mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-16 17:42:58 +08:00
1207 lines
43 KiB
Python
1207 lines
43 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
# --------------------------------------------------------
|
|
# References:
|
|
# GLIDE: https://github.com/openai/glide-text2im
|
|
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
|
|
# --------------------------------------------------------
|
|
|
|
import math
|
|
from typing import List, Optional, Tuple
|
|
|
|
from flash_attn import flash_attn_varlen_func
|
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from .components import RMSNorm
|
|
|
|
|
|
def modulate(x, scale):
|
|
return x * (1 + scale.unsqueeze(1))
|
|
|
|
|
|
#############################################################################
|
|
# Embedding Layers for Timesteps and Class Labels #
|
|
#############################################################################
|
|
|
|
|
|
class TimestepEmbedder(nn.Module):
|
|
"""
|
|
Embeds scalar timesteps into vector representations.
|
|
"""
|
|
|
|
def __init__(self, hidden_size, frequency_embedding_size=256):
|
|
super().__init__()
|
|
self.mlp = nn.Sequential(
|
|
nn.Linear(
|
|
frequency_embedding_size,
|
|
hidden_size,
|
|
bias=True,
|
|
),
|
|
nn.SiLU(),
|
|
nn.Linear(
|
|
hidden_size,
|
|
hidden_size,
|
|
bias=True,
|
|
),
|
|
)
|
|
nn.init.normal_(self.mlp[0].weight, std=0.02)
|
|
nn.init.zeros_(self.mlp[0].bias)
|
|
nn.init.normal_(self.mlp[2].weight, std=0.02)
|
|
nn.init.zeros_(self.mlp[2].bias)
|
|
|
|
self.frequency_embedding_size = frequency_embedding_size
|
|
|
|
@staticmethod
|
|
def timestep_embedding(t, dim, max_period=10000):
|
|
"""
|
|
Create sinusoidal timestep embeddings.
|
|
:param t: a 1-D Tensor of N indices, one per batch element.
|
|
These may be fractional.
|
|
:param dim: the dimension of the output.
|
|
:param max_period: controls the minimum frequency of the embeddings.
|
|
:return: an (N, D) Tensor of positional embeddings.
|
|
"""
|
|
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
|
half = dim // 2
|
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
|
device=t.device
|
|
)
|
|
args = t[:, None].float() * freqs[None]
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
if dim % 2:
|
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
return embedding
|
|
|
|
def forward(self, t):
|
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
|
t_emb = self.mlp(t_freq.to(self.mlp[0].weight.dtype))
|
|
return t_emb
|
|
|
|
|
|
#############################################################################
|
|
# Core NextDiT Model #
|
|
#############################################################################
|
|
|
|
|
|
class JointAttention(nn.Module):
|
|
"""Multi-head attention module."""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
n_heads: int,
|
|
n_kv_heads: Optional[int],
|
|
qk_norm: bool,
|
|
):
|
|
"""
|
|
Initialize the Attention module.
|
|
|
|
Args:
|
|
dim (int): Number of input dimensions.
|
|
n_heads (int): Number of heads.
|
|
n_kv_heads (Optional[int]): Number of kv heads, if using GQA.
|
|
|
|
"""
|
|
super().__init__()
|
|
self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
|
|
self.n_local_heads = n_heads
|
|
self.n_local_kv_heads = self.n_kv_heads
|
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
|
self.head_dim = dim // n_heads
|
|
|
|
self.qkv = nn.Linear(
|
|
dim,
|
|
(n_heads + self.n_kv_heads + self.n_kv_heads) * self.head_dim,
|
|
bias=False,
|
|
)
|
|
nn.init.xavier_uniform_(self.qkv.weight)
|
|
|
|
self.out = nn.Linear(
|
|
n_heads * self.head_dim,
|
|
dim,
|
|
bias=False,
|
|
)
|
|
nn.init.xavier_uniform_(self.out.weight)
|
|
|
|
if qk_norm:
|
|
self.q_norm = RMSNorm(self.head_dim)
|
|
self.k_norm = RMSNorm(self.head_dim)
|
|
else:
|
|
self.q_norm = self.k_norm = nn.Identity()
|
|
|
|
@staticmethod
|
|
def apply_rotary_emb(
|
|
x_in: torch.Tensor,
|
|
freqs_cis: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Apply rotary embeddings to input tensors using the given frequency
|
|
tensor.
|
|
|
|
This function applies rotary embeddings to the given query 'xq' and
|
|
key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The
|
|
input tensors are reshaped as complex numbers, and the frequency tensor
|
|
is reshaped for broadcasting compatibility. The resulting tensors
|
|
contain rotary embeddings and are returned as real tensors.
|
|
|
|
Args:
|
|
x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings.
|
|
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex
|
|
exponentials.
|
|
|
|
Returns:
|
|
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor
|
|
and key tensor with rotary embeddings.
|
|
"""
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2))
|
|
freqs_cis = freqs_cis.unsqueeze(2)
|
|
x_out = torch.view_as_real(x * freqs_cis).flatten(3)
|
|
return x_out.type_as(x_in)
|
|
|
|
# copied from huggingface modeling_llama.py
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
|
def _get_unpad_data(attention_mask):
|
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
|
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
|
return (
|
|
indices,
|
|
cu_seqlens,
|
|
max_seqlen_in_batch,
|
|
)
|
|
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
|
|
|
key_layer = index_first_axis(
|
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
|
indices_k,
|
|
)
|
|
value_layer = index_first_axis(
|
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
|
indices_k,
|
|
)
|
|
if query_length == kv_seq_len:
|
|
query_layer = index_first_axis(
|
|
query_layer.reshape(batch_size * kv_seq_len, self.n_local_heads, head_dim),
|
|
indices_k,
|
|
)
|
|
cu_seqlens_q = cu_seqlens_k
|
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
|
indices_q = indices_k
|
|
elif query_length == 1:
|
|
max_seqlen_in_batch_q = 1
|
|
cu_seqlens_q = torch.arange(
|
|
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
|
) # There is a memcpy here, that is very bad.
|
|
indices_q = cu_seqlens_q[:-1]
|
|
query_layer = query_layer.squeeze(1)
|
|
else:
|
|
# The -q_len: slice assumes left padding.
|
|
attention_mask = attention_mask[:, -query_length:]
|
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
|
|
|
return (
|
|
query_layer,
|
|
key_layer,
|
|
value_layer,
|
|
indices_q,
|
|
(cu_seqlens_q, cu_seqlens_k),
|
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: torch.Tensor,
|
|
freqs_cis: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
|
|
Args:
|
|
x:
|
|
x_mask:
|
|
freqs_cis:
|
|
|
|
Returns:
|
|
|
|
"""
|
|
bsz, seqlen, _ = x.shape
|
|
dtype = x.dtype
|
|
|
|
xq, xk, xv = torch.split(
|
|
self.qkv(x),
|
|
[
|
|
self.n_local_heads * self.head_dim,
|
|
self.n_local_kv_heads * self.head_dim,
|
|
self.n_local_kv_heads * self.head_dim,
|
|
],
|
|
dim=-1,
|
|
)
|
|
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
|
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
|
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
|
xq = self.q_norm(xq)
|
|
xk = self.k_norm(xk)
|
|
xq = JointAttention.apply_rotary_emb(xq, freqs_cis=freqs_cis)
|
|
xk = JointAttention.apply_rotary_emb(xk, freqs_cis=freqs_cis)
|
|
xq, xk = xq.to(dtype), xk.to(dtype)
|
|
|
|
softmax_scale = math.sqrt(1 / self.head_dim)
|
|
|
|
if dtype in [torch.float16, torch.bfloat16]:
|
|
# begin var_len flash attn
|
|
(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
indices_q,
|
|
cu_seq_lens,
|
|
max_seq_lens,
|
|
) = self._upad_input(xq, xk, xv, x_mask, seqlen)
|
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
|
|
|
attn_output_unpad = flash_attn_varlen_func(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
cu_seqlens_q=cu_seqlens_q,
|
|
cu_seqlens_k=cu_seqlens_k,
|
|
max_seqlen_q=max_seqlen_in_batch_q,
|
|
max_seqlen_k=max_seqlen_in_batch_k,
|
|
dropout_p=0.0,
|
|
causal=False,
|
|
softmax_scale=softmax_scale,
|
|
)
|
|
output = pad_input(attn_output_unpad, indices_q, bsz, seqlen)
|
|
# end var_len_flash_attn
|
|
|
|
else:
|
|
n_rep = self.n_local_heads // self.n_local_kv_heads
|
|
if n_rep >= 1:
|
|
xk = xk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
|
xv = xv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
|
output = (
|
|
F.scaled_dot_product_attention(
|
|
xq.permute(0, 2, 1, 3),
|
|
xk.permute(0, 2, 1, 3),
|
|
xv.permute(0, 2, 1, 3),
|
|
attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_local_heads, seqlen, -1),
|
|
scale=softmax_scale,
|
|
)
|
|
.permute(0, 2, 1, 3)
|
|
.to(dtype)
|
|
)
|
|
|
|
output = output.flatten(-2)
|
|
|
|
return self.out(output)
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
hidden_dim: int,
|
|
multiple_of: int,
|
|
ffn_dim_multiplier: Optional[float],
|
|
):
|
|
"""
|
|
Initialize the FeedForward module.
|
|
|
|
Args:
|
|
dim (int): Input dimension.
|
|
hidden_dim (int): Hidden dimension of the feedforward layer.
|
|
multiple_of (int): Value to ensure hidden dimension is a multiple
|
|
of this value.
|
|
ffn_dim_multiplier (float, optional): Custom multiplier for hidden
|
|
dimension. Defaults to None.
|
|
|
|
"""
|
|
super().__init__()
|
|
# custom dim factor multiplier
|
|
if ffn_dim_multiplier is not None:
|
|
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
|
|
|
self.w1 = nn.Linear(
|
|
dim,
|
|
hidden_dim,
|
|
bias=False,
|
|
)
|
|
nn.init.xavier_uniform_(self.w1.weight)
|
|
self.w2 = nn.Linear(
|
|
hidden_dim,
|
|
dim,
|
|
bias=False,
|
|
)
|
|
nn.init.xavier_uniform_(self.w2.weight)
|
|
self.w3 = nn.Linear(
|
|
dim,
|
|
hidden_dim,
|
|
bias=False,
|
|
)
|
|
nn.init.xavier_uniform_(self.w3.weight)
|
|
|
|
# @torch.compile
|
|
def _forward_silu_gating(self, x1, x3):
|
|
return F.silu(x1) * x3
|
|
|
|
def forward(self, x):
|
|
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
|
|
|
|
|
|
class JointTransformerBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
layer_id: int,
|
|
dim: int,
|
|
n_heads: int,
|
|
n_kv_heads: int,
|
|
multiple_of: int,
|
|
ffn_dim_multiplier: float,
|
|
norm_eps: float,
|
|
qk_norm: bool,
|
|
modulation=True
|
|
) -> None:
|
|
"""
|
|
Initialize a TransformerBlock.
|
|
|
|
Args:
|
|
layer_id (int): Identifier for the layer.
|
|
dim (int): Embedding dimension of the input features.
|
|
n_heads (int): Number of attention heads.
|
|
n_kv_heads (Optional[int]): Number of attention heads in key and
|
|
value features (if using GQA), or set to None for the same as
|
|
query.
|
|
multiple_of (int):
|
|
ffn_dim_multiplier (float):
|
|
norm_eps (float):
|
|
|
|
"""
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.head_dim = dim // n_heads
|
|
self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm)
|
|
self.feed_forward = FeedForward(
|
|
dim=dim,
|
|
hidden_dim=4 * dim,
|
|
multiple_of=multiple_of,
|
|
ffn_dim_multiplier=ffn_dim_multiplier,
|
|
)
|
|
self.layer_id = layer_id
|
|
self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
|
|
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
|
|
|
|
self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
|
|
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
|
|
|
|
self.modulation = modulation
|
|
if modulation:
|
|
self.adaLN_modulation = nn.Sequential(
|
|
nn.SiLU(),
|
|
nn.Linear(
|
|
min(dim, 1024),
|
|
4 * dim,
|
|
bias=True,
|
|
),
|
|
)
|
|
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
|
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_mask: torch.Tensor,
|
|
freqs_cis: torch.Tensor,
|
|
adaln_input: Optional[torch.Tensor]=None,
|
|
):
|
|
"""
|
|
Perform a forward pass through the TransformerBlock.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor.
|
|
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor after applying attention and
|
|
feedforward layers.
|
|
|
|
"""
|
|
if self.modulation:
|
|
assert adaln_input is not None
|
|
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1)
|
|
|
|
x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2(
|
|
self.attention(
|
|
modulate(self.attention_norm1(x), scale_msa),
|
|
x_mask,
|
|
freqs_cis,
|
|
)
|
|
)
|
|
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
|
|
self.feed_forward(
|
|
modulate(self.ffn_norm1(x), scale_mlp),
|
|
)
|
|
)
|
|
else:
|
|
assert adaln_input is None
|
|
x = x + self.attention_norm2(
|
|
self.attention(
|
|
self.attention_norm1(x),
|
|
x_mask,
|
|
freqs_cis,
|
|
)
|
|
)
|
|
x = x + self.ffn_norm2(
|
|
self.feed_forward(
|
|
self.ffn_norm1(x),
|
|
)
|
|
)
|
|
return x
|
|
|
|
|
|
class FinalLayer(nn.Module):
|
|
"""
|
|
The final layer of NextDiT.
|
|
"""
|
|
|
|
def __init__(self, hidden_size, patch_size, out_channels):
|
|
super().__init__()
|
|
self.norm_final = nn.LayerNorm(
|
|
hidden_size,
|
|
elementwise_affine=False,
|
|
eps=1e-6,
|
|
)
|
|
self.linear = nn.Linear(
|
|
hidden_size,
|
|
patch_size * patch_size * out_channels,
|
|
bias=True,
|
|
)
|
|
nn.init.zeros_(self.linear.weight)
|
|
nn.init.zeros_(self.linear.bias)
|
|
|
|
self.adaLN_modulation = nn.Sequential(
|
|
nn.SiLU(),
|
|
nn.Linear(
|
|
min(hidden_size, 1024),
|
|
hidden_size,
|
|
bias=True,
|
|
),
|
|
)
|
|
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
|
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
|
|
|
def forward(self, x, c):
|
|
scale = self.adaLN_modulation(c)
|
|
x = modulate(self.norm_final(x), scale)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class RopeEmbedder:
|
|
def __init__(
|
|
self, theta: float = 10000.0, axes_dims: List[int] = (16, 56, 56), axes_lens: List[int] = (1, 512, 512)
|
|
):
|
|
super().__init__()
|
|
self.theta = theta
|
|
self.axes_dims = axes_dims
|
|
self.axes_lens = axes_lens
|
|
self.freqs_cis = NextDiT.precompute_freqs_cis(self.axes_dims, self.axes_lens, theta=self.theta)
|
|
|
|
def __call__(self, ids: torch.Tensor):
|
|
self.freqs_cis = [freqs_cis.to(ids.device) for freqs_cis in self.freqs_cis]
|
|
result = []
|
|
for i in range(len(self.axes_dims)):
|
|
# import torch.distributed as dist
|
|
# if not dist.is_initialized() or dist.get_rank() == 0:
|
|
# import pdb
|
|
# pdb.set_trace()
|
|
index = ids[:, :, i:i+1].repeat(1, 1, self.freqs_cis[i].shape[-1]).to(torch.int64)
|
|
result.append(torch.gather(self.freqs_cis[i].unsqueeze(0).repeat(index.shape[0], 1, 1), dim=1, index=index))
|
|
return torch.cat(result, dim=-1)
|
|
|
|
|
|
class NextDiT(nn.Module):
|
|
"""
|
|
Diffusion model with a Transformer backbone.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
patch_size: int = 2,
|
|
in_channels: int = 4,
|
|
dim: int = 4096,
|
|
n_layers: int = 32,
|
|
n_refiner_layers: int = 2,
|
|
n_heads: int = 32,
|
|
n_kv_heads: Optional[int] = None,
|
|
multiple_of: int = 256,
|
|
ffn_dim_multiplier: Optional[float] = None,
|
|
norm_eps: float = 1e-5,
|
|
qk_norm: bool = False,
|
|
cap_feat_dim: int = 5120,
|
|
axes_dims: List[int] = (16, 56, 56),
|
|
axes_lens: List[int] = (1, 512, 512),
|
|
) -> None:
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = in_channels
|
|
self.patch_size = patch_size
|
|
|
|
self.x_embedder = nn.Linear(
|
|
in_features=patch_size * patch_size * in_channels,
|
|
out_features=dim,
|
|
bias=True,
|
|
)
|
|
nn.init.xavier_uniform_(self.x_embedder.weight)
|
|
nn.init.constant_(self.x_embedder.bias, 0.0)
|
|
|
|
self.noise_refiner = nn.ModuleList(
|
|
[
|
|
JointTransformerBlock(
|
|
layer_id,
|
|
dim,
|
|
n_heads,
|
|
n_kv_heads,
|
|
multiple_of,
|
|
ffn_dim_multiplier,
|
|
norm_eps,
|
|
qk_norm,
|
|
modulation=True,
|
|
)
|
|
for layer_id in range(n_refiner_layers)
|
|
]
|
|
)
|
|
self.context_refiner = nn.ModuleList(
|
|
[
|
|
JointTransformerBlock(
|
|
layer_id,
|
|
dim,
|
|
n_heads,
|
|
n_kv_heads,
|
|
multiple_of,
|
|
ffn_dim_multiplier,
|
|
norm_eps,
|
|
qk_norm,
|
|
modulation=False,
|
|
)
|
|
for layer_id in range(n_refiner_layers)
|
|
]
|
|
)
|
|
|
|
self.t_embedder = TimestepEmbedder(min(dim, 1024))
|
|
self.cap_embedder = nn.Sequential(
|
|
RMSNorm(cap_feat_dim, eps=norm_eps),
|
|
nn.Linear(
|
|
cap_feat_dim,
|
|
dim,
|
|
bias=True,
|
|
),
|
|
)
|
|
nn.init.trunc_normal_(self.cap_embedder[1].weight, std=0.02)
|
|
# nn.init.zeros_(self.cap_embedder[1].weight)
|
|
nn.init.zeros_(self.cap_embedder[1].bias)
|
|
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
JointTransformerBlock(
|
|
layer_id,
|
|
dim,
|
|
n_heads,
|
|
n_kv_heads,
|
|
multiple_of,
|
|
ffn_dim_multiplier,
|
|
norm_eps,
|
|
qk_norm,
|
|
)
|
|
for layer_id in range(n_layers)
|
|
]
|
|
)
|
|
self.norm_final = RMSNorm(dim, eps=norm_eps)
|
|
self.final_layer = FinalLayer(dim, patch_size, self.out_channels)
|
|
|
|
assert (dim // n_heads) == sum(axes_dims)
|
|
self.axes_dims = axes_dims
|
|
self.axes_lens = axes_lens
|
|
self.rope_embedder = RopeEmbedder(axes_dims=axes_dims, axes_lens=axes_lens)
|
|
self.dim = dim
|
|
self.n_heads = n_heads
|
|
|
|
def unpatchify(
|
|
self, x: torch.Tensor, img_size: List[Tuple[int, int]], cap_size: List[int], return_tensor=False
|
|
) -> List[torch.Tensor]:
|
|
"""
|
|
x: (N, T, patch_size**2 * C)
|
|
imgs: (N, H, W, C)
|
|
"""
|
|
pH = pW = self.patch_size
|
|
imgs = []
|
|
for i in range(x.size(0)):
|
|
H, W = img_size[i]
|
|
begin = cap_size[i]
|
|
end = begin + (H // pH) * (W // pW)
|
|
imgs.append(
|
|
x[i][begin:end]
|
|
.view(H // pH, W // pW, pH, pW, self.out_channels)
|
|
.permute(4, 0, 2, 1, 3)
|
|
.flatten(3, 4)
|
|
.flatten(1, 2)
|
|
)
|
|
|
|
if return_tensor:
|
|
imgs = torch.stack(imgs, dim=0)
|
|
return imgs
|
|
|
|
def patchify_and_embed(
|
|
self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], List[int], torch.Tensor]:
|
|
bsz = len(x)
|
|
pH = pW = self.patch_size
|
|
device = x[0].device
|
|
|
|
l_effective_cap_len = cap_mask.sum(dim=1).tolist()
|
|
img_sizes = [(img.size(1), img.size(2)) for img in x]
|
|
l_effective_img_len = [(H // pH) * (W // pW) for (H, W) in img_sizes]
|
|
|
|
max_seq_len = max(
|
|
(cap_len+img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len))
|
|
)
|
|
max_cap_len = max(l_effective_cap_len)
|
|
max_img_len = max(l_effective_img_len)
|
|
|
|
position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.int32, device=device)
|
|
|
|
for i in range(bsz):
|
|
cap_len = l_effective_cap_len[i]
|
|
img_len = l_effective_img_len[i]
|
|
H, W = img_sizes[i]
|
|
H_tokens, W_tokens = H // pH, W // pW
|
|
assert H_tokens * W_tokens == img_len
|
|
|
|
position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.int32, device=device)
|
|
position_ids[i, cap_len:cap_len+img_len, 0] = cap_len
|
|
row_ids = torch.arange(H_tokens, dtype=torch.int32, device=device).view(-1, 1).repeat(1, W_tokens).flatten()
|
|
col_ids = torch.arange(W_tokens, dtype=torch.int32, device=device).view(1, -1).repeat(H_tokens, 1).flatten()
|
|
position_ids[i, cap_len:cap_len+img_len, 1] = row_ids
|
|
position_ids[i, cap_len:cap_len+img_len, 2] = col_ids
|
|
|
|
freqs_cis = self.rope_embedder(position_ids)
|
|
|
|
# build freqs_cis for cap and image individually
|
|
cap_freqs_cis_shape = list(freqs_cis.shape)
|
|
# cap_freqs_cis_shape[1] = max_cap_len
|
|
cap_freqs_cis_shape[1] = cap_feats.shape[1]
|
|
cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
|
|
|
|
img_freqs_cis_shape = list(freqs_cis.shape)
|
|
img_freqs_cis_shape[1] = max_img_len
|
|
img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
|
|
|
|
for i in range(bsz):
|
|
cap_len = l_effective_cap_len[i]
|
|
img_len = l_effective_img_len[i]
|
|
cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len]
|
|
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len:cap_len+img_len]
|
|
|
|
# refine context
|
|
for layer in self.context_refiner:
|
|
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis)
|
|
|
|
# refine image
|
|
flat_x = []
|
|
for i in range(bsz):
|
|
img = x[i]
|
|
C, H, W = img.size()
|
|
img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 2, 4, 0).flatten(2).flatten(0, 1)
|
|
flat_x.append(img)
|
|
x = flat_x
|
|
padded_img_embed = torch.zeros(bsz, max_img_len, x[0].shape[-1], device=device, dtype=x[0].dtype)
|
|
padded_img_mask = torch.zeros(bsz, max_img_len, dtype=torch.bool, device=device)
|
|
for i in range(bsz):
|
|
padded_img_embed[i, :l_effective_img_len[i]] = x[i]
|
|
padded_img_mask[i, :l_effective_img_len[i]] = True
|
|
|
|
padded_img_embed = self.x_embedder(padded_img_embed)
|
|
for layer in self.noise_refiner:
|
|
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t)
|
|
|
|
mask = torch.zeros(bsz, max_seq_len, dtype=torch.bool, device=device)
|
|
padded_full_embed = torch.zeros(bsz, max_seq_len, self.dim, device=device, dtype=x[0].dtype)
|
|
for i in range(bsz):
|
|
cap_len = l_effective_cap_len[i]
|
|
img_len = l_effective_img_len[i]
|
|
|
|
mask[i, :cap_len+img_len] = True
|
|
padded_full_embed[i, :cap_len] = cap_feats[i, :cap_len]
|
|
padded_full_embed[i, cap_len:cap_len+img_len] = padded_img_embed[i, :img_len]
|
|
|
|
return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis
|
|
|
|
|
|
def forward(self, x, t, cap_feats, cap_mask):
|
|
"""
|
|
Forward pass of NextDiT.
|
|
t: (N,) tensor of diffusion timesteps
|
|
y: (N,) tensor of text tokens/features
|
|
"""
|
|
|
|
# import torch.distributed as dist
|
|
# if not dist.is_initialized() or dist.get_rank() == 0:
|
|
# import pdb
|
|
# pdb.set_trace()
|
|
# torch.save([x, t, cap_feats, cap_mask], "./fake_input.pt")
|
|
t = self.t_embedder(t) # (N, D)
|
|
adaln_input = t
|
|
|
|
cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute
|
|
|
|
x_is_tensor = isinstance(x, torch.Tensor)
|
|
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t)
|
|
freqs_cis = freqs_cis.to(x.device)
|
|
|
|
for layer in self.layers:
|
|
x = layer(x, mask, freqs_cis, adaln_input)
|
|
|
|
x = self.final_layer(x, adaln_input)
|
|
x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)
|
|
|
|
return x
|
|
|
|
def forward_with_cfg(
|
|
self,
|
|
x,
|
|
t,
|
|
cap_feats,
|
|
cap_mask,
|
|
cfg_scale,
|
|
cfg_trunc=100,
|
|
renorm_cfg=1
|
|
):
|
|
"""
|
|
Forward pass of NextDiT, but also batches the unconditional forward pass
|
|
for classifier-free guidance.
|
|
"""
|
|
# # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
|
|
half = x[: len(x) // 2]
|
|
if t[0] < cfg_trunc:
|
|
combined = torch.cat([half, half], dim=0) # [2, 16, 128, 128]
|
|
model_out = self.forward(combined, t, cap_feats, cap_mask) # [2, 16, 128, 128]
|
|
# For exact reproducibility reasons, we apply classifier-free guidance on only
|
|
# three channels by default. The standard approach to cfg applies it to all channels.
|
|
# This can be done by uncommenting the following line and commenting-out the line following that.
|
|
eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :]
|
|
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
|
|
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
|
|
if float(renorm_cfg) > 0.0:
|
|
ori_pos_norm = torch.linalg.vector_norm(cond_eps
|
|
, dim=tuple(range(1, len(cond_eps.shape))), keepdim=True
|
|
)
|
|
max_new_norm = ori_pos_norm * float(renorm_cfg)
|
|
new_pos_norm = torch.linalg.vector_norm(
|
|
half_eps, dim=tuple(range(1, len(half_eps.shape))), keepdim=True
|
|
)
|
|
if new_pos_norm >= max_new_norm:
|
|
half_eps = half_eps * (max_new_norm / new_pos_norm)
|
|
else:
|
|
combined = half
|
|
model_out = self.forward(combined, t[:len(x) // 2], cap_feats[:len(x) // 2], cap_mask[:len(x) // 2])
|
|
eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :]
|
|
half_eps = eps
|
|
|
|
output = torch.cat([half_eps, half_eps], dim=0)
|
|
return output
|
|
|
|
@staticmethod
|
|
def precompute_freqs_cis(
|
|
dim: List[int],
|
|
end: List[int],
|
|
theta: float = 10000.0,
|
|
):
|
|
"""
|
|
Precompute the frequency tensor for complex exponentials (cis) with
|
|
given dimensions.
|
|
|
|
This function calculates a frequency tensor with complex exponentials
|
|
using the given dimension 'dim' and the end index 'end'. The 'theta'
|
|
parameter scales the frequencies. The returned tensor contains complex
|
|
values in complex64 data type.
|
|
|
|
Args:
|
|
dim (list): Dimension of the frequency tensor.
|
|
end (list): End index for precomputing frequencies.
|
|
theta (float, optional): Scaling factor for frequency computation.
|
|
Defaults to 10000.0.
|
|
|
|
Returns:
|
|
torch.Tensor: Precomputed frequency tensor with complex
|
|
exponentials.
|
|
"""
|
|
freqs_cis = []
|
|
for i, (d, e) in enumerate(zip(dim, end)):
|
|
freqs = 1.0 / (theta ** (torch.arange(0, d, 2, dtype=torch.float64, device="cpu") / d))
|
|
timestep = torch.arange(e, device=freqs.device, dtype=torch.float64)
|
|
freqs = torch.outer(timestep, freqs).float()
|
|
freqs_cis_i = torch.polar(torch.ones_like(freqs), freqs).to(torch.complex64) # complex64
|
|
freqs_cis.append(freqs_cis_i)
|
|
|
|
return freqs_cis
|
|
|
|
def parameter_count(self) -> int:
|
|
total_params = 0
|
|
|
|
def _recursive_count_params(module):
|
|
nonlocal total_params
|
|
for param in module.parameters(recurse=False):
|
|
total_params += param.numel()
|
|
for submodule in module.children():
|
|
_recursive_count_params(submodule)
|
|
|
|
_recursive_count_params(self)
|
|
return total_params
|
|
|
|
def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
|
|
return list(self.layers)
|
|
|
|
def get_checkpointing_wrap_module_list(self) -> List[nn.Module]:
|
|
return list(self.layers)
|
|
|
|
@property
|
|
def dtype(self):
|
|
try:
|
|
return next(self.parameters()).dtype
|
|
except StopIteration:
|
|
return torch.float32
|
|
|
|
|
|
class NextDiT_CLIP(NextDiT):
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
clip_text_dim = kwargs.pop('clip_text_dim', 1024)
|
|
clip_img_dim = kwargs.pop('clip_img_dim', 1024)
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
self.enable_clip = True
|
|
|
|
self.time_text_embed = nn.Sequential(
|
|
nn.SiLU(),
|
|
nn.Linear(min(self.dim, 1024) + clip_text_dim, min(self.dim, 1024)),
|
|
)
|
|
nn.init.zeros_(self.time_text_embed[1].weight)
|
|
nn.init.zeros_(self.time_text_embed[1].bias)
|
|
|
|
self.clip_text_pooled_proj = nn.Sequential(
|
|
RMSNorm(clip_text_dim),
|
|
nn.Linear(clip_text_dim, clip_text_dim, bias=True),
|
|
)
|
|
nn.init.normal_(self.clip_text_pooled_proj[1].weight, std=0.01)
|
|
nn.init.zeros_(self.clip_text_pooled_proj[1].bias)
|
|
|
|
|
|
def forward(self, x, t, cap_feats, cap_mask, **kwargs):
|
|
|
|
clip_text_pooled = kwargs.get('clip_text_pooled')
|
|
clip_img_pooled = kwargs.get('clip_img_pooled')
|
|
|
|
t_emb = self.t_embedder(t)
|
|
adaln_input = t_emb
|
|
cap_feats = self.cap_embedder(cap_feats)
|
|
if clip_text_pooled is not None:
|
|
clip_emb = self.clip_text_pooled_proj(clip_text_pooled)
|
|
combined_features = torch.cat([t_emb, clip_emb], dim=-1)
|
|
adaln_input = self.time_text_embed(combined_features)
|
|
else:
|
|
adaln_input = t_emb
|
|
|
|
if clip_img_pooled is not None:
|
|
clip_img_pooled_emb = self.clip_img_pooled_embedder(clip_img_pooled)
|
|
adaln_input = adaln_input + clip_img_pooled_emb
|
|
|
|
x_is_tensor = isinstance(x, torch.Tensor)
|
|
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, adaln_input)
|
|
freqs_cis = freqs_cis.to(x.device)
|
|
|
|
for layer in self.layers:
|
|
x = layer(x, mask, freqs_cis, adaln_input)
|
|
|
|
x = self.final_layer(x, adaln_input)
|
|
x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)
|
|
|
|
return x
|
|
|
|
def forward_with_cfg(
|
|
self,
|
|
x,
|
|
t,
|
|
cap_feats,
|
|
cap_mask,
|
|
cfg_scale,
|
|
cfg_trunc=100,
|
|
renorm_cfg=1,
|
|
**kwargs
|
|
):
|
|
|
|
half = x[: len(x) // 2]
|
|
|
|
if t[0] < cfg_trunc:
|
|
|
|
model_out = self.forward(x, t, cap_feats, cap_mask, **kwargs)
|
|
|
|
eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :]
|
|
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
|
|
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
|
|
|
|
if float(renorm_cfg) > 0.0:
|
|
ori_pos_norm = torch.linalg.vector_norm(
|
|
cond_eps, dim=tuple(range(1, len(cond_eps.shape))), keepdim=True
|
|
)
|
|
max_new_norm = ori_pos_norm * float(renorm_cfg)
|
|
new_pos_norm = torch.linalg.vector_norm(
|
|
half_eps, dim=tuple(range(1, len(half_eps.shape))), keepdim=True
|
|
)
|
|
if new_pos_norm.item() >= max_new_norm.item():
|
|
half_eps = half_eps * (max_new_norm / new_pos_norm)
|
|
else:
|
|
|
|
cond_x = half
|
|
cond_t = t[:len(x) // 2]
|
|
cond_cap_feats = cap_feats[:len(x) // 2]
|
|
cond_cap_mask = cap_mask[:len(x) // 2]
|
|
|
|
cond_kwargs = {}
|
|
for k, v in kwargs.items():
|
|
if isinstance(v, torch.Tensor):
|
|
cond_kwargs[k] = v[:len(x) // 2]
|
|
|
|
model_out = self.forward(
|
|
cond_x, cond_t, cond_cap_feats, cond_cap_mask, **cond_kwargs
|
|
)
|
|
eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :]
|
|
half_eps = eps
|
|
|
|
output = torch.cat([half_eps, half_eps], dim=0)
|
|
return output
|
|
|
|
|
|
class ResnetBlock(nn.Module):
|
|
def __init__(self, in_channels, out_channels, conv_shortcut=False):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.use_conv_shortcut = conv_shortcut
|
|
|
|
self.norm1 = nn.GroupNorm(32, in_channels, eps=1e-6)
|
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
|
|
|
self.norm2 = nn.GroupNorm(32, out_channels, eps=1e-6)
|
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
|
|
|
if self.in_channels != self.out_channels:
|
|
if self.use_conv_shortcut:
|
|
self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
|
else:
|
|
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
|
|
|
def forward(self, x):
|
|
hidden_states = x
|
|
hidden_states = self.norm1(hidden_states)
|
|
hidden_states = F.silu(hidden_states)
|
|
hidden_states = self.conv1(hidden_states)
|
|
|
|
hidden_states = self.norm2(hidden_states)
|
|
hidden_states = F.silu(hidden_states)
|
|
hidden_states = self.conv2(hidden_states)
|
|
|
|
if self.in_channels != self.out_channels:
|
|
if self.use_conv_shortcut:
|
|
x = self.conv_shortcut(x)
|
|
else:
|
|
x = self.nin_shortcut(x)
|
|
|
|
return x + hidden_states
|
|
|
|
|
|
class CNNEncoder(nn.Module):
|
|
|
|
def __init__(self, in_channels=16, base_channels=128, out_channels=64):
|
|
super().__init__()
|
|
|
|
# Initial convolution
|
|
self.conv_in = nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1)
|
|
|
|
self.resnet_blocks = nn.ModuleList([
|
|
ResnetBlock(base_channels, base_channels),
|
|
ResnetBlock(base_channels, base_channels * 2),
|
|
ResnetBlock(base_channels * 2, base_channels * 2),
|
|
])
|
|
|
|
# Final projection to match patch dimension
|
|
self.conv_out = nn.Conv2d(base_channels * 2, out_channels, kernel_size=3, stride=1, padding=1)
|
|
|
|
# Initialize conv_out to zero
|
|
nn.init.zeros_(self.conv_out.weight)
|
|
nn.init.zeros_(self.conv_out.bias)
|
|
|
|
def forward(self, x):
|
|
# x: [B, 16, H, W] (latent space)
|
|
h = self.conv_in(x)
|
|
|
|
for resnet in self.resnet_blocks:
|
|
h = resnet(h)
|
|
|
|
# Project to patch dimension
|
|
h = self.conv_out(h) # [B, 64, H, W]
|
|
|
|
return h
|
|
|
|
|
|
class NextDiT_CLIP_CNN(NextDiT_CLIP):
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
cnn_base_channels = kwargs.pop('cnn_base_channels', 128)
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
#patch_dim = self.patch_size * self.patch_size * self.in_channels # 2*2*16=64
|
|
self.cnn_encoder = CNNEncoder(
|
|
in_channels=self.in_channels, # 16
|
|
base_channels=cnn_base_channels,
|
|
out_channels=cnn_base_channels*2 # 64
|
|
)
|
|
|
|
self.cnn_proj = nn.Linear(self.patch_size * self.patch_size*cnn_base_channels * 2, self.dim, bias=True)
|
|
nn.init.zeros_(self.cnn_proj.weight)
|
|
nn.init.zeros_(self.cnn_proj.bias)
|
|
|
|
def patchify_and_embed(self, x, cap_feats, cap_mask, adaln_input):
|
|
|
|
bsz = len(x)
|
|
pH = pW = self.patch_size
|
|
device = x[0].device
|
|
|
|
original_img_sizes = [(img.size(1), img.size(2)) for img in x]
|
|
l_effective_cap_len = cap_mask.sum(dim=1).tolist()
|
|
l_effective_img_len = [(H // pH) * (W // pW) for (H, W) in original_img_sizes]
|
|
max_img_len = max(l_effective_img_len)
|
|
|
|
list_of_fused_embeds = []
|
|
for i in range(bsz):
|
|
img_tensor = x[i]
|
|
C_in, H, W = img_tensor.shape
|
|
|
|
# [C, H, W] -> [1, N, P*P*C]
|
|
raw_patches = img_tensor.view(C_in, H // pH, pH, W // pW, pW).permute(1, 3, 0, 2, 4).flatten(2)
|
|
raw_patches = raw_patches.flatten(0, 1).unsqueeze(0)
|
|
|
|
# [C, H, W] -> [1, C, H, W] -> [1, C_cnn, H, W]
|
|
cnn_feature_map = self.cnn_encoder(img_tensor.unsqueeze(0))
|
|
C_cnn, H_fm, W_fm = cnn_feature_map.shape[1:]
|
|
|
|
cnn_patches = cnn_feature_map.view(1, C_cnn, H_fm // pH, pH, W_fm // pW, pW).permute(0, 2, 4, 1, 3,
|
|
5).flatten(3)
|
|
cnn_patches = cnn_patches.flatten(1, 2)
|
|
|
|
raw_embed = self.x_embedder(raw_patches) # [1, N, D]
|
|
cnn_embed = self.cnn_proj(cnn_patches) # [1, N, D]
|
|
|
|
fused_embed = raw_embed + cnn_embed # [1, N, D]
|
|
|
|
list_of_fused_embeds.append(fused_embed.squeeze(0))
|
|
|
|
padded_img_embed = torch.zeros(bsz, max_img_len, self.dim, device=device, dtype=list_of_fused_embeds[0].dtype)
|
|
padded_img_mask = torch.zeros(bsz, max_img_len, dtype=torch.bool, device=device)
|
|
for i in range(bsz):
|
|
img_len = l_effective_img_len[i]
|
|
padded_img_embed[i, :img_len] = list_of_fused_embeds[i]
|
|
padded_img_mask[i, :img_len] = True
|
|
|
|
max_seq_len = max((cap_len + img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len)))
|
|
padded_full_embed = torch.zeros(bsz, max_seq_len, self.dim, device=device, dtype=padded_img_embed.dtype)
|
|
mask = torch.zeros(bsz, max_seq_len, dtype=torch.bool, device=device)
|
|
|
|
position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.int32, device=device)
|
|
for i in range(bsz):
|
|
cap_len = l_effective_cap_len[i]
|
|
img_len = l_effective_img_len[i]
|
|
H, W = original_img_sizes[i]
|
|
H_tokens, W_tokens = H // pH, W // pW
|
|
position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.int32, device=device)
|
|
position_ids[i, cap_len:cap_len + img_len, 0] = cap_len
|
|
row_ids = torch.arange(H_tokens, dtype=torch.int32, device=device).view(-1, 1).repeat(1, W_tokens).flatten()
|
|
col_ids = torch.arange(W_tokens, dtype=torch.int32, device=device).view(1, -1).repeat(H_tokens, 1).flatten()
|
|
position_ids[i, cap_len:cap_len + img_len, 1] = row_ids
|
|
position_ids[i, cap_len:cap_len + img_len, 2] = col_ids
|
|
|
|
freqs_cis = self.rope_embedder(position_ids)
|
|
cap_freqs_cis_shape = list(freqs_cis.shape);
|
|
cap_freqs_cis_shape[1] = cap_feats.shape[1]
|
|
cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
|
|
img_freqs_cis_shape = list(freqs_cis.shape);
|
|
img_freqs_cis_shape[1] = max_img_len
|
|
img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
|
|
|
|
for i in range(bsz):
|
|
cap_len = l_effective_cap_len[i];
|
|
img_len = l_effective_img_len[i]
|
|
cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len]
|
|
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len:cap_len + img_len]
|
|
|
|
for layer in self.context_refiner:
|
|
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis)
|
|
|
|
for layer in self.noise_refiner:
|
|
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, adaln_input)
|
|
|
|
for i in range(bsz):
|
|
cap_len = l_effective_cap_len[i];
|
|
img_len = l_effective_img_len[i]
|
|
mask[i, :cap_len + img_len] = True
|
|
padded_full_embed[i, :cap_len] = cap_feats[i, :cap_len]
|
|
padded_full_embed[i, cap_len:cap_len + img_len] = padded_img_embed[i, :img_len]
|
|
|
|
return padded_full_embed, mask, original_img_sizes, l_effective_cap_len, freqs_cis
|
|
#############################################################################
|
|
# NextDiT Configs #
|
|
#############################################################################
|
|
|
|
def NextDiT_3B_GQA_patch2_Adaln_Refiner_WHIT_CLIP(**kwargs):
|
|
for k in ("image_model", "model_type", "rope_theta", "dtype"):
|
|
kwargs.pop(k, None)
|
|
|
|
kwargs.setdefault("patch_size", 2)
|
|
kwargs.setdefault("in_channels", 16)
|
|
kwargs.setdefault("dim", 2304)
|
|
kwargs.setdefault("n_layers", 36)
|
|
kwargs.setdefault("n_heads", 24)
|
|
kwargs.setdefault("n_kv_heads", 8)
|
|
kwargs.setdefault("axes_dims", [32, 32, 32])
|
|
kwargs.setdefault("axes_lens", [1024, 512, 512])
|
|
return NextDiT_CLIP(**kwargs)
|
|
|
|
def NewBieNextDiT(*, device=None, dtype=None, operations=None, **kwargs):
|
|
import torch
|
|
if dtype is None:
|
|
target = torch.bfloat16
|
|
if not torch.cuda.is_available():
|
|
target = torch.float32
|
|
else:
|
|
dev = torch.cuda.current_device()
|
|
major, minor = torch.cuda.get_device_capability(dev)
|
|
if major < 8:
|
|
target = torch.float16
|
|
dtype = target
|
|
model = NextDiT_3B_GQA_patch2_Adaln_Refiner_WHIT_CLIP(**kwargs)
|
|
model.to(device=device, dtype=dtype)
|
|
_ = operations
|
|
return model |