mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-10 21:42:37 +08:00
946 lines
36 KiB
Python
946 lines
36 KiB
Python
import os
|
|
import sys
|
|
import copy
|
|
import json
|
|
import threading
|
|
import heapq
|
|
import traceback
|
|
import gc
|
|
import time
|
|
from enum import Enum
|
|
|
|
import torch
|
|
import nodes
|
|
|
|
import comfy.model_management
|
|
import comfy.graph_utils
|
|
|
|
class ExecutionResult(Enum):
|
|
SUCCESS = 0
|
|
FAILURE = 1
|
|
SLEEPING = 2
|
|
|
|
def get_input_info(class_def, input_name):
|
|
valid_inputs = class_def.INPUT_TYPES()
|
|
input_info = None
|
|
input_category = None
|
|
if "required" in valid_inputs and input_name in valid_inputs["required"]:
|
|
input_category = "required"
|
|
input_info = valid_inputs["required"][input_name]
|
|
elif "optional" in valid_inputs and input_name in valid_inputs["optional"]:
|
|
input_category = "optional"
|
|
input_info = valid_inputs["optional"][input_name]
|
|
elif "hidden" in valid_inputs and input_name in valid_inputs["hidden"]:
|
|
input_category = "hidden"
|
|
input_info = valid_inputs["hidden"][input_name]
|
|
if input_info is None:
|
|
return None, None, None
|
|
input_type = input_info[0]
|
|
if len(input_info) > 1:
|
|
extra_info = input_info[1]
|
|
else:
|
|
extra_info = {}
|
|
return input_type, input_category, extra_info
|
|
|
|
# ExecutionList implements a topological dissolve of the graph. After a node is staged for execution,
|
|
# it can still be returned to the graph after having further dependencies added.
|
|
class ExecutionList:
|
|
def __init__(self, dynprompt, outputs):
|
|
self.dynprompt = dynprompt
|
|
self.outputs = outputs
|
|
self.staged_node_id = None
|
|
self.pendingNodes = {}
|
|
self.blockCount = {} # Number of nodes this node is directly blocked by
|
|
self.blocking = {} # Which nodes are blocked by this node
|
|
|
|
def get_input_info(self, unique_id, input_name):
|
|
class_type = self.dynprompt.get_node(unique_id)["class_type"]
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
return get_input_info(class_def, input_name)
|
|
|
|
def make_input_strong_link(self, to_node_id, to_input):
|
|
inputs = self.dynprompt.get_node(to_node_id)["inputs"]
|
|
if to_input not in inputs:
|
|
raise Exception("Node %s says it needs input %s, but there is no input to that node at all" % (to_node_id, to_input))
|
|
value = inputs[to_input]
|
|
if not isinstance(value, list):
|
|
raise Exception("Node %s says it needs input %s, but that value is a constant" % (to_node_id, to_input))
|
|
from_node_id, from_socket = value
|
|
self.add_strong_link(from_node_id, from_socket, to_node_id)
|
|
|
|
def add_strong_link(self, from_node_id, from_socket, to_node_id):
|
|
if from_node_id in self.outputs:
|
|
# Nothing to do
|
|
return
|
|
self.add_node(from_node_id)
|
|
if to_node_id not in self.blocking[from_node_id]:
|
|
self.blocking[from_node_id][to_node_id] = {}
|
|
self.blockCount[to_node_id] += 1
|
|
self.blocking[from_node_id][to_node_id][from_socket] = True
|
|
|
|
def add_node(self, unique_id):
|
|
if unique_id in self.pendingNodes:
|
|
return
|
|
self.pendingNodes[unique_id] = True
|
|
self.blockCount[unique_id] = 0
|
|
self.blocking[unique_id] = {}
|
|
|
|
inputs = self.dynprompt.get_node(unique_id)["inputs"]
|
|
for input_name in inputs:
|
|
value = inputs[input_name]
|
|
if isinstance(value, list):
|
|
from_node_id, from_socket = value
|
|
input_type, input_category, input_info = self.get_input_info(unique_id, input_name)
|
|
if "lazy" not in input_info or not input_info["lazy"]:
|
|
self.add_strong_link(from_node_id, from_socket, unique_id)
|
|
|
|
def stage_node_execution(self):
|
|
assert self.staged_node_id is None
|
|
if self.is_empty():
|
|
return None
|
|
available = [node_id for node_id in self.pendingNodes if self.blockCount[node_id] == 0]
|
|
if len(available) == 0:
|
|
raise Exception("Dependency cycle detected")
|
|
next_node = available[0]
|
|
# If an output node is available, do that first.
|
|
# Technically this has no effect on the overall length of execution, but it feels better as a user
|
|
# for a PreviewImage to display a result as soon as it can
|
|
# Some other heuristics could probably be used here to improve the UX further.
|
|
for node_id in available:
|
|
class_type = self.dynprompt.get_node(node_id)["class_type"]
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
if hasattr(class_def, 'OUTPUT_NODE') and class_def.OUTPUT_NODE == True:
|
|
next_node = node_id
|
|
break
|
|
self.staged_node_id = next_node
|
|
return self.staged_node_id
|
|
|
|
def unstage_node_execution(self):
|
|
assert self.staged_node_id is not None
|
|
self.staged_node_id = None
|
|
|
|
def complete_node_execution(self):
|
|
node_id = self.staged_node_id
|
|
del self.pendingNodes[node_id]
|
|
for blocked_node_id in self.blocking[node_id]:
|
|
self.blockCount[blocked_node_id] -= 1
|
|
del self.blocking[node_id]
|
|
self.staged_node_id = None
|
|
|
|
def is_empty(self):
|
|
return len(self.pendingNodes) == 0
|
|
|
|
class DynamicPrompt:
|
|
def __init__(self, original_prompt):
|
|
# The original prompt provided by the user
|
|
self.original_prompt = original_prompt
|
|
# Any extra pieces of the graph created during execution
|
|
self.ephemeral_prompt = {}
|
|
self.ephemeral_parents = {}
|
|
|
|
def get_node(self, node_id):
|
|
if node_id in self.ephemeral_prompt:
|
|
return self.ephemeral_prompt[node_id]
|
|
if node_id in self.original_prompt:
|
|
return self.original_prompt[node_id]
|
|
return None
|
|
|
|
def add_ephemeral_node(self, real_parent_id, node_id, node_info):
|
|
self.ephemeral_prompt[node_id] = node_info
|
|
self.ephemeral_parents[node_id] = real_parent_id
|
|
|
|
def get_real_node_id(self, node_id):
|
|
if node_id in self.ephemeral_parents:
|
|
return self.ephemeral_parents[node_id]
|
|
return node_id
|
|
|
|
def get_input_data(inputs, class_def, unique_id, outputs={}, prompt={}, dynprompt=None, extra_data={}):
|
|
valid_inputs = class_def.INPUT_TYPES()
|
|
input_data_all = {}
|
|
for x in inputs:
|
|
input_data = inputs[x]
|
|
input_type, input_category, input_info = get_input_info(class_def, x)
|
|
if isinstance(input_data, list) and not input_info.get("raw_link", False):
|
|
input_unique_id = input_data[0]
|
|
output_index = input_data[1]
|
|
if input_unique_id not in outputs:
|
|
continue # This might be a lazily-evaluated input
|
|
obj = outputs[input_unique_id][output_index]
|
|
input_data_all[x] = obj
|
|
elif input_category is not None:
|
|
input_data_all[x] = [input_data]
|
|
|
|
if "hidden" in valid_inputs:
|
|
h = valid_inputs["hidden"]
|
|
for x in h:
|
|
if h[x] == "PROMPT":
|
|
input_data_all[x] = [prompt]
|
|
if h[x] == "DYNPROMPT":
|
|
input_data_all[x] = [dynprompt]
|
|
if h[x] == "EXTRA_PNGINFO":
|
|
if "extra_pnginfo" in extra_data:
|
|
input_data_all[x] = [extra_data['extra_pnginfo']]
|
|
if h[x] == "UNIQUE_ID":
|
|
input_data_all[x] = [unique_id]
|
|
return input_data_all
|
|
|
|
def map_node_over_list(obj, input_data_all, func, allow_interrupt=False):
|
|
# check if node wants the lists
|
|
intput_is_list = False
|
|
if hasattr(obj, "INPUT_IS_LIST"):
|
|
intput_is_list = obj.INPUT_IS_LIST
|
|
|
|
max_len_input = max([len(x) for x in input_data_all.values()])
|
|
|
|
# get a slice of inputs, repeat last input when list isn't long enough
|
|
def slice_dict(d, i):
|
|
d_new = dict()
|
|
for k,v in d.items():
|
|
d_new[k] = v[i if len(v) > i else -1]
|
|
return d_new
|
|
|
|
results = []
|
|
if intput_is_list:
|
|
if allow_interrupt:
|
|
nodes.before_node_execution()
|
|
results.append(getattr(obj, func)(**input_data_all))
|
|
else:
|
|
for i in range(max_len_input):
|
|
if allow_interrupt:
|
|
nodes.before_node_execution()
|
|
results.append(getattr(obj, func)(**slice_dict(input_data_all, i)))
|
|
return results
|
|
|
|
def merge_result_data(results, obj):
|
|
# check which outputs need concatenating
|
|
output = []
|
|
output_is_list = [False] * len(results[0])
|
|
if hasattr(obj, "OUTPUT_IS_LIST"):
|
|
output_is_list = obj.OUTPUT_IS_LIST
|
|
|
|
# merge node execution results
|
|
for i, is_list in zip(range(len(results[0])), output_is_list):
|
|
if is_list:
|
|
output.append([x for o in results for x in o[i]])
|
|
else:
|
|
output.append([o[i] for o in results])
|
|
return output
|
|
|
|
def get_output_data(obj, input_data_all):
|
|
|
|
results = []
|
|
uis = []
|
|
subgraph_results = []
|
|
return_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True)
|
|
has_subgraph = False
|
|
for i in range(len(return_values)):
|
|
r = return_values[i]
|
|
if isinstance(r, dict):
|
|
if 'ui' in r:
|
|
uis.append(r['ui'])
|
|
if 'expand' in r:
|
|
# Perform an expansion, but do not append results
|
|
has_subgraph = True
|
|
new_graph = r['expand']
|
|
subgraph_results.append((new_graph, r.get("result", None)))
|
|
elif 'result' in r:
|
|
results.append(r['result'])
|
|
subgraph_results.append((None, r['result']))
|
|
else:
|
|
results.append(r)
|
|
|
|
if has_subgraph:
|
|
output = subgraph_results
|
|
elif len(results) > 0:
|
|
output = merge_result_data(results, obj)
|
|
else:
|
|
output = []
|
|
ui = dict()
|
|
if len(uis) > 0:
|
|
ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
|
|
return output, ui, has_subgraph
|
|
|
|
def format_value(x):
|
|
if x is None:
|
|
return None
|
|
elif isinstance(x, (int, float, bool, str)):
|
|
return x
|
|
else:
|
|
return str(x)
|
|
|
|
def non_recursive_execute(server, dynprompt, outputs, current_item, extra_data, executed, prompt_id, outputs_ui, object_storage, execution_list, pending_subgraph_results):
|
|
unique_id = current_item
|
|
real_node_id = dynprompt.get_real_node_id(unique_id)
|
|
inputs = dynprompt.get_node(unique_id)['inputs']
|
|
class_type = dynprompt.get_node(unique_id)['class_type']
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
if unique_id in outputs:
|
|
return (ExecutionResult.SUCCESS, None, None)
|
|
|
|
input_data_all = None
|
|
try:
|
|
if unique_id in pending_subgraph_results:
|
|
cached_results = pending_subgraph_results[unique_id]
|
|
resolved_outputs = []
|
|
for is_subgraph, result in cached_results:
|
|
if not is_subgraph:
|
|
resolved_outputs.append(result)
|
|
else:
|
|
resolved_output = []
|
|
for r in result:
|
|
if isinstance(r, list) and len(r) == 2:
|
|
source_node, source_output = r[0], r[1]
|
|
node_output = outputs[source_node][source_output]
|
|
for o in node_output:
|
|
resolved_output.append(o)
|
|
|
|
else:
|
|
resolved_output.append(r)
|
|
resolved_outputs.append(tuple(resolved_output))
|
|
output_data = merge_result_data(resolved_outputs, class_def)
|
|
output_ui = []
|
|
has_subgraph = False
|
|
else:
|
|
input_data_all = get_input_data(inputs, class_def, unique_id, outputs, dynprompt.original_prompt, dynprompt, extra_data)
|
|
if server.client_id is not None:
|
|
server.last_node_id = real_node_id
|
|
server.send_sync("executing", { "node": real_node_id, "prompt_id": prompt_id }, server.client_id)
|
|
|
|
obj = object_storage.get((unique_id, class_type), None)
|
|
if obj is None:
|
|
obj = class_def()
|
|
object_storage[(unique_id, class_type)] = obj
|
|
|
|
if hasattr(obj, "check_lazy_status"):
|
|
required_inputs = map_node_over_list(obj, input_data_all, "check_lazy_status", allow_interrupt=True)
|
|
required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], []))
|
|
required_inputs = [x for x in required_inputs if x not in input_data_all]
|
|
if len(required_inputs) > 0:
|
|
for i in required_inputs:
|
|
execution_list.make_input_strong_link(unique_id, i)
|
|
return (ExecutionResult.SLEEPING, None, None)
|
|
|
|
output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all)
|
|
if len(output_ui) > 0:
|
|
outputs_ui[unique_id] = output_ui
|
|
if server.client_id is not None:
|
|
server.send_sync("executed", { "node": real_node_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id)
|
|
if has_subgraph:
|
|
cached_outputs = []
|
|
for i in range(len(output_data)):
|
|
new_graph, node_outputs = output_data[i]
|
|
if new_graph is None:
|
|
cached_outputs.append((False, node_outputs))
|
|
else:
|
|
# Check for conflicts
|
|
for node_id in new_graph.keys():
|
|
if dynprompt.get_node(node_id) is not None:
|
|
new_graph, node_outputs = comfy.graph_utils.add_graph_prefix(new_graph, node_outputs, "%s.%d." % (unique_id, i))
|
|
break
|
|
new_output_ids = []
|
|
for node_id, node_info in new_graph.items():
|
|
dynprompt.add_ephemeral_node(real_node_id, node_id, node_info)
|
|
# Figure out if the newly created node is an output node
|
|
class_type = node_info["class_type"]
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
if hasattr(class_def, 'OUTPUT_NODE') and class_def.OUTPUT_NODE == True:
|
|
new_output_ids.append(node_id)
|
|
for node_id in new_output_ids:
|
|
execution_list.add_node(node_id)
|
|
for i in range(len(node_outputs)):
|
|
if isinstance(node_outputs[i], list) and len(node_outputs[i]) == 2:
|
|
from_node_id, from_socket = node_outputs[i][0], node_outputs[i][1]
|
|
execution_list.add_strong_link(from_node_id, from_socket, unique_id)
|
|
cached_outputs.append((True, node_outputs))
|
|
pending_subgraph_results[unique_id] = cached_outputs
|
|
return (ExecutionResult.SLEEPING, None, None)
|
|
outputs[unique_id] = output_data
|
|
except comfy.model_management.InterruptProcessingException as iex:
|
|
print("Processing interrupted")
|
|
|
|
# skip formatting inputs/outputs
|
|
error_details = {
|
|
"node_id": real_node_id,
|
|
}
|
|
|
|
return (ExecutionResult.FAILURE, error_details, iex)
|
|
except Exception as ex:
|
|
typ, _, tb = sys.exc_info()
|
|
exception_type = full_type_name(typ)
|
|
input_data_formatted = {}
|
|
if input_data_all is not None:
|
|
input_data_formatted = {}
|
|
for name, inputs in input_data_all.items():
|
|
input_data_formatted[name] = [format_value(x) for x in inputs]
|
|
|
|
output_data_formatted = {}
|
|
for node_id, node_outputs in outputs.items():
|
|
output_data_formatted[node_id] = [[format_value(x) for x in l] for l in node_outputs]
|
|
|
|
print("!!! Exception during processing !!!")
|
|
print(traceback.format_exc())
|
|
|
|
error_details = {
|
|
"node_id": real_node_id,
|
|
"exception_message": str(ex),
|
|
"exception_type": exception_type,
|
|
"traceback": traceback.format_tb(tb),
|
|
"current_inputs": input_data_formatted,
|
|
"current_outputs": output_data_formatted
|
|
}
|
|
return (ExecutionResult.FAILURE, error_details, ex)
|
|
|
|
executed.add(unique_id)
|
|
|
|
return (ExecutionResult.SUCCESS, None, None)
|
|
|
|
def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item):
|
|
unique_id = current_item
|
|
inputs = prompt[unique_id]['inputs']
|
|
class_type = prompt[unique_id]['class_type']
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
|
|
is_changed_old = ''
|
|
is_changed = ''
|
|
to_delete = False
|
|
if hasattr(class_def, 'IS_CHANGED'):
|
|
if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]:
|
|
is_changed_old = old_prompt[unique_id]['is_changed']
|
|
if 'is_changed' not in prompt[unique_id]:
|
|
input_data_all = get_input_data(inputs, class_def, unique_id, outputs)
|
|
if input_data_all is not None:
|
|
try:
|
|
#is_changed = class_def.IS_CHANGED(**input_data_all)
|
|
is_changed = map_node_over_list(class_def, input_data_all, "IS_CHANGED")
|
|
prompt[unique_id]['is_changed'] = is_changed
|
|
except:
|
|
to_delete = True
|
|
else:
|
|
is_changed = prompt[unique_id]['is_changed']
|
|
|
|
if unique_id not in outputs:
|
|
return True
|
|
|
|
if not to_delete:
|
|
if is_changed != is_changed_old:
|
|
to_delete = True
|
|
elif unique_id not in old_prompt:
|
|
to_delete = True
|
|
elif inputs == old_prompt[unique_id]['inputs']:
|
|
for x in inputs:
|
|
input_data = inputs[x]
|
|
|
|
if isinstance(input_data, list):
|
|
input_unique_id = input_data[0]
|
|
output_index = input_data[1]
|
|
if input_unique_id in outputs:
|
|
to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id)
|
|
else:
|
|
to_delete = True
|
|
if to_delete:
|
|
break
|
|
else:
|
|
to_delete = True
|
|
|
|
if to_delete:
|
|
d = outputs.pop(unique_id)
|
|
del d
|
|
return to_delete
|
|
|
|
class PromptExecutor:
|
|
def __init__(self, server):
|
|
self.outputs = {}
|
|
self.object_storage = {}
|
|
self.outputs_ui = {}
|
|
self.old_prompt = {}
|
|
self.server = server
|
|
|
|
def handle_execution_error(self, prompt_id, prompt, current_outputs, executed, error, ex):
|
|
node_id = error["node_id"]
|
|
class_type = prompt[node_id]["class_type"]
|
|
|
|
# First, send back the status to the frontend depending
|
|
# on the exception type
|
|
if isinstance(ex, comfy.model_management.InterruptProcessingException):
|
|
mes = {
|
|
"prompt_id": prompt_id,
|
|
"node_id": node_id,
|
|
"node_type": class_type,
|
|
"executed": list(executed),
|
|
}
|
|
self.server.send_sync("execution_interrupted", mes, self.server.client_id)
|
|
else:
|
|
if self.server.client_id is not None:
|
|
mes = {
|
|
"prompt_id": prompt_id,
|
|
"node_id": node_id,
|
|
"node_type": class_type,
|
|
"executed": list(executed),
|
|
|
|
"exception_message": error["exception_message"],
|
|
"exception_type": error["exception_type"],
|
|
"traceback": error["traceback"],
|
|
"current_inputs": error["current_inputs"],
|
|
"current_outputs": error["current_outputs"],
|
|
}
|
|
self.server.send_sync("execution_error", mes, self.server.client_id)
|
|
|
|
# Next, remove the subsequent outputs since they will not be executed
|
|
to_delete = []
|
|
for o in self.outputs:
|
|
if (o not in current_outputs) and (o not in executed):
|
|
to_delete += [o]
|
|
if o in self.old_prompt:
|
|
d = self.old_prompt.pop(o)
|
|
del d
|
|
for o in to_delete:
|
|
d = self.outputs.pop(o)
|
|
del d
|
|
|
|
def execute(self, prompt, prompt_id, extra_data={}, execute_outputs=[]):
|
|
nodes.interrupt_processing(False)
|
|
|
|
if "client_id" in extra_data:
|
|
self.server.client_id = extra_data["client_id"]
|
|
else:
|
|
self.server.client_id = None
|
|
|
|
if self.server.client_id is not None:
|
|
self.server.send_sync("execution_start", { "prompt_id": prompt_id}, self.server.client_id)
|
|
|
|
with torch.inference_mode():
|
|
#delete cached outputs if nodes don't exist for them
|
|
to_delete = []
|
|
for o in self.outputs:
|
|
if o not in prompt:
|
|
to_delete += [o]
|
|
for o in to_delete:
|
|
d = self.outputs.pop(o)
|
|
del d
|
|
to_delete = []
|
|
for o in self.object_storage:
|
|
if o[0] not in prompt:
|
|
to_delete += [o]
|
|
else:
|
|
p = prompt[o[0]]
|
|
if o[1] != p['class_type']:
|
|
to_delete += [o]
|
|
for o in to_delete:
|
|
d = self.object_storage.pop(o)
|
|
del d
|
|
|
|
for x in prompt:
|
|
recursive_output_delete_if_changed(prompt, self.old_prompt, self.outputs, x)
|
|
|
|
current_outputs = set(self.outputs.keys())
|
|
for x in list(self.outputs_ui.keys()):
|
|
if x not in current_outputs:
|
|
d = self.outputs_ui.pop(x)
|
|
del d
|
|
|
|
if self.server.client_id is not None:
|
|
self.server.send_sync("execution_cached", { "nodes": list(current_outputs) , "prompt_id": prompt_id}, self.server.client_id)
|
|
pending_subgraph_results = {}
|
|
dynamic_prompt = DynamicPrompt(prompt)
|
|
executed = set()
|
|
execution_list = ExecutionList(dynamic_prompt, self.outputs)
|
|
for node_id in list(execute_outputs):
|
|
execution_list.add_node(node_id)
|
|
|
|
while not execution_list.is_empty():
|
|
node_id = execution_list.stage_node_execution()
|
|
result, error, ex = non_recursive_execute(self.server, dynamic_prompt, self.outputs, node_id, extra_data, executed, prompt_id, self.outputs_ui, self.object_storage, execution_list, pending_subgraph_results)
|
|
if result == ExecutionResult.FAILURE:
|
|
self.handle_execution_error(prompt_id, dynamic_prompt.original_prompt, current_outputs, executed, error, ex)
|
|
break
|
|
elif result == ExecutionResult.SLEEPING:
|
|
execution_list.unstage_node_execution()
|
|
else: # result == ExecutionResult.SUCCESS
|
|
execution_list.complete_node_execution()
|
|
|
|
for x in executed:
|
|
if x in prompt:
|
|
self.old_prompt[x] = copy.deepcopy(prompt[x])
|
|
self.server.last_node_id = None
|
|
|
|
|
|
|
|
def validate_inputs(prompt, item, validated):
|
|
unique_id = item
|
|
if unique_id in validated:
|
|
return validated[unique_id]
|
|
|
|
inputs = prompt[unique_id]['inputs']
|
|
class_type = prompt[unique_id]['class_type']
|
|
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
|
|
class_inputs = obj_class.INPUT_TYPES()
|
|
valid_inputs = set(class_inputs.get('required',{})).union(set(class_inputs.get('optional',{})))
|
|
|
|
errors = []
|
|
valid = True
|
|
|
|
for x in valid_inputs:
|
|
type_input, input_category, extra_info = get_input_info(obj_class, x)
|
|
if x not in inputs:
|
|
if input_category == "required":
|
|
error = {
|
|
"type": "required_input_missing",
|
|
"message": "Required input is missing",
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
val = inputs[x]
|
|
info = (type_input, extra_info)
|
|
if isinstance(val, list):
|
|
if len(val) != 2:
|
|
error = {
|
|
"type": "bad_linked_input",
|
|
"message": "Bad linked input, must be a length-2 list of [node_id, slot_index]",
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
o_id = val[0]
|
|
o_class_type = prompt[o_id]['class_type']
|
|
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
|
|
if type_input != "*" and r[val[1]] != "*" and r[val[1]] != type_input:
|
|
received_type = r[val[1]]
|
|
details = f"{x}, {received_type} != {type_input}"
|
|
error = {
|
|
"type": "return_type_mismatch",
|
|
"message": "Return type mismatch between linked nodes",
|
|
"details": details,
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_type": received_type,
|
|
"linked_node": val
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
try:
|
|
r = validate_inputs(prompt, o_id, validated)
|
|
if r[0] is False:
|
|
# `r` will be set in `validated[o_id]` already
|
|
valid = False
|
|
continue
|
|
except Exception as ex:
|
|
typ, _, tb = sys.exc_info()
|
|
valid = False
|
|
exception_type = full_type_name(typ)
|
|
reasons = [{
|
|
"type": "exception_during_inner_validation",
|
|
"message": "Exception when validating inner node",
|
|
"details": str(ex),
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"exception_message": str(ex),
|
|
"exception_type": exception_type,
|
|
"traceback": traceback.format_tb(tb),
|
|
"linked_node": val
|
|
}
|
|
}]
|
|
validated[o_id] = (False, reasons, o_id)
|
|
continue
|
|
else:
|
|
try:
|
|
if type_input == "INT":
|
|
val = int(val)
|
|
inputs[x] = val
|
|
if type_input == "FLOAT":
|
|
val = float(val)
|
|
inputs[x] = val
|
|
if type_input == "STRING":
|
|
val = str(val)
|
|
inputs[x] = val
|
|
except Exception as ex:
|
|
error = {
|
|
"type": "invalid_input_type",
|
|
"message": f"Failed to convert an input value to a {type_input} value",
|
|
"details": f"{x}, {val}, {ex}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
"exception_message": str(ex)
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
if "min" in extra_info and val < extra_info["min"]:
|
|
error = {
|
|
"type": "value_smaller_than_min",
|
|
"message": "Value {} smaller than min of {}".format(val, extra_info["min"]),
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
if "max" in extra_info and val > extra_info["max"]:
|
|
error = {
|
|
"type": "value_bigger_than_max",
|
|
"message": "Value {} bigger than max of {}".format(val, extra_info["max"]),
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
if hasattr(obj_class, "VALIDATE_INPUTS"):
|
|
input_data_all = get_input_data(inputs, obj_class, unique_id)
|
|
#ret = obj_class.VALIDATE_INPUTS(**input_data_all)
|
|
ret = map_node_over_list(obj_class, input_data_all, "VALIDATE_INPUTS")
|
|
for i, r in enumerate(ret):
|
|
if r is not True:
|
|
details = f"{x}"
|
|
if r is not False:
|
|
details += f" - {str(r)}"
|
|
|
|
error = {
|
|
"type": "custom_validation_failed",
|
|
"message": "Custom validation failed for node",
|
|
"details": details,
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
else:
|
|
if isinstance(type_input, list):
|
|
if val not in type_input:
|
|
input_config = info
|
|
list_info = ""
|
|
|
|
# Don't send back gigantic lists like if they're lots of
|
|
# scanned model filepaths
|
|
if len(type_input) > 20:
|
|
list_info = f"(list of length {len(type_input)})"
|
|
input_config = None
|
|
else:
|
|
list_info = str(type_input)
|
|
|
|
error = {
|
|
"type": "value_not_in_list",
|
|
"message": "Value not in list",
|
|
"details": f"{x}: '{val}' not in {list_info}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": input_config,
|
|
"received_value": val,
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
if len(errors) > 0 or valid is not True:
|
|
ret = (False, errors, unique_id)
|
|
else:
|
|
ret = (True, [], unique_id)
|
|
|
|
validated[unique_id] = ret
|
|
return ret
|
|
|
|
def full_type_name(klass):
|
|
module = klass.__module__
|
|
if module == 'builtins':
|
|
return klass.__qualname__
|
|
return module + '.' + klass.__qualname__
|
|
|
|
def validate_prompt(prompt):
|
|
outputs = set()
|
|
for x in prompt:
|
|
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']]
|
|
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE == True:
|
|
outputs.add(x)
|
|
|
|
if len(outputs) == 0:
|
|
error = {
|
|
"type": "prompt_no_outputs",
|
|
"message": "Prompt has no outputs",
|
|
"details": "",
|
|
"extra_info": {}
|
|
}
|
|
return (False, error, [], [])
|
|
|
|
good_outputs = set()
|
|
errors = []
|
|
node_errors = {}
|
|
validated = {}
|
|
for o in outputs:
|
|
valid = False
|
|
reasons = []
|
|
try:
|
|
m = validate_inputs(prompt, o, validated)
|
|
valid = m[0]
|
|
reasons = m[1]
|
|
except Exception as ex:
|
|
typ, _, tb = sys.exc_info()
|
|
valid = False
|
|
exception_type = full_type_name(typ)
|
|
reasons = [{
|
|
"type": "exception_during_validation",
|
|
"message": "Exception when validating node",
|
|
"details": str(ex),
|
|
"extra_info": {
|
|
"exception_type": exception_type,
|
|
"traceback": traceback.format_tb(tb)
|
|
}
|
|
}]
|
|
validated[o] = (False, reasons, o)
|
|
|
|
if valid is True:
|
|
good_outputs.add(o)
|
|
else:
|
|
print(f"Failed to validate prompt for output {o}:")
|
|
if len(reasons) > 0:
|
|
print("* (prompt):")
|
|
for reason in reasons:
|
|
print(f" - {reason['message']}: {reason['details']}")
|
|
errors += [(o, reasons)]
|
|
for node_id, result in validated.items():
|
|
valid = result[0]
|
|
reasons = result[1]
|
|
# If a node upstream has errors, the nodes downstream will also
|
|
# be reported as invalid, but there will be no errors attached.
|
|
# So don't return those nodes as having errors in the response.
|
|
if valid is not True and len(reasons) > 0:
|
|
if node_id not in node_errors:
|
|
class_type = prompt[node_id]['class_type']
|
|
node_errors[node_id] = {
|
|
"errors": reasons,
|
|
"dependent_outputs": [],
|
|
"class_type": class_type
|
|
}
|
|
print(f"* {class_type} {node_id}:")
|
|
for reason in reasons:
|
|
print(f" - {reason['message']}: {reason['details']}")
|
|
node_errors[node_id]["dependent_outputs"].append(o)
|
|
print("Output will be ignored")
|
|
|
|
if len(good_outputs) == 0:
|
|
errors_list = []
|
|
for o, errors in errors:
|
|
for error in errors:
|
|
errors_list.append(f"{error['message']}: {error['details']}")
|
|
errors_list = "\n".join(errors_list)
|
|
|
|
error = {
|
|
"type": "prompt_outputs_failed_validation",
|
|
"message": "Prompt outputs failed validation",
|
|
"details": errors_list,
|
|
"extra_info": {}
|
|
}
|
|
|
|
return (False, error, list(good_outputs), node_errors)
|
|
|
|
return (True, None, list(good_outputs), node_errors)
|
|
|
|
|
|
class PromptQueue:
|
|
def __init__(self, server):
|
|
self.server = server
|
|
self.mutex = threading.RLock()
|
|
self.not_empty = threading.Condition(self.mutex)
|
|
self.task_counter = 0
|
|
self.queue = []
|
|
self.currently_running = {}
|
|
self.history = {}
|
|
server.prompt_queue = self
|
|
|
|
def put(self, item):
|
|
with self.mutex:
|
|
heapq.heappush(self.queue, item)
|
|
self.server.queue_updated()
|
|
self.not_empty.notify()
|
|
|
|
def get(self):
|
|
with self.not_empty:
|
|
while len(self.queue) == 0:
|
|
self.not_empty.wait()
|
|
item = heapq.heappop(self.queue)
|
|
i = self.task_counter
|
|
self.currently_running[i] = copy.deepcopy(item)
|
|
self.task_counter += 1
|
|
self.server.queue_updated()
|
|
return (item, i)
|
|
|
|
def task_done(self, item_id, outputs):
|
|
with self.mutex:
|
|
prompt = self.currently_running.pop(item_id)
|
|
self.history[prompt[1]] = { "prompt": prompt, "outputs": {} }
|
|
for o in outputs:
|
|
self.history[prompt[1]]["outputs"][o] = outputs[o]
|
|
self.server.queue_updated()
|
|
|
|
def get_current_queue(self):
|
|
with self.mutex:
|
|
out = []
|
|
for x in self.currently_running.values():
|
|
out += [x]
|
|
return (out, copy.deepcopy(self.queue))
|
|
|
|
def get_tasks_remaining(self):
|
|
with self.mutex:
|
|
return len(self.queue) + len(self.currently_running)
|
|
|
|
def wipe_queue(self):
|
|
with self.mutex:
|
|
self.queue = []
|
|
self.server.queue_updated()
|
|
|
|
def delete_queue_item(self, function):
|
|
with self.mutex:
|
|
for x in range(len(self.queue)):
|
|
if function(self.queue[x]):
|
|
if len(self.queue) == 1:
|
|
self.wipe_queue()
|
|
else:
|
|
self.queue.pop(x)
|
|
heapq.heapify(self.queue)
|
|
self.server.queue_updated()
|
|
return True
|
|
return False
|
|
|
|
def get_history(self, prompt_id=None):
|
|
with self.mutex:
|
|
if prompt_id is None:
|
|
return copy.deepcopy(self.history)
|
|
elif prompt_id in self.history:
|
|
return {prompt_id: copy.deepcopy(self.history[prompt_id])}
|
|
else:
|
|
return {}
|
|
|
|
def wipe_history(self):
|
|
with self.mutex:
|
|
self.history = {}
|
|
|
|
def delete_history_item(self, id_to_delete):
|
|
with self.mutex:
|
|
self.history.pop(id_to_delete, None)
|