mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-18 02:10:17 +08:00
99 lines
4.4 KiB
Python
99 lines
4.4 KiB
Python
import os
|
|
import torch
|
|
from torch import nn
|
|
from copy import deepcopy
|
|
|
|
from custom_nodes.facerestore.facelib.utils import load_file_from_url
|
|
from custom_nodes.facerestore.facelib.detection.yolov5face.models.common import Conv
|
|
|
|
from .retinaface.retinaface import RetinaFace
|
|
from .yolov5face.face_detector import YoloDetector
|
|
|
|
|
|
def init_detection_model(model_name, half=False, device='cuda'):
|
|
if 'retinaface' in model_name:
|
|
model = init_retinaface_model(model_name, half, device)
|
|
elif 'YOLOv5' in model_name:
|
|
model = init_yolov5face_model(model_name, device)
|
|
else:
|
|
raise NotImplementedError(f'{model_name} is not implemented.')
|
|
|
|
return model
|
|
|
|
|
|
def init_retinaface_model(model_name, half=False, device='cuda'):
|
|
if model_name == 'retinaface_resnet50':
|
|
model = RetinaFace(network_name='resnet50', half=half)
|
|
model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth'
|
|
elif model_name == 'retinaface_mobile0.25':
|
|
model = RetinaFace(network_name='mobile0.25', half=half)
|
|
model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth'
|
|
else:
|
|
raise NotImplementedError(f'{model_name} is not implemented.')
|
|
|
|
model_path = load_file_from_url(url=model_url, model_dir='../../models/facedetection', progress=True, file_name=None)
|
|
load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
|
|
# remove unnecessary 'module.'
|
|
for k, v in deepcopy(load_net).items():
|
|
if k.startswith('module.'):
|
|
load_net[k[7:]] = v
|
|
load_net.pop(k)
|
|
model.load_state_dict(load_net, strict=True)
|
|
model.eval()
|
|
model = model.to(device)
|
|
|
|
return model
|
|
|
|
|
|
def init_yolov5face_model(model_name, device='cuda'):
|
|
if model_name == 'YOLOv5l':
|
|
model = YoloDetector(config_name='custom_nodes/facerestore/facelib/detection/yolov5face/models/yolov5l.yaml', device=device)
|
|
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5l-face.pth'
|
|
elif model_name == 'YOLOv5n':
|
|
model = YoloDetector(config_name='custom_nodes/facerestore/facelib/detection/yolov5face/models/yolov5n.yaml', device=device)
|
|
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5n-face.pth'
|
|
else:
|
|
raise NotImplementedError(f'{model_name} is not implemented.')
|
|
|
|
model_path = load_file_from_url(url=model_url, model_dir='../../models/facedetection', progress=True, file_name=None)
|
|
load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
|
|
model.detector.load_state_dict(load_net, strict=True)
|
|
model.detector.eval()
|
|
model.detector = model.detector.to(device).float()
|
|
|
|
for m in model.detector.modules():
|
|
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
|
|
m.inplace = True # pytorch 1.7.0 compatibility
|
|
elif isinstance(m, Conv):
|
|
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
|
|
|
return model
|
|
|
|
|
|
# Download from Google Drive
|
|
# def init_yolov5face_model(model_name, device='cuda'):
|
|
# if model_name == 'YOLOv5l':
|
|
# model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device)
|
|
# f_id = {'yolov5l-face.pth': '131578zMA6B2x8VQHyHfa6GEPtulMCNzV'}
|
|
# elif model_name == 'YOLOv5n':
|
|
# model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device)
|
|
# f_id = {'yolov5n-face.pth': '1fhcpFvWZqghpGXjYPIne2sw1Fy4yhw6o'}
|
|
# else:
|
|
# raise NotImplementedError(f'{model_name} is not implemented.')
|
|
|
|
# model_path = os.path.join('../../models/facedetection', list(f_id.keys())[0])
|
|
# if not os.path.exists(model_path):
|
|
# download_pretrained_models(file_ids=f_id, save_path_root='../../models/facedetection')
|
|
|
|
# load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
|
|
# model.detector.load_state_dict(load_net, strict=True)
|
|
# model.detector.eval()
|
|
# model.detector = model.detector.to(device).float()
|
|
|
|
# for m in model.detector.modules():
|
|
# if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
|
|
# m.inplace = True # pytorch 1.7.0 compatibility
|
|
# elif isinstance(m, Conv):
|
|
# m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
|
|
|
# return model |