mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-16 17:42:58 +08:00
201 lines
8.8 KiB
Python
201 lines
8.8 KiB
Python
from __future__ import annotations
|
|
import torch
|
|
import copy
|
|
|
|
import comfy.model_management
|
|
|
|
|
|
class FlipFlopModule(torch.nn.Module):
|
|
def __init__(self, block_types: tuple[str, ...], enable_flipflop: bool = True):
|
|
super().__init__()
|
|
self.block_types = block_types
|
|
self.enable_flipflop = enable_flipflop
|
|
self.flipflop: dict[str, FlipFlopHolder] = {}
|
|
self.block_info: dict[str, tuple[int, int]] = {}
|
|
self.flipflop_prefixes: list[str] = []
|
|
|
|
def setup_flipflop_holders(self, block_info: dict[str, tuple[int, int]], flipflop_prefixes: list[str], load_device: torch.device, offload_device: torch.device):
|
|
for block_type, (flipflop_blocks, total_blocks) in block_info.items():
|
|
if block_type in self.flipflop:
|
|
continue
|
|
self.flipflop[block_type] = FlipFlopHolder(getattr(self, block_type)[total_blocks-flipflop_blocks:], flipflop_blocks, total_blocks, load_device, offload_device)
|
|
self.block_info[block_type] = (flipflop_blocks, total_blocks)
|
|
self.flipflop_prefixes = flipflop_prefixes.copy()
|
|
|
|
def init_flipflop_block_copies(self, device: torch.device) -> int:
|
|
memory_freed = 0
|
|
for holder in self.flipflop.values():
|
|
memory_freed += holder.init_flipflop_block_copies(device)
|
|
return memory_freed
|
|
|
|
def clean_flipflop_holders(self):
|
|
memory_freed = 0
|
|
for block_type in list(self.flipflop.keys()):
|
|
memory_freed += self.flipflop[block_type].clean_flipflop_blocks()
|
|
del self.flipflop[block_type]
|
|
self.block_info = {}
|
|
self.flipflop_prefixes = []
|
|
return memory_freed
|
|
|
|
def get_all_blocks(self, block_type: str) -> list[torch.nn.Module]:
|
|
return getattr(self, block_type)
|
|
|
|
def get_blocks(self, block_type: str) -> torch.nn.ModuleList:
|
|
if block_type not in self.block_types:
|
|
raise ValueError(f"Block type {block_type} not found in {self.block_types}")
|
|
if block_type in self.flipflop:
|
|
return getattr(self, block_type)[:self.flipflop[block_type].i_offset]
|
|
return getattr(self, block_type)
|
|
|
|
def get_all_block_module_sizes(self, reverse_sort_by_size: bool = False) -> list[tuple[str, int]]:
|
|
'''
|
|
Returns a list of (block_type, size) sorted by size.
|
|
If reverse_sort_by_size is True, the list is sorted by size in reverse order.
|
|
'''
|
|
sizes = [(block_type, self.get_block_module_size(block_type)) for block_type in self.block_types]
|
|
sizes.sort(key=lambda x: x[1], reverse=reverse_sort_by_size)
|
|
return sizes
|
|
|
|
def get_block_module_size(self, block_type: str) -> int:
|
|
return comfy.model_management.module_size(getattr(self, block_type)[0])
|
|
|
|
def execute_blocks(self, block_type: str, func, out: torch.Tensor | tuple[torch.Tensor,...], *args, **kwargs):
|
|
# execute blocks, supporting both single and double (or higher) block types
|
|
if isinstance(out, torch.Tensor):
|
|
out = (out,)
|
|
for i, block in enumerate(self.get_blocks(block_type)):
|
|
out = func(i, block, *out, *args, **kwargs)
|
|
if isinstance(out, torch.Tensor):
|
|
out = (out,)
|
|
if block_type in self.flipflop:
|
|
holder = self.flipflop[block_type]
|
|
with holder.context() as ctx:
|
|
for i, block in enumerate(holder.blocks):
|
|
out = ctx(func, i, block, *out, *args, **kwargs)
|
|
if isinstance(out, torch.Tensor):
|
|
out = (out,)
|
|
if len(out) == 1:
|
|
out = out[0]
|
|
return out
|
|
|
|
|
|
class FlipFlopContext:
|
|
def __init__(self, holder: FlipFlopHolder):
|
|
# NOTE: there is a bug when there are an odd number of blocks to flipflop.
|
|
# Worked around right now by always making sure it will be even, but need to resolve.
|
|
self.holder = holder
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.num_blocks = len(self.holder.blocks)
|
|
self.first_flip = True
|
|
self.first_flop = True
|
|
self.last_flip = False
|
|
self.last_flop = False
|
|
|
|
def __enter__(self):
|
|
self.reset()
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
self.holder.compute_stream.record_event(self.holder.cpy_end_event)
|
|
|
|
def do_flip(self, func, i: int, _, *args, **kwargs):
|
|
# flip
|
|
self.holder.compute_stream.wait_event(self.holder.cpy_end_event)
|
|
with torch.cuda.stream(self.holder.compute_stream):
|
|
out = func(i+self.holder.i_offset, self.holder.flip, *args, **kwargs)
|
|
self.holder.event_flip.record(self.holder.compute_stream)
|
|
# while flip executes, queue flop to copy to its next block
|
|
next_flop_i = i + 1
|
|
if next_flop_i >= self.num_blocks:
|
|
next_flop_i = next_flop_i - self.num_blocks
|
|
self.last_flip = True
|
|
if not self.first_flip:
|
|
self.holder._copy_state_dict(self.holder.flop.state_dict(), self.holder.blocks[next_flop_i].state_dict(), self.holder.event_flop, self.holder.cpy_end_event)
|
|
if self.last_flip:
|
|
self.holder._copy_state_dict(self.holder.flip.state_dict(), self.holder.blocks[0].state_dict(), cpy_start_event=self.holder.event_flip)
|
|
self.first_flip = False
|
|
return out
|
|
|
|
def do_flop(self, func, i: int, _, *args, **kwargs):
|
|
# flop
|
|
if not self.first_flop:
|
|
self.holder.compute_stream.wait_event(self.holder.cpy_end_event)
|
|
with torch.cuda.stream(self.holder.compute_stream):
|
|
out = func(i+self.holder.i_offset, self.holder.flop, *args, **kwargs)
|
|
self.holder.event_flop.record(self.holder.compute_stream)
|
|
# while flop executes, queue flip to copy to its next block
|
|
next_flip_i = i + 1
|
|
if next_flip_i >= self.num_blocks:
|
|
next_flip_i = next_flip_i - self.num_blocks
|
|
self.last_flop = True
|
|
self.holder._copy_state_dict(self.holder.flip.state_dict(), self.holder.blocks[next_flip_i].state_dict(), self.holder.event_flip, self.holder.cpy_end_event)
|
|
if self.last_flop:
|
|
self.holder._copy_state_dict(self.holder.flop.state_dict(), self.holder.blocks[1].state_dict(), cpy_start_event=self.holder.event_flop)
|
|
self.first_flop = False
|
|
return out
|
|
|
|
@torch.no_grad()
|
|
def __call__(self, func, i: int, block: torch.nn.Module, *args, **kwargs):
|
|
# flips are even indexes, flops are odd indexes
|
|
if i % 2 == 0:
|
|
return self.do_flip(func, i, block, *args, **kwargs)
|
|
else:
|
|
return self.do_flop(func, i, block, *args, **kwargs)
|
|
|
|
|
|
class FlipFlopHolder:
|
|
def __init__(self, blocks: list[torch.nn.Module], flip_amount: int, total_amount: int, load_device: torch.device, offload_device: torch.device):
|
|
self.load_device = load_device
|
|
self.offload_device = offload_device
|
|
self.blocks = blocks
|
|
self.flip_amount = flip_amount
|
|
self.total_amount = total_amount
|
|
# NOTE: used to make sure block indexes passed into block functions match expected patch indexes
|
|
self.i_offset = total_amount - flip_amount
|
|
|
|
self.block_module_size = 0
|
|
if len(self.blocks) > 0:
|
|
self.block_module_size = comfy.model_management.module_size(self.blocks[0])
|
|
|
|
self.flip: torch.nn.Module = None
|
|
self.flop: torch.nn.Module = None
|
|
|
|
self.compute_stream = torch.cuda.default_stream(self.load_device)
|
|
self.cpy_stream = torch.cuda.Stream(self.load_device)
|
|
|
|
self.event_flip = torch.cuda.Event(enable_timing=False)
|
|
self.event_flop = torch.cuda.Event(enable_timing=False)
|
|
self.cpy_end_event = torch.cuda.Event(enable_timing=False)
|
|
# INIT - is this actually needed?
|
|
self.compute_stream.record_event(self.cpy_end_event)
|
|
|
|
def _copy_state_dict(self, dst, src, cpy_start_event: torch.cuda.Event=None, cpy_end_event: torch.cuda.Event=None):
|
|
if cpy_start_event:
|
|
self.cpy_stream.wait_event(cpy_start_event)
|
|
|
|
with torch.cuda.stream(self.cpy_stream):
|
|
for k, v in src.items():
|
|
dst[k].copy_(v, non_blocking=True)
|
|
if cpy_end_event:
|
|
cpy_end_event.record(self.cpy_stream)
|
|
|
|
def context(self):
|
|
return FlipFlopContext(self)
|
|
|
|
def init_flipflop_block_copies(self, load_device: torch.device) -> int:
|
|
self.flip = copy.deepcopy(self.blocks[0]).to(device=load_device)
|
|
self.flop = copy.deepcopy(self.blocks[1]).to(device=load_device)
|
|
return comfy.model_management.module_size(self.flip) + comfy.model_management.module_size(self.flop)
|
|
|
|
def clean_flipflop_blocks(self) -> int:
|
|
memory_freed = 0
|
|
memory_freed += comfy.model_management.module_size(self.flip)
|
|
memory_freed += comfy.model_management.module_size(self.flop)
|
|
del self.flip
|
|
del self.flop
|
|
self.flip = None
|
|
self.flop = None
|
|
return memory_freed
|