mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 23:00:51 +08:00
77 lines
2.4 KiB
Python
77 lines
2.4 KiB
Python
import PIL
|
|
import numpy as np
|
|
import cv2
|
|
import torch
|
|
from PIL.Image import Image
|
|
|
|
class ExpandImageMask:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"images": ("IMAGE", )
|
|
}
|
|
}
|
|
|
|
CATEGORY = "mask"
|
|
|
|
RETURN_TYPES = ("MASK", )
|
|
FUNCTION = "image_to_mask_image"
|
|
|
|
def image_to_mask_image(self, images):
|
|
mask_images = []
|
|
for image in images:
|
|
i = 255. * image.cpu().numpy()
|
|
|
|
# Convert to grayscale
|
|
image_gray = cv2.cvtColor(i, cv2.COLOR_BGR2GRAY)
|
|
|
|
# Apply blurring to grayscale image
|
|
image_gray = cv2.blur(image_gray, (10, 10))
|
|
image_gray = cv2.blur(image_gray, (20, 20))
|
|
|
|
# Convert image to the expected data type
|
|
image_gray = cv2.convertScaleAbs(image_gray)
|
|
|
|
# Apply threshold to grayscale image
|
|
(thresh, im_bw) = cv2.threshold(image_gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
|
|
|
|
# Apply blurring to binary mask image
|
|
ksize = (50, 50)
|
|
im_bw = cv2.blur(im_bw, ksize)
|
|
|
|
# Threshold binary mask image again
|
|
im_bw = cv2.threshold(im_bw, thresh, 255, cv2.THRESH_BINARY)[1]
|
|
|
|
# Convert binary mask image to 3-channel RGB image
|
|
mask_image_rgb = np.zeros_like(i)
|
|
mask_image_rgb[:, :, 0] = im_bw
|
|
mask_image_rgb[:, :, 1] = im_bw
|
|
mask_image_rgb[:, :, 2] = im_bw
|
|
pil_image = PIL.Image.fromarray(np.uint8(mask_image_rgb))
|
|
|
|
# create a new alpha channel with all pixels set to 255 (fully opaque)
|
|
alpha = PIL.Image.new('L', pil_image.size, 255)
|
|
|
|
# iterate over each pixel and set the alpha channel to 0 if the RGB values are white
|
|
for x in range(pil_image.width):
|
|
for y in range(pil_image.height):
|
|
if pil_image.getpixel((x, y)) == (255, 255, 255):
|
|
alpha.putpixel((x, y), 0)
|
|
|
|
# merge the alpha channel with the original image
|
|
pil_image.putalpha(alpha)
|
|
|
|
# Append mask image tensor to list
|
|
mask_images.append(1. - torch.from_numpy(np.array(pil_image.getchannel('A')).astype(np.float32) / 255.0))
|
|
|
|
return mask_images
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"ExpandImageMask": ExpandImageMask
|
|
}
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"ExpandImageMask": "Expand Image Mask"
|
|
}
|