ComfyUI/comfy/flash_attn_triton_amd/fwd_decode.py
2025-05-01 23:04:46 +03:00

701 lines
24 KiB
Python

import torch
import triton
import triton.language as tl
from comfy.flash_attn_triton_amd.utils import _strides, get_padded_headsize
@triton.jit
def _fwd_kernel_splitK(
Q,
K,
V,
sm_scale,
Out_splitK, # [B, H, split_k, Mq, K]
Metadata, # [B, H, 2, split_k, M_ceil] contains [mi, li]
K_new,
V_new,
Cache_seqlens,
Cache_batch_idx,
Alibi_slopes,
stride_qz,
stride_qm,
stride_qg,
stride_qh,
stride_qd,
stride_kz,
stride_kn,
stride_kg,
stride_kh,
stride_kd,
stride_vz,
stride_vn,
stride_vg,
stride_vh,
stride_vd,
stride_osk_zhg,
stride_osk_s,
stride_osk_m,
stride_osk_d, # pylint: disable=unused-argument
stride_mzhg,
stride_m2,
stride_ms,
stride_mm, # pylint: disable=unused-argument
stride_kn_z,
stride_kn_n,
stride_kn_g,
stride_kn_h,
stride_kn_d,
stride_vn_z,
stride_vn_n,
stride_vn_g,
stride_vn_h,
stride_vn_d,
stride_az,
stride_ah,
Z, # pylint: disable=unused-argument
N_CTX_Q,
N_CTX_K,
N_CTX_NEW,
BLOCK_N_PER_SPLIT,
H_q: tl.constexpr,
H_kv: tl.constexpr,
G_q: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_DMODEL: tl.constexpr,
ACTUAL_BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
BOUNDS_CHECKS_N: tl.constexpr,
USE_CACHE_SEQLENs: tl.constexpr,
USE_CACHE_BATCH_IDX: tl.constexpr,
NEW_KV: tl.constexpr,
IS_GQA: tl.constexpr,
IS_CAUSAL: tl.constexpr,
USE_ALIBI: tl.constexpr,
):
# Padding
PADDED_HEAD: tl.constexpr = ACTUAL_BLOCK_DMODEL != BLOCK_DMODEL
if PADDED_HEAD:
d_mask = tl.arange(0, BLOCK_DMODEL) < ACTUAL_BLOCK_DMODEL
start_m = tl.program_id(0)
off_zhg = tl.program_id(1)
off_z = off_zhg // (H_q * G_q)
off_h_q = (off_zhg // G_q) % H_q
off_g_q = off_zhg % G_q
splitk_idx = tl.program_id(2)
# pick batch index
if USE_CACHE_BATCH_IDX:
cache_batch_idx = tl.load(Cache_batch_idx + off_z)
else:
cache_batch_idx = off_z
# Load ALiBi slope if enabled
if USE_ALIBI:
a_offset = off_z * stride_az + off_h_q * stride_ah
alibi_slope = tl.load(Alibi_slopes + a_offset)
else:
alibi_slope = None
lo = splitk_idx * BLOCK_N_PER_SPLIT
if USE_CACHE_SEQLENs:
cache_seqlen_last_idx = tl.load(Cache_seqlens + off_z)
if NEW_KV:
kv_len = cache_seqlen_last_idx + N_CTX_NEW
else:
kv_len = cache_seqlen_last_idx
else:
kv_len = N_CTX_K
hi = tl.minimum((splitk_idx + 1) * BLOCK_N_PER_SPLIT, kv_len)
HEAD_RATIO: tl.constexpr = H_q // H_kv
if IS_GQA:
k_head_idx = off_h_q // HEAD_RATIO
v_head_idx = k_head_idx
else:
k_head_idx = off_h_q
v_head_idx = off_h_q
# calculate base offset
k_base = K + k_head_idx * stride_kh + cache_batch_idx * stride_kz + off_g_q * stride_kg
v_base = V + v_head_idx * stride_vh + cache_batch_idx * stride_vz + off_g_q * stride_vg
# Copy new Keys and Values into Cache
if NEW_KV:
knew_base = K_new + k_head_idx * stride_kn_h + off_z * stride_kn_z + off_g_q * stride_kn_g
# Determine the starting position for new data in the cache
if USE_CACHE_SEQLENs:
start_idx = tl.load(Cache_seqlens + off_z)
else:
start_idx = N_CTX_K - N_CTX_NEW
# Copy new Keys
for i in range(0, N_CTX_NEW, BLOCK_N):
# Load from K_new
k_new_block = tl.load(
knew_base +
tl.arange(0, BLOCK_DMODEL)[:, None] * stride_kn_d +
(tl.arange(0, BLOCK_N) + i)[None, :] * stride_kn_n,
mask=(tl.arange(0, BLOCK_N)[None, :] + i < N_CTX_NEW) &
(tl.arange(0, BLOCK_DMODEL)[:, None] < ACTUAL_BLOCK_DMODEL),
other=0
)
# Store to K
tl.store(
k_base +
tl.arange(0, BLOCK_DMODEL)[:, None] * stride_kd +
(tl.arange(0, BLOCK_N) + i + start_idx)[None, :] * stride_kn,
k_new_block,
mask=(tl.arange(0, BLOCK_N)[None, :] + i < N_CTX_NEW) &
(tl.arange(0, BLOCK_DMODEL)[:, None] < ACTUAL_BLOCK_DMODEL),
)
# Copy new Values
vnew_base = V_new + v_head_idx * stride_vn_h + off_z * stride_vn_z + off_g_q * stride_vn_g
for i in range(0, N_CTX_NEW, BLOCK_N):
# Load from V_new
v_new_block = tl.load(
vnew_base +
(tl.arange(0, BLOCK_N) + i)[:, None] * stride_vn_n +
tl.arange(0, BLOCK_DMODEL)[None, :] * stride_vn_d,
mask=(tl.arange(0, BLOCK_N)[:, None] + i < N_CTX_NEW) &
(tl.arange(0, BLOCK_DMODEL)[None, :] < ACTUAL_BLOCK_DMODEL),
other=0
)
# Store to V
tl.store(
v_base +
(tl.arange(0, BLOCK_N) + i + start_idx)[:, None] * stride_vn +
tl.arange(0, BLOCK_DMODEL)[None, :] * stride_vd,
v_new_block,
mask=(tl.arange(0, BLOCK_N)[:, None] + i < N_CTX_NEW) &
(tl.arange(0, BLOCK_DMODEL)[None, :] < ACTUAL_BLOCK_DMODEL),
)
Q_block_ptr = tl.make_block_ptr(
base=Q + off_h_q * stride_qh + off_z * stride_qz + off_g_q * stride_qg,
shape=(N_CTX_Q, ACTUAL_BLOCK_DMODEL),
strides=(stride_qm, stride_qd),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
K_block_ptr = tl.make_block_ptr(
base=k_base,
shape=(ACTUAL_BLOCK_DMODEL, hi),
strides=(stride_kd, stride_kn),
offsets=(0, lo),
block_shape=(BLOCK_DMODEL, BLOCK_N),
order=(0, 1),
)
V_block_ptr = tl.make_block_ptr(
base=v_base,
shape=(hi, ACTUAL_BLOCK_DMODEL),
strides=(stride_vn, stride_vd),
offsets=(lo, 0),
block_shape=(BLOCK_N, BLOCK_DMODEL),
order=(1, 0),
)
K_scale_shift_block_ptr = None
V_scale_shift_block_ptr = None
# initialize pointer to m and l
m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32)
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # noqa: F821
# scale sm_scale by log_2(e) and use
# 2^x instead of exp in the loop because CSE and LICM
# don't work as expected with `exp` in the loop
qk_scale = sm_scale * 1.44269504
# load q: it will stay in SRAM throughout
q = tl.load( # noqa: F821
tl.advance(Q_block_ptr, (0, 0)), boundary_check=(0, ))
q = (q * qk_scale).to(q.dtype)
if PADDED_HEAD:
q = tl.where(d_mask[None, :], q, 0.0)
# loop over k, v and update accumulator
for start_n in range(lo, hi, BLOCK_N):
k, v = load_k_v_group(
K_block_ptr,
V_block_ptr,
K_scale_shift_block_ptr,
V_scale_shift_block_ptr,
BOUNDS_CHECKS_N,
1,
BLOCK_DMODEL,
ACTUAL_BLOCK_DMODEL,
Q.dtype.element_ty,
0,
)
if PADDED_HEAD:
k = tl.where(d_mask[:, None], k, 0.0)
v = tl.where(d_mask[None, :], v, 0.0)
# -- compute qk ---
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k) # noqa: F821
if USE_ALIBI:
row_idx = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
col_idx = start_n + tl.arange(0, BLOCK_N)
# Compute relative positions
relative_pos = row_idx[:, None] + kv_len - (N_CTX_Q + col_idx[None, :])
relative_pos = tl.abs(relative_pos)
# Compute ALiBi bias
alibi_bias = -1 * alibi_slope * relative_pos
qk += (alibi_bias * 1.44269504)
# Apply causal mask if IS_CAUSAL is True
if IS_CAUSAL:
row_idx = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
col_idx = start_n + tl.arange(0, BLOCK_N)
# create a N_CTX_Q x kv_len causal mask
col_offset = N_CTX_Q - kv_len
causal_mask = row_idx[:, None] >= (col_offset + col_idx[None, :])
# Apply the mask
qk = tl.where(causal_mask, qk, float("-inf"))
# TODO: This is slow, and only needed at the last iteration.
# Maybe we can unroll the last iteration instead?
if BOUNDS_CHECKS_N:
qk = tl.where(tl.arange(0, BLOCK_N) < hi - start_n, qk, float("-inf"))
# -- compute scaling constant ---
m_i_new = tl.maximum(m_i, tl.max(qk, 1))
if IS_CAUSAL:
alpha = tl.math.exp2(tl.where(m_i > float("-inf"), m_i - m_i_new, float("-inf")))
else:
alpha = tl.math.exp2(m_i - m_i_new)
# cause of nan because subtracting infs
if IS_CAUSAL:
qk = tl.where(qk > float("-inf"), qk - m_i_new[:, None], float("-inf"))
else:
qk = qk - m_i_new[:, None]
p = tl.math.exp2(qk)
# -- update m_i and l_i --
l_i = l_i * alpha + tl.sum(p, 1)
m_i = m_i_new
p = p.to(Q.dtype.element_ty)
# -- scale and update acc --
acc *= alpha[:, None]
acc += tl.dot(p.to(v.dtype), v)
# update pointers
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
# write back O
O_block_ptr = tl.make_block_ptr(
base=Out_splitK + off_zhg * stride_osk_zhg + splitk_idx * stride_osk_s,
shape=(N_CTX_Q, BLOCK_DMODEL),
strides=(stride_osk_m, 1),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
tl.store(
tl.advance(O_block_ptr, (0, 0)),
acc,
boundary_check=(0, ),
)
# Write metadata for split-K reduction
Metadata_ptr = (Metadata + off_zhg * stride_mzhg + splitk_idx * stride_ms + start_m * BLOCK_M +
tl.arange(0, BLOCK_M))
tl.store(Metadata_ptr, m_i)
tl.store(Metadata_ptr + stride_m2, l_i)
@triton.jit
def load_k_v_group(
K_block_ptr,
V_block_ptr,
K_scale_shift_block_ptr, V_scale_shift_block_ptr, # pylint: disable=unused-argument
BOUNDS_CHECKS_N: tl.constexpr,
PACKED_PER_VAL: tl.constexpr, BLOCK_DMODEL: tl.constexpr, # pylint: disable=unused-argument
ACTUAL_BLOCK_DMODEL: tl.constexpr,
dtype: tl.constexpr, # pylint: disable=unused-argument
group_id: tl.constexpr,
):
# Load K/V for a given block
# Advance to the current quantization group
K_block_ptr = tl.advance(K_block_ptr, (ACTUAL_BLOCK_DMODEL * group_id, 0))
V_block_ptr = tl.advance(V_block_ptr, (0, ACTUAL_BLOCK_DMODEL * group_id))
# -- load k, v --
k = tl.load(K_block_ptr, boundary_check=(1, ) if BOUNDS_CHECKS_N else ())
v = tl.load(V_block_ptr, boundary_check=(0, ) if BOUNDS_CHECKS_N else ())
return k, v
@triton.jit
def cast_uint32_to_half2(scale_shift):
# Extract two float16 packed into one int32
scale = scale_shift & 0xFFFF
shift = scale_shift >> 16
scale = scale.to(tl.uint16).to(tl.float16, bitcast=True)
shift = shift.to(tl.uint16).to(tl.float16, bitcast=True)
return scale, shift
@triton.jit
def dequantize(
x_,
scale,
shift,
PACKED_PER_VAL: tl.constexpr = 8,
):
# PACKED_PER_VAL is the number of values packed into
# each element x_. For example, for int4 quantization
#and x_ of type int32, PACKED_PER_VAL is 8.
BLOCK_N: tl.constexpr = x_.shape[0]
BLOCK_DMODEL_PACKED: tl.constexpr = x_.shape[1]
offsets = tl.arange(0, PACKED_PER_VAL) * 4
quant_offset = (x_[:, None, :] >> offsets[None, :, None]) # (BLOCK_N, PACKED_PER_VAL, D // PACKED_PER_VAL)
quant_offset = tl.view(quant_offset, (BLOCK_N, BLOCK_DMODEL_PACKED * PACKED_PER_VAL))
# Trick - instead of converting int4 to float16 we view it as float16
# and then multiply by 32768 * 512 == 2**24
quant_offset = (quant_offset & 0xF).to(tl.uint16).to(tl.float16, bitcast=True)
quant_offset = (quant_offset * 32768.0).to(tl.float16)
scale_512 = scale * 512
dequant = quant_offset * scale_512 + shift
return dequant
@triton.jit
def _splitK_reduce(
Out_splitK, # [B, H, split_k, Mq, K]
Metadata, # [B, H, 2, split_k, M_ceil] contains [mi, li]
Out, # [B, H, M, K]
LSE, # [B, H, M]
stride_osk_zhg,
stride_osk_s,
stride_osk_m,
stride_osk_k,
stride_mzhg,
stride_m2,
stride_ms,
stride_mm,
stride_oz,
stride_oh,
stride_og,
stride_om,
stride_ok, # pylint: disable=unused-argument
stride_lse_zhg,
stride_lse_m, M_ceil: tl.constexpr, # pylint: disable=unused-argument
BLOCK_SIZE: tl.constexpr,
H: tl.constexpr,
G: tl.constexpr,
split_k: tl.constexpr,
splitK_pow2: tl.constexpr,
use_mask: tl.constexpr,
IS_CAUSAL: tl.constexpr,
):
off_zhg = tl.program_id(0)
off_z = off_zhg // (H * G)
off_h = (off_zhg // G) % H
off_g = off_zhg % G
off_m = tl.program_id(1)
off_k = tl.program_id(2)
# read chunk
spk_idx = tl.arange(0, splitK_pow2)
kidx = tl.arange(0, BLOCK_SIZE)
Metadata_ptr = Metadata + stride_mzhg * off_zhg + spk_idx * stride_ms + off_m * stride_mm
o_ptr = (Out_splitK + off_zhg * stride_osk_zhg + stride_osk_m * off_m + off_k * BLOCK_SIZE +
stride_osk_s * spk_idx[:, None] + kidx[None, :] * stride_osk_k)
# read max values of each splitK
if use_mask:
spk_mask = spk_idx < split_k
l_m = tl.load(Metadata_ptr, mask=spk_mask, other=float("-inf"))
l_sum = tl.load(Metadata_ptr + stride_m2, mask=spk_mask, other=0.0)
acc = tl.load(o_ptr, mask=spk_mask[:, None], other=0.0)
else:
l_m = tl.load(Metadata_ptr)
l_sum = tl.load(Metadata_ptr + stride_m2)
acc = tl.load(o_ptr)
g_m = tl.max(l_m, axis=0)
if IS_CAUSAL:
l_m_offset = l_m - g_m
alpha = tl.where(l_m_offset > float("-inf"), tl.math.exp2(l_m_offset), 0.0)
else:
alpha = tl.math.exp2(l_m - g_m)
# read sum
l_sum *= alpha
g_sum = tl.sum(l_sum, axis=0)
acc = acc * alpha[:, None]
if IS_CAUSAL:
# Avoid division by zero
g_sum_safe = tl.where(g_sum > 0, g_sum, 1.0)
acc_out = tl.sum(acc, axis=0) / g_sum_safe
else:
acc_out = tl.sum(acc, axis=0) / g_sum
# Store output
Out_ptr = (Out + stride_oz * off_z + stride_oh * off_h + stride_og * off_g + stride_om * off_m +
off_k * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE))
tl.store(Out_ptr, acc_out)
# Store lse
l_ptrs = LSE + off_zhg * stride_lse_zhg + off_m
if IS_CAUSAL:
lse = tl.where(g_sum > 0, (g_m + tl.math.log2(g_sum)) / 1.44269504, g_m)
tl.store(l_ptrs, lse)
else:
tl.store(l_ptrs, (g_m + tl.math.log2(g_sum)) / 1.44269504)
def quantize_kv_int4(k: torch.Tensor, num_groups: int = 1) -> torch.Tensor:
# Scale and shift are such that quantization linearly maps
# int4 values range [0..15] to input values range min(k)..max(k)
# individually for every row
k = k.reshape(*k.shape[:-1], num_groups, k.shape[-1] // num_groups)
max_vals = torch.max(k, dim=-1, keepdim=True).values
min_vals = torch.min(k, dim=-1, keepdim=True).values
scale_k: torch.Tensor = (max_vals - min_vals) / 15
shift_k = torch.min(k, dim=-1, keepdim=True).values
scale_k = scale_k.to(torch.float16)
shift_k = shift_k.to(torch.float16)
in_bytes = ((k - shift_k.expand(k.shape)) / scale_k.expand(k.shape)) + 0.5
in_bytes = in_bytes.to(torch.uint8)
in_int4 = in_bytes & 0xF
in_int4_packed = in_int4[..., ::2] + (in_int4[..., 1::2] << 4)
scale_shift = torch.concat([scale_k.view(torch.uint8), shift_k.view(torch.uint8)], dim=-1)
k_quant = torch.concat(
[
scale_shift.flatten(start_dim=-2),
in_int4_packed.flatten(start_dim=-2),
],
dim=-1,
).view(torch.int16)
return k_quant
def dequantize_kv_fp16(quant_k: torch.Tensor, num_groups: int = 1) -> torch.Tensor:
k_i16 = quant_k.view(torch.int16)
k_ui8 = k_i16.view(torch.uint8)
ss_size = num_groups * 4
scale_shift_ui8 = k_ui8[..., 0:ss_size]
scale_shift_ui8 = scale_shift_ui8.reshape(*scale_shift_ui8.shape[:-1], num_groups, 4)
scale = scale_shift_ui8[..., 0:2].view(torch.float16)
shift = scale_shift_ui8[..., 2:4].view(torch.float16)
kv_ui8 = k_ui8[..., ss_size:]
k_ui8 = kv_ui8.reshape(*kv_ui8.shape[:-1], num_groups, -1)
k1_i4 = k_ui8 & 0xF
k2_i4 = (k_ui8 & 0xF0) >> 4
k_shape = k1_i4.shape
k1_f16 = k1_i4.to(torch.float16) * scale.expand(k_shape) + shift.expand(k_shape)
k2_f16 = k2_i4.to(torch.float16) * scale.expand(k_shape) + shift.expand(k_shape)
out = torch.empty((*k1_f16.shape[:-1], k1_f16.shape[-1] * 2), dtype=torch.float16, device=quant_k.device)
out[..., ::2] = k1_f16
out[..., 1::2] = k2_f16
out = out.reshape(*k_shape[:-2], -1)
return out
def get_split_k(B: int, G: int, H: int, Mk: int) -> int:
"""Heuristic for the number of splits"""
bh = max(B * H, 1) # NOTE: Handle B*h=0 case
split_k = max(Mk, 1024) // bh
max_chunk_size = 64
while split_k > 0 and Mk / split_k < max_chunk_size:
split_k = split_k // 2
while B * H * G * split_k >= 1024:
split_k = split_k // 2
split_k = min(split_k, 512)
split_k = max(split_k, 1)
return split_k
def attention_decode_forward_triton_impl(q, k, v, sm_scale, causal, alibi_slopes, layout, cache_seqlens, cache_batch_idx, new_kv, k_new, v_new):
# kernel config
BLOCK_M = 16
BLOCK_N = 64
SPLIT_K = None
NUM_QUANT_GROUPS = 1 # pylint: disable=unused-variable
# kernels expects "bsghd"
original_layout = layout
if layout == "bshd":
q = q.unsqueeze(2)
k = k.unsqueeze(2)
v = v.unsqueeze(2)
if new_kv:
k_new = k_new.unsqueeze(2)
v_new = v_new.unsqueeze(2)
layout = "bsghd"
elif layout == "bhsd":
q = q.permute(0, 2, 1, 3).unsqueeze(2)
k = k.permute(0, 2, 1, 3).unsqueeze(2)
v = v.permute(0, 2, 1, 3).unsqueeze(2)
if new_kv:
k_new = k_new.permute(0, 2, 1, 3).unsqueeze(2)
v_new = v_new.permute(0, 2, 1, 3).unsqueeze(2)
layout = "bsghd"
elif layout == "bsghd":
pass
elif layout is None:
raise ValueError("Layout not given")
assert layout == "bsghd"
# get dims
batch_size, seqlen_q, n_group_q, heads_per_group_q, dim_q = q.shape
_, seqlen_k, n_group_k, heads_per_group_k, dim_k = k.shape # pylint: disable=unused-variable
_, seqlen_v, n_group_v, heads_per_group_v, dim_v = v.shape # pylint: disable=unused-variable
assert dim_q == dim_k == dim_v, f"Dimensions must match: {dim_q}, {dim_k}, {dim_v}"
# get padded size
dim_padded = get_padded_headsize(dim_k)
# Handle MQA/GQA case
if heads_per_group_q > heads_per_group_k:
is_gqa = True
elif heads_per_group_q < heads_per_group_k:
raise ValueError("heads_per_group_q < heads_per_group_k")
else:
is_gqa = False
assert dim_k == dim_q, f"Keys have head dim {dim_k} but queries have head dim {dim_q}"
if SPLIT_K is not None:
split_k = SPLIT_K
else:
# Use heuristics
split_k = get_split_k(batch_size, n_group_q, heads_per_group_q, seqlen_k) # NOTE: should the split think about seqlens?
seqlen_q_ceil = (seqlen_q + BLOCK_M - 1) // BLOCK_M * BLOCK_M
out_splitk = torch.empty([batch_size * n_group_q * heads_per_group_q, split_k, seqlen_q_ceil, dim_padded], dtype=torch.float32, device=q.device)
metadata = torch.empty([batch_size * n_group_q * heads_per_group_q, 2, split_k, seqlen_q_ceil], dtype=torch.float32, device=q.device)
lse = torch.empty((batch_size * n_group_q * heads_per_group_q, seqlen_q), device=q.device, dtype=torch.float32)
grid = (triton.cdiv(seqlen_q, BLOCK_M), batch_size * n_group_q * heads_per_group_q, split_k)
num_warps = 1
split_size = (seqlen_k + split_k - 1) // split_k
use_cache_seqlens = cache_seqlens is not None
# TODO: enable quantization
_fwd_kernel_splitK[grid](
Q=q,
K=k,
V=v,
sm_scale=sm_scale,
Out_splitK=out_splitk,
Metadata=metadata,
K_new = k_new,
V_new = v_new,
Cache_seqlens=cache_seqlens,
Cache_batch_idx=cache_batch_idx,
Alibi_slopes=alibi_slopes,
**_strides(q, "qz", "qm", "qg", "qh", "qd"),
**_strides(k, "kz", "kn", "kg", "kh", "kd"),
**_strides(v, "vz", "vn", "vg", "vh", "vd"),
**_strides(out_splitk, "osk_zhg", "osk_s", "osk_m", "osk_d"),
**_strides(metadata, "mzhg", "m2", "ms", "mm"),
**_strides(k_new, "kn_z", "kn_n", "kn_g", "kn_h", "kn_d"),
**_strides(v_new, "vn_z", "vn_n", "vn_g", "vn_h", "vn_d"),
**_strides(alibi_slopes, "az", "ah"),
Z=batch_size,
H_q=heads_per_group_q,
H_kv=heads_per_group_k,
G_q=n_group_q,
N_CTX_Q=seqlen_q,
N_CTX_K=seqlen_k,
N_CTX_NEW=k_new.shape[1] if new_kv else None,
BLOCK_N_PER_SPLIT=split_size,
BLOCK_M=BLOCK_M,
BLOCK_N=BLOCK_N,
BLOCK_DMODEL=dim_padded,
ACTUAL_BLOCK_DMODEL=dim_k,
BOUNDS_CHECKS_N=(split_size % BLOCK_N) > 0 or use_cache_seqlens,
USE_CACHE_SEQLENs=use_cache_seqlens,
USE_CACHE_BATCH_IDX=cache_batch_idx is not None,
NEW_KV=new_kv,
IS_GQA=is_gqa,
IS_CAUSAL=causal,
USE_ALIBI=False if alibi_slopes is None else True,
num_warps=num_warps,
num_stages=1,
)
out = torch.empty((batch_size, seqlen_q, n_group_q, heads_per_group_q, dim_padded), device=q.device, dtype=q.dtype)
# Merge together
splitK_pow2 = triton.next_power_of_2(split_k)
use_mask = splitK_pow2 > split_k
if batch_size * n_group_q * heads_per_group_q * seqlen_q >= 512:
k_block_num = 1
else:
k_block_num = 2
assert dim_padded % k_block_num == 0
k_block_size = dim_padded // k_block_num
grid = (batch_size * n_group_q * heads_per_group_q, seqlen_q, k_block_num)
_splitK_reduce[grid](
out_splitk,
metadata,
out,
lse,
**_strides(out_splitk, "osk_zhg", "osk_s", "osk_m", "osk_k"),
**_strides(metadata, "mzhg", "m2", "ms", "mm"),
**_strides(out, "oz", "om", "og", "oh", "ok"),
**_strides(lse, "lse_zhg", "lse_m"),
M_ceil=seqlen_q_ceil,
BLOCK_SIZE=k_block_size,
G=n_group_q,
H=heads_per_group_q,
# TODO: Tune num_warps
split_k=split_k,
splitK_pow2=splitK_pow2,
use_mask=use_mask,
IS_CAUSAL=causal,
num_warps=4)
lse = lse.reshape([batch_size, n_group_q, heads_per_group_q, seqlen_q])
if q.ndim == 4:
# BMGHK -> BMHK
assert n_group_q == 1
out = out[:, :, 0]
lse = lse[:, 0]
if seqlen_k == 0:
out.zero_()
out = out.reshape(batch_size, heads_per_group_q * n_group_q, -1, dim_padded).contiguous()
# output is batch_size, heads_per_group_q * group_q, seqlen_q, dim_q
if original_layout == "bshd":
# out=out.transpose(1, 2).contiguous() # this screws up heads and data.
# the data is laid out properly. Just need to reshape dims
out = out.reshape(batch_size, seqlen_q, -1, dim_padded)
return out.narrow(-1, 0, dim_k), lse