ComfyUI/comfy_extras/nodes_cond.py
bymyself ae20354b69 feat: mark 429 widgets as advanced for collapsible UI
Mark widgets as advanced across core, comfy_extras, and comfy_api_nodes
to support the new collapsible advanced inputs section in the frontend.

Changes:
- 267 advanced markers in comfy_extras/
- 162 advanced markers in comfy_api_nodes/
- All files pass python3 -m py_compile verification

Widgets marked advanced (hidden by default):
- Scheduler internals: sigma_max, sigma_min, rho, mu, beta, alpha
- Sampler internals: eta, s_noise, order, rtol, atol, h_init, pcoeff, etc.
- Memory optimization: tile_size, overlap, temporal_size, temporal_overlap
- Pipeline controls: add_noise, start_at_step, end_at_step
- Timing controls: start_percent, end_percent
- Layer selection: stop_at_clip_layer, layers, block_number
- Video encoding: codec, crf, format
- Device/dtype: device, noise_device, dtype, weight_dtype

Widgets kept basic (always visible):
- Core params: strength, steps, cfg, denoise, seed, width, height
- Model selectors: ckpt_name, lora_name, vae_name, sampler_name
- Common controls: upscale_method, crop, batch_size, fps, opacity

Related: frontend PR #11939
Amp-Thread-ID: https://ampcode.com/threads/T-019c1734-6b61-702e-b333-f02c399963fc
2026-01-31 19:29:03 -08:00

69 lines
2.3 KiB
Python

from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
class CLIPTextEncodeControlnet(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="CLIPTextEncodeControlnet",
category="_for_testing/conditioning",
inputs=[
io.Clip.Input("clip"),
io.Conditioning.Input("conditioning"),
io.String.Input("text", multiline=True, dynamic_prompts=True),
],
outputs=[io.Conditioning.Output()],
is_experimental=True,
)
@classmethod
def execute(cls, clip, conditioning, text) -> io.NodeOutput:
tokens = clip.tokenize(text)
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
c = []
for t in conditioning:
n = [t[0], t[1].copy()]
n[1]['cross_attn_controlnet'] = cond
n[1]['pooled_output_controlnet'] = pooled
c.append(n)
return io.NodeOutput(c)
class T5TokenizerOptions(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="T5TokenizerOptions",
category="_for_testing/conditioning",
inputs=[
io.Clip.Input("clip"),
io.Int.Input("min_padding", default=0, min=0, max=10000, step=1, advanced=True),
io.Int.Input("min_length", default=0, min=0, max=10000, step=1, advanced=True),
],
outputs=[io.Clip.Output()],
is_experimental=True,
)
@classmethod
def execute(cls, clip, min_padding, min_length) -> io.NodeOutput:
clip = clip.clone()
for t5_type in ["t5xxl", "pile_t5xl", "t5base", "mt5xl", "umt5xxl"]:
clip.set_tokenizer_option("{}_min_padding".format(t5_type), min_padding)
clip.set_tokenizer_option("{}_min_length".format(t5_type), min_length)
return io.NodeOutput(clip)
class CondExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
CLIPTextEncodeControlnet,
T5TokenizerOptions,
]
async def comfy_entrypoint() -> CondExtension:
return CondExtension()