ComfyUI/comfy_api_nodes/nodes_hunyuan3d.py
bigcat88 4d037b5752
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
commented out two nodes
2026-02-13 19:57:01 +02:00

564 lines
22 KiB
Python

from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input, Types
from comfy_api_nodes.apis.hunyuan3d import (
Hunyuan3DViewImage,
InputGenerateType,
ResultFile3D,
TextureEditTaskRequest,
To3DProTaskCreateResponse,
To3DProTaskQueryRequest,
To3DProTaskRequest,
To3DProTaskResultResponse,
To3DUVFileInput,
To3DUVTaskRequest,
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_file_3d,
download_url_to_image_tensor,
downscale_image_tensor_by_max_side,
poll_op,
sync_op,
upload_3d_model_to_comfyapi,
upload_image_to_comfyapi,
validate_image_dimensions,
validate_string,
)
def get_file_from_response(
response_objs: list[ResultFile3D], file_type: str, raise_if_not_found: bool = True
) -> ResultFile3D | None:
for i in response_objs:
if i.Type.lower() == file_type.lower():
return i
if raise_if_not_found:
raise ValueError(f"'{file_type}' file type is not found in the response.")
return None
class TencentTextToModelNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TencentTextToModelNode",
display_name="Hunyuan3D: Text to Model",
category="api node/3d/Tencent",
inputs=[
IO.Combo.Input(
"model",
options=["3.0", "3.1"],
tooltip="The LowPoly option is unavailable for the `3.1` model.",
),
IO.String.Input("prompt", multiline=True, default="", tooltip="Supports up to 1024 characters."),
IO.Int.Input("face_count", default=500000, min=40000, max=1500000),
IO.DynamicCombo.Input(
"generate_type",
options=[
IO.DynamicCombo.Option("Normal", [IO.Boolean.Input("pbr", default=False)]),
IO.DynamicCombo.Option(
"LowPoly",
[
IO.Combo.Input("polygon_type", options=["triangle", "quadrilateral"]),
IO.Boolean.Input("pbr", default=False),
],
),
IO.DynamicCombo.Option("Geometry", []),
],
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed controls whether the node should re-run; "
"results are non-deterministic regardless of seed.",
),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.File3DGLB.Output(display_name="GLB"),
IO.File3DOBJ.Output(display_name="OBJ"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["generate_type", "generate_type.pbr", "face_count"]),
expr="""
(
$base := widgets.generate_type = "normal" ? 25 : widgets.generate_type = "lowpoly" ? 30 : 15;
$pbr := $lookup(widgets, "generate_type.pbr") ? 10 : 0;
$face := widgets.face_count != 500000 ? 10 : 0;
{"type":"usd","usd": ($base + $pbr + $face) * 0.02}
)
""",
),
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
face_count: int,
generate_type: InputGenerateType,
seed: int,
) -> IO.NodeOutput:
_ = seed
validate_string(prompt, field_name="prompt", min_length=1, max_length=1024)
if model == "3.1" and generate_type["generate_type"].lower() == "lowpoly":
raise ValueError("The LowPoly option is currently unavailable for the 3.1 model.")
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-pro", method="POST"),
response_model=To3DProTaskCreateResponse,
data=To3DProTaskRequest(
Model=model,
Prompt=prompt,
FaceCount=face_count,
GenerateType=generate_type["generate_type"],
EnablePBR=generate_type.get("pbr", None),
PolygonType=generate_type.get("polygon_type", None),
),
)
if response.Error:
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
task_id = response.JobId
result = await poll_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-pro/query", method="POST"),
data=To3DProTaskQueryRequest(JobId=task_id),
response_model=To3DProTaskResultResponse,
status_extractor=lambda r: r.Status,
)
return IO.NodeOutput(
f"{task_id}.glb",
await download_url_to_file_3d(
get_file_from_response(result.ResultFile3Ds, "glb").Url, "glb", task_id=task_id
),
await download_url_to_file_3d(
get_file_from_response(result.ResultFile3Ds, "obj").Url, "obj", task_id=task_id
),
)
class TencentImageToModelNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TencentImageToModelNode",
display_name="Hunyuan3D: Image(s) to Model",
category="api node/3d/Tencent",
inputs=[
IO.Combo.Input(
"model",
options=["3.0", "3.1"],
tooltip="The LowPoly option is unavailable for the `3.1` model.",
),
IO.Image.Input("image"),
IO.Image.Input("image_left", optional=True),
IO.Image.Input("image_right", optional=True),
IO.Image.Input("image_back", optional=True),
IO.Int.Input("face_count", default=500000, min=40000, max=1500000),
IO.DynamicCombo.Input(
"generate_type",
options=[
IO.DynamicCombo.Option("Normal", [IO.Boolean.Input("pbr", default=False)]),
IO.DynamicCombo.Option(
"LowPoly",
[
IO.Combo.Input("polygon_type", options=["triangle", "quadrilateral"]),
IO.Boolean.Input("pbr", default=False),
],
),
IO.DynamicCombo.Option("Geometry", []),
],
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed controls whether the node should re-run; "
"results are non-deterministic regardless of seed.",
),
],
outputs=[
IO.String.Output(display_name="model_file"), # for backward compatibility only
IO.File3DGLB.Output(display_name="GLB"),
IO.File3DOBJ.Output(display_name="OBJ"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(
widgets=["generate_type", "generate_type.pbr", "face_count"],
inputs=["image_left", "image_right", "image_back"],
),
expr="""
(
$base := widgets.generate_type = "normal" ? 25 : widgets.generate_type = "lowpoly" ? 30 : 15;
$multiview := (
inputs.image_left.connected or inputs.image_right.connected or inputs.image_back.connected
) ? 10 : 0;
$pbr := $lookup(widgets, "generate_type.pbr") ? 10 : 0;
$face := widgets.face_count != 500000 ? 10 : 0;
{"type":"usd","usd": ($base + $multiview + $pbr + $face) * 0.02}
)
""",
),
)
@classmethod
async def execute(
cls,
model: str,
image: Input.Image,
face_count: int,
generate_type: InputGenerateType,
seed: int,
image_left: Input.Image | None = None,
image_right: Input.Image | None = None,
image_back: Input.Image | None = None,
) -> IO.NodeOutput:
_ = seed
if model == "3.1" and generate_type["generate_type"].lower() == "lowpoly":
raise ValueError("The LowPoly option is currently unavailable for the 3.1 model.")
validate_image_dimensions(image, min_width=128, min_height=128)
multiview_images = []
for k, v in {
"left": image_left,
"right": image_right,
"back": image_back,
}.items():
if v is None:
continue
validate_image_dimensions(v, min_width=128, min_height=128)
multiview_images.append(
Hunyuan3DViewImage(
ViewType=k,
ViewImageUrl=await upload_image_to_comfyapi(
cls,
downscale_image_tensor_by_max_side(v, max_side=4900),
mime_type="image/webp",
total_pixels=24_010_000,
),
)
)
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-pro", method="POST"),
response_model=To3DProTaskCreateResponse,
data=To3DProTaskRequest(
Model=model,
FaceCount=face_count,
GenerateType=generate_type["generate_type"],
ImageUrl=await upload_image_to_comfyapi(
cls,
downscale_image_tensor_by_max_side(image, max_side=4900),
mime_type="image/webp",
total_pixels=24_010_000,
),
MultiViewImages=multiview_images if multiview_images else None,
EnablePBR=generate_type.get("pbr", None),
PolygonType=generate_type.get("polygon_type", None),
),
)
if response.Error:
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
task_id = response.JobId
result = await poll_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-pro/query", method="POST"),
data=To3DProTaskQueryRequest(JobId=task_id),
response_model=To3DProTaskResultResponse,
status_extractor=lambda r: r.Status,
)
return IO.NodeOutput(
f"{task_id}.glb",
await download_url_to_file_3d(
get_file_from_response(result.ResultFile3Ds, "glb").Url, "glb", task_id=task_id
),
await download_url_to_file_3d(
get_file_from_response(result.ResultFile3Ds, "obj").Url, "obj", task_id=task_id
),
)
class TencentModelTo3DUVNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TencentModelTo3DUVNode",
display_name="Hunyuan3D: Model to UV",
category="api node/3d/Tencent",
description="Perform UV unfolding on a 3D model to generate UV texture. "
"Input model must have less than 30000 faces.",
inputs=[
IO.MultiType.Input(
"model_3d",
types=[IO.File3DGLB, IO.File3DOBJ, IO.File3DFBX, IO.File3DAny],
tooltip="Input 3D model (GLB, OBJ, or FBX)",
),
IO.Int.Input(
"seed",
default=1,
min=0,
max=2147483647,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed controls whether the node should re-run; "
"results are non-deterministic regardless of seed.",
),
],
outputs=[
IO.File3DOBJ.Output(display_name="OBJ"),
IO.File3DFBX.Output(display_name="FBX"),
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(expr='{"type":"usd","usd":0.2}'),
)
SUPPORTED_FORMATS = {"glb", "obj", "fbx"}
@classmethod
async def execute(
cls,
model_3d: Types.File3D,
seed: int,
) -> IO.NodeOutput:
_ = seed
file_format = model_3d.format.lower()
if file_format not in cls.SUPPORTED_FORMATS:
raise ValueError(
f"Unsupported file format: '{file_format}'. "
f"Supported formats: {', '.join(sorted(cls.SUPPORTED_FORMATS))}."
)
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-uv", method="POST"),
response_model=To3DProTaskCreateResponse,
data=To3DUVTaskRequest(
File=To3DUVFileInput(
Type=file_format.upper(),
Url=await upload_3d_model_to_comfyapi(cls, model_3d, file_format),
)
),
is_rate_limited=lambda status, body: (
status == 400
and isinstance(body, dict)
and "RequestLimitExceeded" in str(body.get("Response", {}).get("Error", {}).get("Code", ""))
),
)
if response.Error:
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
result = await poll_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-uv/query", method="POST"),
data=To3DProTaskQueryRequest(JobId=response.JobId),
response_model=To3DProTaskResultResponse,
status_extractor=lambda r: r.Status,
)
return IO.NodeOutput(
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "obj").Url, "obj"),
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "fbx").Url, "fbx"),
await download_url_to_image_tensor(get_file_from_response(result.ResultFile3Ds, "image").Url),
)
class Tencent3DTextureEditNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="Tencent3DTextureEditNode",
display_name="Hunyuan3D: 3D Texture Edit",
category="api node/3d/Tencent",
description="After inputting the 3D model, perform 3D model texture redrawing.",
inputs=[
IO.MultiType.Input(
"model_3d",
types=[IO.File3DFBX, IO.File3DAny],
tooltip="3D model in FBX format. Model should have less than 100000 faces.",
),
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Describes texture editing. Supports up to 1024 UTF-8 characters.",
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed controls whether the node should re-run; "
"results are non-deterministic regardless of seed.",
),
],
outputs=[
IO.File3DGLB.Output(display_name="GLB"),
IO.File3DFBX.Output(display_name="FBX"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
expr="""{"type":"usd","usd": 0.6}""",
),
)
@classmethod
async def execute(
cls,
model_3d: Types.File3D,
prompt: str,
seed: int,
) -> IO.NodeOutput:
_ = seed
file_format = model_3d.format.lower()
if file_format != "fbx":
raise ValueError(f"Unsupported file format: '{file_format}'. Only FBX format is supported.")
validate_string(prompt, field_name="prompt", min_length=1, max_length=1024)
model_url = await upload_3d_model_to_comfyapi(cls, model_3d, file_format)
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-texture-edit", method="POST"),
response_model=To3DProTaskCreateResponse,
data=TextureEditTaskRequest(
File3D=To3DUVFileInput(Type=file_format.upper(), Url=model_url),
Prompt=prompt,
EnablePBR=True,
),
)
if response.Error:
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
result = await poll_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-texture-edit/query", method="POST"),
data=To3DProTaskQueryRequest(JobId=response.JobId),
response_model=To3DProTaskResultResponse,
status_extractor=lambda r: r.Status,
)
return IO.NodeOutput(
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "glb").Url, "glb"),
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "fbx").Url, "fbx"),
)
class Tencent3DPartNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="Tencent3DPartNode",
display_name="Hunyuan3D: 3D Part",
category="api node/3d/Tencent",
description="Automatically perform component identification and generation based on the model structure.",
inputs=[
IO.MultiType.Input(
"model_3d",
types=[IO.File3DFBX, IO.File3DAny],
tooltip="3D model in FBX format. Model should have less than 30000 faces.",
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed controls whether the node should re-run; "
"results are non-deterministic regardless of seed.",
),
],
outputs=[
IO.File3DFBX.Output(display_name="FBX"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(expr='{"type":"usd","usd":0.6}'),
)
@classmethod
async def execute(
cls,
model_3d: Types.File3D,
seed: int,
) -> IO.NodeOutput:
_ = seed
file_format = model_3d.format.lower()
if file_format != "fbx":
raise ValueError(f"Unsupported file format: '{file_format}'. Only FBX format is supported.")
model_url = await upload_3d_model_to_comfyapi(cls, model_3d, file_format)
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-part", method="POST"),
response_model=To3DProTaskCreateResponse,
data=To3DUVTaskRequest(
File=To3DUVFileInput(Type=file_format.upper(), Url=model_url),
),
)
if response.Error:
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
result = await poll_op(
cls,
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-part/query", method="POST"),
data=To3DProTaskQueryRequest(JobId=response.JobId),
response_model=To3DProTaskResultResponse,
status_extractor=lambda r: r.Status,
)
return IO.NodeOutput(
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "fbx").Url, "fbx"),
)
class TencentHunyuan3DExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
TencentTextToModelNode,
TencentImageToModelNode,
# TencentModelTo3DUVNode,
# Tencent3DTextureEditNode,
Tencent3DPartNode,
]
async def comfy_entrypoint() -> TencentHunyuan3DExtension:
return TencentHunyuan3DExtension()