not injected for {type(self.module).__name__}")
|
|
return # Not injected
|
|
|
|
self.module.forward = self.original_forward
|
|
self.original_forward = None
|
|
logging.debug(
|
|
f"[BypassHook] Ejected bypass forward for {type(self.module).__name__}"
|
|
)
|
|
|
|
|
|
class BypassInjectionManager:
|
|
"""
|
|
Manages bypass mode injection for a collection of adapters.
|
|
|
|
Creates PatcherInjection objects that can be used with ModelPatcher.
|
|
|
|
Supports both inference adapters (WeightAdapterBase) and training adapters
|
|
(WeightAdapterTrainBase).
|
|
|
|
Usage:
|
|
manager = BypassInjectionManager()
|
|
manager.add_adapter("model.layers.0.self_attn.q_proj", lora_adapter, strength=0.8)
|
|
manager.add_adapter("model.layers.0.self_attn.k_proj", lora_adapter, strength=0.8)
|
|
|
|
injections = manager.create_injections(model)
|
|
model_patcher.set_injections("bypass_lora", injections)
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.adapters: dict[str, tuple[BypassAdapter, float]] = {}
|
|
self.hooks: list[BypassForwardHook] = []
|
|
|
|
def add_adapter(
|
|
self,
|
|
key: str,
|
|
adapter: BypassAdapter,
|
|
strength: float = 1.0,
|
|
):
|
|
"""
|
|
Add an adapter for a specific weight key.
|
|
|
|
Args:
|
|
key: Weight key (e.g., "model.layers.0.self_attn.q_proj.weight")
|
|
adapter: The weight adapter (LoRAAdapter, LoKrAdapter, etc.)
|
|
strength: Multiplier for adapter effect
|
|
"""
|
|
# Remove .weight suffix if present for module lookup
|
|
module_key = key
|
|
if module_key.endswith(".weight"):
|
|
module_key = module_key[:-7]
|
|
logging.debug(
|
|
f"[BypassManager] Stripped .weight suffix: {key} -> {module_key}"
|
|
)
|
|
|
|
self.adapters[module_key] = (adapter, strength)
|
|
logging.debug(
|
|
f"[BypassManager] Added adapter: {module_key} (type={type(adapter).__name__}, strength={strength})"
|
|
)
|
|
|
|
def clear_adapters(self):
|
|
"""Remove all adapters."""
|
|
self.adapters.clear()
|
|
|
|
def _get_module_by_key(self, model: nn.Module, key: str) -> Optional[nn.Module]:
|
|
"""Get a submodule by dot-separated key."""
|
|
parts = key.split(".")
|
|
module = model
|
|
try:
|
|
for i, part in enumerate(parts):
|
|
if part.isdigit():
|
|
module = module[int(part)]
|
|
else:
|
|
module = getattr(module, part)
|
|
logging.debug(
|
|
f"[BypassManager] Found module for key {key}: {type(module).__name__}"
|
|
)
|
|
return module
|
|
except (AttributeError, IndexError, KeyError) as e:
|
|
logging.error(f"[BypassManager] Failed to find module for key {key}: {e}")
|
|
logging.error(
|
|
f"[BypassManager] Failed at part index {i}, part={part}, current module type={type(module).__name__}"
|
|
)
|
|
return None
|
|
|
|
def create_injections(self, model: nn.Module) -> list[PatcherInjection]:
|
|
"""
|
|
Create PatcherInjection objects for all registered adapters.
|
|
|
|
Args:
|
|
model: The model to inject into (e.g., model_patcher.model)
|
|
|
|
Returns:
|
|
List of PatcherInjection objects to use with model_patcher.set_injections()
|
|
"""
|
|
self.hooks.clear()
|
|
|
|
logging.debug(
|
|
f"[BypassManager] create_injections called with {len(self.adapters)} adapters"
|
|
)
|
|
logging.debug(f"[BypassManager] Model type: {type(model).__name__}")
|
|
|
|
for key, (adapter, strength) in self.adapters.items():
|
|
logging.debug(f"[BypassManager] Looking for module: {key}")
|
|
module = self._get_module_by_key(model, key)
|
|
|
|
if module is None:
|
|
logging.warning(f"[BypassManager] Module not found for key {key}")
|
|
continue
|
|
|
|
if not hasattr(module, "weight"):
|
|
logging.warning(
|
|
f"[BypassManager] Module {key} has no weight attribute (type={type(module).__name__})"
|
|
)
|
|
continue
|
|
|
|
logging.debug(
|
|
f"[BypassManager] Creating hook for {key} (module type={type(module).__name__}, weight shape={module.weight.shape})"
|
|
)
|
|
hook = BypassForwardHook(module, adapter, multiplier=strength)
|
|
self.hooks.append(hook)
|
|
|
|
logging.debug(f"[BypassManager] Created {len(self.hooks)} hooks")
|
|
|
|
# Create single injection that manages all hooks
|
|
def inject_all(model_patcher):
|
|
logging.debug(
|
|
f"[BypassManager] inject_all called, injecting {len(self.hooks)} hooks"
|
|
)
|
|
for hook in self.hooks:
|
|
hook.inject()
|
|
logging.debug(
|
|
f"[BypassManager] Injected hook for {type(hook.module).__name__}"
|
|
)
|
|
|
|
def eject_all(model_patcher):
|
|
logging.debug(
|
|
f"[BypassManager] eject_all called, ejecting {len(self.hooks)} hooks"
|
|
)
|
|
for hook in self.hooks:
|
|
hook.eject()
|
|
|
|
return [PatcherInjection(inject=inject_all, eject=eject_all)]
|
|
|
|
def get_hook_count(self) -> int:
|
|
"""Return number of hooks that will be/are injected."""
|
|
return len(self.hooks)
|
|
|
|
|
|
def create_bypass_injections_from_patches(
|
|
model: nn.Module,
|
|
patches: dict,
|
|
strength: float = 1.0,
|
|
) -> list[PatcherInjection]:
|
|
"""
|
|
Convenience function to create bypass injections from a patches dict.
|
|
|
|
This is useful when you have patches in the format used by model_patcher.add_patches()
|
|
and want to apply them in bypass mode instead.
|
|
|
|
Args:
|
|
model: The model to inject into
|
|
patches: Dict mapping weight keys to adapter data
|
|
strength: Global strength multiplier
|
|
|
|
Returns:
|
|
List of PatcherInjection objects
|
|
"""
|
|
manager = BypassInjectionManager()
|
|
|
|
for key, patch_list in patches.items():
|
|
if not patch_list:
|
|
continue
|
|
|
|
# patches format: list of (strength_patch, patch_data, strength_model, offset, function)
|
|
for patch in patch_list:
|
|
patch_strength, patch_data, strength_model, offset, function = patch
|
|
|
|
# patch_data should be a WeightAdapterBase/WeightAdapterTrainBase or tuple
|
|
if isinstance(patch_data, (WeightAdapterBase, WeightAdapterTrainBase)):
|
|
adapter = patch_data
|
|
else:
|
|
# Skip non-adapter patches
|
|
continue
|
|
|
|
combined_strength = strength * patch_strength
|
|
manager.add_adapter(key, adapter, strength=combined_strength)
|
|
|
|
return manager.create_injections(model)
|