ComfyUI/comfy_extras/nodes_dataset.py
2025-11-03 00:33:54 +08:00

906 lines
34 KiB
Python

import logging
import os
import pickle
import math
import numpy as np
import torch
from PIL import Image
import folder_paths
import node_helpers
def load_and_process_images(image_files, input_dir):
"""Utility function to load and process a list of images.
Args:
image_files: List of image filenames
input_dir: Base directory containing the images
resize_method: How to handle images of different sizes ("None", "Stretch", "Crop", "Pad")
Returns:
torch.Tensor: Batch of processed images
"""
if not image_files:
raise ValueError("No valid images found in input")
output_images = []
for file in image_files:
image_path = os.path.join(input_dir, file)
img = node_helpers.pillow(Image.open, image_path)
if img.mode == "I":
img = img.point(lambda i: i * (1 / 255))
img = img.convert("RGB")
img_array = np.array(img).astype(np.float32) / 255.0
img_tensor = torch.from_numpy(img_array)[None,]
output_images.append(img_tensor)
return output_images
class LoadImageDataSetFromFolderNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"folder": (folder_paths.get_input_subfolders(), {"tooltip": "The folder to load images from."})
},
}
RETURN_TYPES = ("IMAGE_LIST",)
FUNCTION = "load_images"
CATEGORY = "dataset"
EXPERIMENTAL = True
DESCRIPTION = "Loads a batch of images from a directory for training."
def load_images(self, folder):
sub_input_dir = os.path.join(folder_paths.get_input_directory(), folder)
valid_extensions = [".png", ".jpg", ".jpeg", ".webp"]
image_files = [
f
for f in os.listdir(sub_input_dir)
if any(f.lower().endswith(ext) for ext in valid_extensions)
]
output_tensor = load_and_process_images(image_files, sub_input_dir)
return (output_tensor,)
class LoadImageTextDataSetFromFolderNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"folder": (folder_paths.get_input_subfolders(), {"tooltip": "The folder to load images from."}),
},
}
RETURN_TYPES = ("IMAGE_LIST", "TEXT_LIST",)
FUNCTION = "load_images"
CATEGORY = "dataset"
EXPERIMENTAL = True
DESCRIPTION = "Loads a batch of images and caption from a directory for training."
def load_images(self, folder):
logging.info(f"Loading images from folder: {folder}")
sub_input_dir = os.path.join(folder_paths.get_input_directory(), folder)
valid_extensions = [".png", ".jpg", ".jpeg", ".webp"]
image_files = []
for item in os.listdir(sub_input_dir):
path = os.path.join(sub_input_dir, item)
if any(item.lower().endswith(ext) for ext in valid_extensions):
image_files.append(path)
elif os.path.isdir(path):
# Support kohya-ss/sd-scripts folder structure
repeat = 1
if item.split("_")[0].isdigit():
repeat = int(item.split("_")[0])
image_files.extend([
os.path.join(path, f) for f in os.listdir(path) if any(f.lower().endswith(ext) for ext in valid_extensions)
] * repeat)
caption_file_path = [
f.replace(os.path.splitext(f)[1], ".txt")
for f in image_files
]
captions = []
for caption_file in caption_file_path:
caption_path = os.path.join(sub_input_dir, caption_file)
if os.path.exists(caption_path):
with open(caption_path, "r", encoding="utf-8") as f:
caption = f.read().strip()
captions.append(caption)
else:
captions.append("")
output_tensor = load_and_process_images(image_files, sub_input_dir)
logging.info(f"Loaded {len(output_tensor)} images from {sub_input_dir}.")
return (output_tensor, captions)
def save_images_to_folder(image_list, output_dir, prefix="image"):
"""Utility function to save a list of image tensors to disk.
Args:
image_list: List of image tensors (each [1, H, W, C] or [H, W, C] or [C, H, W])
output_dir: Directory to save images to
prefix: Filename prefix
Returns:
List of saved filenames
"""
os.makedirs(output_dir, exist_ok=True)
saved_files = []
for idx, img_tensor in enumerate(image_list):
# Handle different tensor shapes
if isinstance(img_tensor, torch.Tensor):
# Remove batch dimension if present [1, H, W, C] -> [H, W, C]
if img_tensor.dim() == 4 and img_tensor.shape[0] == 1:
img_tensor = img_tensor.squeeze(0)
# If tensor is [C, H, W], permute to [H, W, C]
if img_tensor.dim() == 3 and img_tensor.shape[0] in [1, 3, 4]:
if img_tensor.shape[0] <= 4 and img_tensor.shape[1] > 4 and img_tensor.shape[2] > 4:
img_tensor = img_tensor.permute(1, 2, 0)
# Convert to numpy and scale to 0-255
img_array = img_tensor.cpu().numpy()
img_array = np.clip(img_array * 255.0, 0, 255).astype(np.uint8)
# Convert to PIL Image
img = Image.fromarray(img_array)
else:
raise ValueError(f"Expected torch.Tensor, got {type(img_tensor)}")
# Save image
filename = f"{prefix}_{idx:05d}.png"
filepath = os.path.join(output_dir, filename)
img.save(filepath)
saved_files.append(filename)
return saved_files
class SaveImageDataSetToFolderNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE_LIST", {"tooltip": "List of images to save."}),
"folder_name": ("STRING", {"default": "dataset", "tooltip": "Name of the folder to save images to (inside output directory)."}),
"filename_prefix": ("STRING", {"default": "image", "tooltip": "Prefix for saved image filenames."}),
},
}
RETURN_TYPES = ()
OUTPUT_NODE = True
FUNCTION = "save_images"
CATEGORY = "dataset"
EXPERIMENTAL = True
DESCRIPTION = "Saves a batch of images to a directory."
def save_images(self, images, folder_name, filename_prefix):
output_dir = os.path.join(folder_paths.get_output_directory(), folder_name)
saved_files = save_images_to_folder(images, output_dir, filename_prefix)
logging.info(f"Saved {len(saved_files)} images to {output_dir}.")
return {}
class SaveImageTextDataSetToFolderNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE_LIST", {"tooltip": "List of images to save."}),
"texts": ("TEXT_LIST", {"tooltip": "List of text captions to save."}),
"folder_name": ("STRING", {"default": "dataset", "tooltip": "Name of the folder to save images to (inside output directory)."}),
"filename_prefix": ("STRING", {"default": "image", "tooltip": "Prefix for saved image filenames."}),
},
}
RETURN_TYPES = ()
OUTPUT_NODE = True
FUNCTION = "save_images"
CATEGORY = "dataset"
EXPERIMENTAL = True
DESCRIPTION = "Saves a batch of images and captions to a directory."
def save_images(self, images, texts, folder_name, filename_prefix):
output_dir = os.path.join(folder_paths.get_output_directory(), folder_name)
saved_files = save_images_to_folder(images, output_dir, filename_prefix)
# Save captions
for idx, (filename, caption) in enumerate(zip(saved_files, texts)):
caption_filename = filename.replace(".png", ".txt")
caption_path = os.path.join(output_dir, caption_filename)
with open(caption_path, "w", encoding="utf-8") as f:
f.write(caption)
logging.info(f"Saved {len(saved_files)} images and captions to {output_dir}.")
return {}
# ========== Base Classes for Transform Nodes ==========
class ImageProcessingNode:
"""Base class for image processing nodes that operate on IMAGE_LIST."""
CATEGORY = "dataset/image"
EXPERIMENTAL = True
RETURN_TYPES = ("IMAGE_LIST",)
FUNCTION = "process"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE_LIST", {"tooltip": "List of images to process."}),
},
}
def process(self, images, **kwargs):
"""Default process function that calls _process for each image."""
return (self._process(images, **kwargs),)
def _process(self, images, **kwargs):
"""Override this method in subclasses to implement specific processing."""
raise NotImplementedError("Subclasses must implement _process method")
def _tensor_to_pil(self, img_tensor):
"""Convert tensor to PIL Image."""
if img_tensor.dim() == 4 and img_tensor.shape[0] == 1:
img_tensor = img_tensor.squeeze(0)
img_array = (img_tensor.cpu().numpy() * 255).clip(0, 255).astype(np.uint8)
return Image.fromarray(img_array)
def _pil_to_tensor(self, img):
"""Convert PIL Image to tensor."""
img_array = np.array(img).astype(np.float32) / 255.0
return torch.from_numpy(img_array)[None,]
class TextProcessingNode:
"""Base class for text processing nodes that operate on TEXT_LIST."""
CATEGORY = "dataset/text"
EXPERIMENTAL = True
RETURN_TYPES = ("TEXT_LIST",)
FUNCTION = "process"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"texts": ("TEXT_LIST", {"tooltip": "List of texts to process."}),
},
}
def process(self, texts, **kwargs):
"""Default process function that calls _process."""
return (self._process(texts, **kwargs),)
def _process(self, texts, **kwargs):
"""Override this method in subclasses to implement specific processing."""
raise NotImplementedError("Subclasses must implement _process method")
# ========== Image Transform Nodes ==========
class ResizeImagesToSameSizeNode(ImageProcessingNode):
DESCRIPTION = "Resize all images to the same width and height."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"].update({
"width": ("INT", {"default": 512, "min": 1, "max": 8192, "step": 1, "tooltip": "Target width."}),
"height": ("INT", {"default": 512, "min": 1, "max": 8192, "step": 1, "tooltip": "Target height."}),
"mode": (["stretch", "crop_center", "pad"], {"default": "stretch", "tooltip": "Resize mode."}),
})
return base_inputs
def _process(self, images, width, height, mode):
output_images = []
for img_tensor in images:
img = self._tensor_to_pil(img_tensor)
if mode == "stretch":
img = img.resize((width, height), Image.Resampling.LANCZOS)
elif mode == "crop_center":
left = max(0, (img.width - width) // 2)
top = max(0, (img.height - height) // 2)
right = min(img.width, left + width)
bottom = min(img.height, top + height)
img = img.crop((left, top, right, bottom))
if img.width != width or img.height != height:
img = img.resize((width, height), Image.Resampling.LANCZOS)
elif mode == "pad":
img.thumbnail((width, height), Image.Resampling.LANCZOS)
new_img = Image.new("RGB", (width, height), (0, 0, 0))
paste_x = (width - img.width) // 2
paste_y = (height - img.height) // 2
new_img.paste(img, (paste_x, paste_y))
img = new_img
output_images.append(self._pil_to_tensor(img))
return output_images
class ResizeImagesToPixelCountNode(ImageProcessingNode):
DESCRIPTION = "Resize images so that the total pixel count matches the specified number while preserving aspect ratio."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"]["pixel_count"] = ("INT", {"default": 512 * 512, "min": 1, "max": 8192 * 8192, "step": 1, "tooltip": "Target pixel count."})
base_inputs["required"]["steps"] = ("INT", {"default": 64, "min": 1, "max": 128, "step": 1, "tooltip": "The stepping for resize width/height."})
return base_inputs
def _process(self, images, pixel_count, steps):
output_images = []
for img_tensor in images:
img = self._tensor_to_pil(img_tensor)
w, h = img.size
pixel_count_ratio = math.sqrt(pixel_count / (w * h))
new_w = int(h * pixel_count_ratio / steps) * steps
new_h = int(w * pixel_count_ratio / steps) * steps
logging.info(f"Resizing from {w}x{h} to {new_w}x{new_h}")
img = img.resize((new_w, new_h), Image.Resampling.LANCZOS)
output_images.append(self._pil_to_tensor(img))
return output_images
class ResizeImagesByShorterEdgeNode(ImageProcessingNode):
DESCRIPTION = "Resize images so that the shorter edge matches the specified length while preserving aspect ratio."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"]["shorter_edge"] = ("INT", {"default": 512, "min": 1, "max": 8192, "step": 1, "tooltip": "Target length for the shorter edge."})
return base_inputs
def _process(self, images, shorter_edge):
output_images = []
for img_tensor in images:
img = self._tensor_to_pil(img_tensor)
w, h = img.size
if w < h:
new_w = shorter_edge
new_h = int(h * (shorter_edge / w))
else:
new_h = shorter_edge
new_w = int(w * (shorter_edge / h))
img = img.resize((new_w, new_h), Image.Resampling.LANCZOS)
output_images.append(self._pil_to_tensor(img))
return output_images
class ResizeImagesByLongerEdgeNode(ImageProcessingNode):
DESCRIPTION = "Resize images so that the longer edge matches the specified length while preserving aspect ratio."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"]["longer_edge"] = ("INT", {"default": 1024, "min": 1, "max": 8192, "step": 1, "tooltip": "Target length for the longer edge."})
return base_inputs
def _process(self, images, longer_edge):
output_images = []
for img_tensor in images:
img = self._tensor_to_pil(img_tensor)
w, h = img.size
if w > h:
new_w = longer_edge
new_h = int(h * (longer_edge / w))
else:
new_h = longer_edge
new_w = int(w * (longer_edge / h))
img = img.resize((new_w, new_h), Image.Resampling.LANCZOS)
output_images.append(self._pil_to_tensor(img))
return output_images
class CenterCropImagesNode(ImageProcessingNode):
DESCRIPTION = "Center crop all images to the specified dimensions."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"].update({
"width": ("INT", {"default": 512, "min": 1, "max": 8192, "step": 1, "tooltip": "Crop width."}),
"height": ("INT", {"default": 512, "min": 1, "max": 8192, "step": 1, "tooltip": "Crop height."}),
})
return base_inputs
def _process(self, images, width, height):
output_images = []
for img_tensor in images:
img = self._tensor_to_pil(img_tensor)
left = max(0, (img.width - width) // 2)
top = max(0, (img.height - height) // 2)
right = min(img.width, left + width)
bottom = min(img.height, top + height)
img = img.crop((left, top, right, bottom))
output_images.append(self._pil_to_tensor(img))
return output_images
class RandomCropImagesNode(ImageProcessingNode):
DESCRIPTION = "Randomly crop all images to the specified dimensions (for data augmentation)."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"].update({
"width": ("INT", {"default": 512, "min": 1, "max": 8192, "step": 1, "tooltip": "Crop width."}),
"height": ("INT", {"default": 512, "min": 1, "max": 8192, "step": 1, "tooltip": "Crop height."}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF, "tooltip": "Random seed."}),
})
return base_inputs
def _process(self, images, width, height, seed):
np.random.seed(seed%(2**32-1))
output_images = []
for img_tensor in images:
img = self._tensor_to_pil(img_tensor)
max_left = max(0, img.width - width)
max_top = max(0, img.height - height)
left = np.random.randint(0, max_left + 1) if max_left > 0 else 0
top = np.random.randint(0, max_top + 1) if max_top > 0 else 0
right = min(img.width, left + width)
bottom = min(img.height, top + height)
img = img.crop((left, top, right, bottom))
output_images.append(self._pil_to_tensor(img))
return output_images
class FlipImagesNode(ImageProcessingNode):
DESCRIPTION = "Flip all images horizontally or vertically."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"]["direction"] = (["horizontal", "vertical"], {"default": "horizontal", "tooltip": "Flip direction."})
return base_inputs
def _process(self, images, direction):
output_images = []
for img_tensor in images:
img = self._tensor_to_pil(img_tensor)
if direction == "horizontal":
img = img.transpose(Image.FLIP_LEFT_RIGHT)
else:
img = img.transpose(Image.FLIP_TOP_BOTTOM)
output_images.append(self._pil_to_tensor(img))
return output_images
class NormalizeImagesNode(ImageProcessingNode):
DESCRIPTION = "Normalize images using mean and standard deviation."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"].update({
"mean": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Mean value for normalization."}),
"std": ("FLOAT", {"default": 0.5, "min": 0.001, "max": 1.0, "step": 0.01, "tooltip": "Standard deviation for normalization."}),
})
return base_inputs
def _process(self, images, mean, std):
return [(img - mean) / std for img in images]
class AdjustBrightnessNode(ImageProcessingNode):
DESCRIPTION = "Adjust brightness of all images."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"]["factor"] = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.01, "tooltip": "Brightness factor. 1.0 = no change, <1.0 = darker, >1.0 = brighter."})
return base_inputs
def _process(self, images, factor):
return [(img * factor).clamp(0.0, 1.0) for img in images]
class AdjustContrastNode(ImageProcessingNode):
DESCRIPTION = "Adjust contrast of all images."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"]["factor"] = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.01, "tooltip": "Contrast factor. 1.0 = no change, <1.0 = less contrast, >1.0 = more contrast."})
return base_inputs
def _process(self, images, factor):
return [((img - 0.5) * factor + 0.5).clamp(0.0, 1.0) for img in images]
class ShuffleDatasetNode(ImageProcessingNode):
DESCRIPTION = "Randomly shuffle the order of images in the dataset."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"]["seed"] = ("INT", {"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF, "tooltip": "Random seed."})
return base_inputs
def _process(self, images, seed):
np.random.seed(seed%(2**32-1))
indices = np.random.permutation(len(images))
return [images[i] for i in indices]
class ShuffleImageTextDatasetNode:
"""Special node that shuffles both images and texts together (doesn't inherit from base class)."""
CATEGORY = "dataset/image"
EXPERIMENTAL = True
RETURN_TYPES = ("IMAGE_LIST", "TEXT_LIST")
FUNCTION = "process"
DESCRIPTION = "Randomly shuffle the order of images and texts in the dataset together."
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE_LIST", {"tooltip": "List of images to shuffle."}),
"texts": ("TEXT_LIST", {"tooltip": "List of texts to shuffle."}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF, "tooltip": "Random seed."}),
},
}
def process(self, images, texts, seed):
np.random.seed(seed%(2**32-1))
indices = np.random.permutation(len(images))
shuffled_images = [images[i] for i in indices]
shuffled_texts = [texts[i] for i in indices]
return (shuffled_images, shuffled_texts)
# ========== Text Transform Nodes ==========
class TextToLowercaseNode(TextProcessingNode):
DESCRIPTION = "Convert all texts to lowercase."
def _process(self, texts):
return [text.lower() for text in texts]
class TextToUppercaseNode(TextProcessingNode):
DESCRIPTION = "Convert all texts to uppercase."
def _process(self, texts):
return [text.upper() for text in texts]
class TruncateTextNode(TextProcessingNode):
DESCRIPTION = "Truncate all texts to a maximum length."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"]["max_length"] = ("INT", {"default": 77, "min": 1, "max": 10000, "step": 1, "tooltip": "Maximum text length."})
return base_inputs
def _process(self, texts, max_length):
return [text[:max_length] for text in texts]
class AddTextPrefixNode(TextProcessingNode):
DESCRIPTION = "Add a prefix to all texts."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"]["prefix"] = ("STRING", {"default": "", "multiline": False, "tooltip": "Prefix to add."})
return base_inputs
def _process(self, texts, prefix):
return [prefix + text for text in texts]
class AddTextSuffixNode(TextProcessingNode):
DESCRIPTION = "Add a suffix to all texts."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"]["suffix"] = ("STRING", {"default": "", "multiline": False, "tooltip": "Suffix to add."})
return base_inputs
def _process(self, texts, suffix):
return [text + suffix for text in texts]
class ReplaceTextNode(TextProcessingNode):
DESCRIPTION = "Replace text in all texts."
@classmethod
def INPUT_TYPES(cls):
base_inputs = super().INPUT_TYPES()
base_inputs["required"].update({
"find": ("STRING", {"default": "", "multiline": False, "tooltip": "Text to find."}),
"replace": ("STRING", {"default": "", "multiline": False, "tooltip": "Text to replace with."}),
})
return base_inputs
def _process(self, texts, find, replace):
return [text.replace(find, replace) for text in texts]
class StripWhitespaceNode(TextProcessingNode):
DESCRIPTION = "Strip leading and trailing whitespace from all texts."
def _process(self, texts):
return [text.strip() for text in texts]
# ========== Training Dataset Nodes ==========
class MakeTrainingDataset:
"""Encode images with VAE and texts with CLIP to create a training dataset."""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE_LIST", {"tooltip": "List of images to encode."}),
"vae": ("VAE", {"tooltip": "VAE model for encoding images to latents."}),
"clip": ("CLIP", {"tooltip": "CLIP model for encoding text to conditioning."}),
},
"optional": {
"texts": ("TEXT_LIST", {"tooltip": "List of text captions. Can be length n (matching images), 1 (repeated for all), or omitted (uses empty string)."}),
},
}
RETURN_TYPES = ("LATENT", "CONDITIONING")
RETURN_NAMES = ("latents", "conditioning")
FUNCTION = "make_dataset"
CATEGORY = "dataset"
EXPERIMENTAL = True
DESCRIPTION = "Encodes images with VAE and texts with CLIP to create a training dataset. Returns a list of latents and a flat conditioning list."
def make_dataset(self, images, vae, clip, texts=None):
# Handle text list
num_images = len(images)
if texts is None or len(texts) == 0:
# Treat as [""] for unconditional training
texts = [""]
if len(texts) == 1 and num_images > 1:
# Repeat single text for all images
texts = texts * num_images
elif len(texts) != num_images:
raise ValueError(
f"Number of texts ({len(texts)}) does not match number of images ({num_images}). "
f"Text list should have length {num_images}, 1, or 0."
)
# Encode images with VAE
logging.info(f"Encoding {num_images} images with VAE...")
latents = []
for img_tensor in images:
# img_tensor is [1, H, W, 3]
t = vae.encode(img_tensor[:,:,:,:3])
latents.append(t)
latents = {"samples": latents}
# Encode texts with CLIP
logging.info(f"Encoding {len(texts)} texts with CLIP...")
conditions = []
empty_cond = clip.encode_from_tokens_scheduled(clip.tokenize(""))
for text in texts:
if text == "":
conditions.extend(empty_cond)
else:
tokens = clip.tokenize(text)
cond = clip.encode_from_tokens_scheduled(tokens)
conditions.extend(cond)
logging.info(f"Created dataset with {len(latents['samples'])} latents and {len(conditions)} conditions.")
return (latents, conditions)
class SaveTrainingDataset:
"""Save encoded training dataset (latents + conditioning) to disk."""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"latents": ("LATENT", {"tooltip": "List of latent tensors from MakeTrainingDataset."}),
"conditioning": ("CONDITIONING", {"tooltip": "Conditioning list from MakeTrainingDataset."}),
"folder_name": ("STRING", {"default": "training_dataset", "tooltip": "Name of folder to save dataset (inside output directory)."}),
"shard_size": ("INT", {"default": 1000, "min": 1, "max": 100000, "step": 1, "tooltip": "Number of samples per shard file."}),
},
}
RETURN_TYPES = ()
OUTPUT_NODE = True
FUNCTION = "save_dataset"
CATEGORY = "dataset"
EXPERIMENTAL = True
DESCRIPTION = "Saves a training dataset to disk in sharded pickle files. Each shard contains (latent, conditioning) pairs."
def save_dataset(self, latents, conditioning, folder_name, shard_size):
# Validate lengths match
if len(latents["samples"]) != len(conditioning):
raise ValueError(
f"Number of latents ({len(latents)}) does not match number of conditions ({len(conditioning)}). "
f"Something went wrong in dataset preparation."
)
# Create output directory
output_dir = os.path.join(folder_paths.get_output_directory(), folder_name)
os.makedirs(output_dir, exist_ok=True)
# Prepare data pairs
num_samples = len(latents["samples"])
num_shards = (num_samples + shard_size - 1) // shard_size # Ceiling division
logging.info(f"Saving {num_samples} samples to {num_shards} shards in {output_dir}...")
# Save data in shards
for shard_idx in range(num_shards):
start_idx = shard_idx * shard_size
end_idx = min(start_idx + shard_size, num_samples)
# Get shard data
shard_data = {
"latents": latents["samples"][start_idx:end_idx],
"conditioning": conditioning[start_idx:end_idx],
}
# Save shard
shard_filename = f"shard_{shard_idx:04d}.pkl"
shard_path = os.path.join(output_dir, shard_filename)
with open(shard_path, "wb") as f:
pickle.dump(shard_data, f, protocol=pickle.HIGHEST_PROTOCOL)
logging.info(f"Saved shard {shard_idx + 1}/{num_shards}: {shard_filename} ({end_idx - start_idx} samples)")
# Save metadata
metadata = {
"num_samples": num_samples,
"num_shards": num_shards,
"shard_size": shard_size,
}
metadata_path = os.path.join(output_dir, "metadata.json")
with open(metadata_path, "w") as f:
import json
json.dump(metadata, f, indent=2)
logging.info(f"Successfully saved {num_samples} samples to {output_dir}.")
return {}
class LoadTrainingDataset:
"""Load encoded training dataset from disk."""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"folder_name": ("STRING", {"default": "training_dataset", "tooltip": "Name of folder containing the saved dataset (inside output directory)."}),
},
}
RETURN_TYPES = ("LATENT", "CONDITIONING")
RETURN_NAMES = ("latents", "conditioning")
FUNCTION = "load_dataset"
CATEGORY = "dataset"
EXPERIMENTAL = True
DESCRIPTION = "Loads a training dataset from disk. Returns a list of latents and a flat conditioning list."
def load_dataset(self, folder_name):
# Get dataset directory
dataset_dir = os.path.join(folder_paths.get_output_directory(), folder_name)
if not os.path.exists(dataset_dir):
raise ValueError(f"Dataset directory not found: {dataset_dir}")
# Find all shard files
shard_files = sorted([
f for f in os.listdir(dataset_dir)
if f.startswith("shard_") and f.endswith(".pkl")
])
if not shard_files:
raise ValueError(f"No shard files found in {dataset_dir}")
logging.info(f"Loading {len(shard_files)} shards from {dataset_dir}...")
# Load all shards
all_latents = []
all_conditioning = []
for shard_file in shard_files:
shard_path = os.path.join(dataset_dir, shard_file)
with open(shard_path, "rb") as f:
shard_data = pickle.load(f)
all_latents.extend(shard_data["latents"])
all_conditioning.extend(shard_data["conditioning"])
logging.info(f"Loaded {shard_file}: {len(shard_data['latents'])} samples")
logging.info(f"Successfully loaded {len(all_latents)} samples from {dataset_dir}.")
return ({"samples": all_latents}, all_conditioning)
NODE_CLASS_MAPPINGS = {
"LoadImageDataSetFromFolderNode": LoadImageDataSetFromFolderNode,
"LoadImageTextDataSetFromFolderNode": LoadImageTextDataSetFromFolderNode,
"SaveImageDataSetToFolderNode": SaveImageDataSetToFolderNode,
"SaveImageTextDataSetToFolderNode": SaveImageTextDataSetToFolderNode,
# Image transforms
"ResizeImagesToSameSizeNode": ResizeImagesToSameSizeNode,
"ResizeImagesToPixelCountNode": ResizeImagesToPixelCountNode,
"ResizeImagesByShorterEdgeNode": ResizeImagesByShorterEdgeNode,
"ResizeImagesByLongerEdgeNode": ResizeImagesByLongerEdgeNode,
"CenterCropImagesNode": CenterCropImagesNode,
"RandomCropImagesNode": RandomCropImagesNode,
"FlipImagesNode": FlipImagesNode,
"NormalizeImagesNode": NormalizeImagesNode,
"AdjustBrightnessNode": AdjustBrightnessNode,
"AdjustContrastNode": AdjustContrastNode,
"ShuffleDatasetNode": ShuffleDatasetNode,
"ShuffleImageTextDatasetNode": ShuffleImageTextDatasetNode,
# Text transforms
"TextToLowercaseNode": TextToLowercaseNode,
"TextToUppercaseNode": TextToUppercaseNode,
"TruncateTextNode": TruncateTextNode,
"AddTextPrefixNode": AddTextPrefixNode,
"AddTextSuffixNode": AddTextSuffixNode,
"ReplaceTextNode": ReplaceTextNode,
"StripWhitespaceNode": StripWhitespaceNode,
# Training dataset nodes
"MakeTrainingDataset": MakeTrainingDataset,
"SaveTrainingDataset": SaveTrainingDataset,
"LoadTrainingDataset": LoadTrainingDataset,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LoadImageDataSetFromFolderNode": "Load Simple Image Dataset from Folder",
"LoadImageTextDataSetFromFolderNode": "Load Simple Image and Text Dataset from Folder",
"SaveImageDataSetToFolderNode": "Save Simple Image Dataset to Folder",
"SaveImageTextDataSetToFolderNode": "Save Simple Image and Text Dataset to Folder",
# Image transforms
"ResizeImagesToSameSizeNode": "Resize Images to Same Size",
"ResizeImagesToPixelCountNode": "Resize Images to Pixel Count",
"ResizeImagesByShorterEdgeNode": "Resize Images by Shorter Edge",
"ResizeImagesByLongerEdgeNode": "Resize Images by Longer Edge",
"CenterCropImagesNode": "Center Crop Images",
"RandomCropImagesNode": "Random Crop Images",
"FlipImagesNode": "Flip Images",
"NormalizeImagesNode": "Normalize Images",
"AdjustBrightnessNode": "Adjust Brightness",
"AdjustContrastNode": "Adjust Contrast",
"ShuffleDatasetNode": "Shuffle Image Dataset",
"ShuffleImageTextDatasetNode": "Shuffle Image-Text Dataset",
# Text transforms
"TextToLowercaseNode": "Text to Lowercase",
"TextToUppercaseNode": "Text to Uppercase",
"TruncateTextNode": "Truncate Text",
"AddTextPrefixNode": "Add Text Prefix",
"AddTextSuffixNode": "Add Text Suffix",
"ReplaceTextNode": "Replace Text",
"StripWhitespaceNode": "Strip Whitespace",
# Training dataset nodes
"MakeTrainingDataset": "Make Training Dataset",
"SaveTrainingDataset": "Save Training Dataset",
"LoadTrainingDataset": "Load Training Dataset",
}