ComfyUI/comfy_extras/nodes_fresca.py
bymyself ae20354b69 feat: mark 429 widgets as advanced for collapsible UI
Mark widgets as advanced across core, comfy_extras, and comfy_api_nodes
to support the new collapsible advanced inputs section in the frontend.

Changes:
- 267 advanced markers in comfy_extras/
- 162 advanced markers in comfy_api_nodes/
- All files pass python3 -m py_compile verification

Widgets marked advanced (hidden by default):
- Scheduler internals: sigma_max, sigma_min, rho, mu, beta, alpha
- Sampler internals: eta, s_noise, order, rtol, atol, h_init, pcoeff, etc.
- Memory optimization: tile_size, overlap, temporal_size, temporal_overlap
- Pipeline controls: add_noise, start_at_step, end_at_step
- Timing controls: start_percent, end_percent
- Layer selection: stop_at_clip_layer, layers, block_number
- Video encoding: codec, crf, format
- Device/dtype: device, noise_device, dtype, weight_dtype

Widgets kept basic (always visible):
- Core params: strength, steps, cfg, denoise, seed, width, height
- Model selectors: ckpt_name, lora_name, vae_name, sampler_name
- Common controls: upscale_method, crop, batch_size, fps, opacity

Related: frontend PR #11939
Amp-Thread-ID: https://ampcode.com/threads/T-019c1734-6b61-702e-b333-f02c399963fc
2026-01-31 19:29:03 -08:00

116 lines
3.9 KiB
Python

# Code based on https://github.com/WikiChao/FreSca (MIT License)
import torch
import torch.fft as fft
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
def Fourier_filter(x, scale_low=1.0, scale_high=1.5, freq_cutoff=20):
"""
Apply frequency-dependent scaling to an image tensor using Fourier transforms.
Parameters:
x: Input tensor of shape (B, C, H, W)
scale_low: Scaling factor for low-frequency components (default: 1.0)
scale_high: Scaling factor for high-frequency components (default: 1.5)
freq_cutoff: Number of frequency indices around center to consider as low-frequency (default: 20)
Returns:
x_filtered: Filtered version of x in spatial domain with frequency-specific scaling applied.
"""
# Preserve input dtype and device
dtype, device = x.dtype, x.device
# Convert to float32 for FFT computations
x = x.to(torch.float32)
# 1) Apply FFT and shift low frequencies to center
x_freq = fft.fftn(x, dim=(-2, -1))
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
# Initialize mask with high-frequency scaling factor
mask = torch.ones(x_freq.shape, device=device) * scale_high
m = mask
for d in range(len(x_freq.shape) - 2):
dim = d + 2
cc = x_freq.shape[dim] // 2
f_c = min(freq_cutoff, cc)
m = m.narrow(dim, cc - f_c, f_c * 2)
# Apply low-frequency scaling factor to center region
m[:] = scale_low
# 3) Apply frequency-specific scaling
x_freq = x_freq * mask
# 4) Convert back to spatial domain
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
# 5) Restore original dtype
x_filtered = x_filtered.to(dtype)
return x_filtered
class FreSca(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="FreSca",
search_aliases=["frequency guidance"],
display_name="FreSca",
category="_for_testing",
description="Applies frequency-dependent scaling to the guidance",
inputs=[
io.Model.Input("model"),
io.Float.Input("scale_low", default=1.0, min=0, max=10, step=0.01,
tooltip="Scaling factor for low-frequency components", advanced=True),
io.Float.Input("scale_high", default=1.25, min=0, max=10, step=0.01,
tooltip="Scaling factor for high-frequency components", advanced=True),
io.Int.Input("freq_cutoff", default=20, min=1, max=10000, step=1,
tooltip="Number of frequency indices around center to consider as low-frequency", advanced=True),
],
outputs=[
io.Model.Output(),
],
is_experimental=True,
)
@classmethod
def execute(cls, model, scale_low, scale_high, freq_cutoff):
def custom_cfg_function(args):
conds_out = args["conds_out"]
if len(conds_out) <= 1 or None in args["conds"][:2]:
return conds_out
cond = conds_out[0]
uncond = conds_out[1]
guidance = cond - uncond
filtered_guidance = Fourier_filter(
guidance,
scale_low=scale_low,
scale_high=scale_high,
freq_cutoff=freq_cutoff,
)
filtered_cond = filtered_guidance + uncond
return [filtered_cond, uncond] + conds_out[2:]
m = model.clone()
m.set_model_sampler_pre_cfg_function(custom_cfg_function)
return io.NodeOutput(m)
class FreScaExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
FreSca,
]
async def comfy_entrypoint() -> FreScaExtension:
return FreScaExtension()