mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 14:50:49 +08:00
164 lines
6.3 KiB
Python
164 lines
6.3 KiB
Python
"""
|
|
Portions of this code are adapted from the repository
|
|
https://github.com/ChenyangSi/FreeU
|
|
|
|
MIT License
|
|
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in all
|
|
copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
"""
|
|
|
|
import torch
|
|
import logging
|
|
logger = logging.getLogger(__name__)
|
|
from typing_extensions import override
|
|
from comfy_api.latest import ComfyExtension, IO
|
|
|
|
def Fourier_filter(x, threshold, scale):
|
|
# FFT
|
|
x_freq = torch.fft.fftn(x.float(), dim=(-2, -1))
|
|
x_freq = torch.fft.fftshift(x_freq, dim=(-2, -1))
|
|
|
|
B, C, H, W = x_freq.shape
|
|
mask = torch.ones((B, C, H, W), device=x.device)
|
|
|
|
crow, ccol = H // 2, W //2
|
|
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
|
|
x_freq = x_freq * mask
|
|
|
|
# IFFT
|
|
x_freq = torch.fft.ifftshift(x_freq, dim=(-2, -1))
|
|
x_filtered = torch.fft.ifftn(x_freq, dim=(-2, -1)).real
|
|
|
|
return x_filtered.to(x.dtype)
|
|
|
|
|
|
class FreeU(IO.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return IO.Schema(
|
|
node_id="FreeU",
|
|
category="model_patches/unet",
|
|
inputs=[
|
|
IO.Model.Input("model"),
|
|
IO.Float.Input("b1", default=1.1, min=0.0, max=10.0, step=0.01),
|
|
IO.Float.Input("b2", default=1.2, min=0.0, max=10.0, step=0.01),
|
|
IO.Float.Input("s1", default=0.9, min=0.0, max=10.0, step=0.01),
|
|
IO.Float.Input("s2", default=0.2, min=0.0, max=10.0, step=0.01),
|
|
],
|
|
outputs=[
|
|
IO.Model.Output(),
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, model, b1, b2, s1, s2) -> IO.NodeOutput:
|
|
model_channels = model.model.model_config.unet_config["model_channels"]
|
|
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
|
|
on_cpu_devices = {}
|
|
|
|
def output_block_patch(h, hsp, transformer_options):
|
|
scale = scale_dict.get(int(h.shape[1]), None)
|
|
if scale is not None:
|
|
h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * scale[0]
|
|
if hsp.device not in on_cpu_devices:
|
|
try:
|
|
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
|
|
except:
|
|
logger.warning("Device {} does not support the torch.fft functions used in the FreeU node, switching to CPU.".format(hsp.device))
|
|
on_cpu_devices[hsp.device] = True
|
|
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
|
|
else:
|
|
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
|
|
|
|
return h, hsp
|
|
|
|
m = model.clone()
|
|
m.set_model_output_block_patch(output_block_patch)
|
|
return IO.NodeOutput(m)
|
|
|
|
patch = execute # TODO: remove
|
|
|
|
|
|
class FreeU_V2(IO.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return IO.Schema(
|
|
node_id="FreeU_V2",
|
|
category="model_patches/unet",
|
|
inputs=[
|
|
IO.Model.Input("model"),
|
|
IO.Float.Input("b1", default=1.3, min=0.0, max=10.0, step=0.01),
|
|
IO.Float.Input("b2", default=1.4, min=0.0, max=10.0, step=0.01),
|
|
IO.Float.Input("s1", default=0.9, min=0.0, max=10.0, step=0.01),
|
|
IO.Float.Input("s2", default=0.2, min=0.0, max=10.0, step=0.01),
|
|
],
|
|
outputs=[
|
|
IO.Model.Output(),
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, model, b1, b2, s1, s2) -> IO.NodeOutput:
|
|
model_channels = model.model.model_config.unet_config["model_channels"]
|
|
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
|
|
on_cpu_devices = {}
|
|
|
|
def output_block_patch(h, hsp, transformer_options):
|
|
scale = scale_dict.get(int(h.shape[1]), None)
|
|
if scale is not None:
|
|
hidden_mean = h.mean(1).unsqueeze(1)
|
|
B = hidden_mean.shape[0]
|
|
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
|
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
|
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
|
|
|
|
h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * ((scale[0] - 1 ) * hidden_mean + 1)
|
|
|
|
if hsp.device not in on_cpu_devices:
|
|
try:
|
|
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
|
|
except:
|
|
logger.warning("Device {} does not support the torch.fft functions used in the FreeU node, switching to CPU.".format(hsp.device))
|
|
on_cpu_devices[hsp.device] = True
|
|
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
|
|
else:
|
|
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
|
|
|
|
return h, hsp
|
|
|
|
m = model.clone()
|
|
m.set_model_output_block_patch(output_block_patch)
|
|
return IO.NodeOutput(m)
|
|
|
|
patch = execute # TODO: remove
|
|
|
|
|
|
class FreelunchExtension(ComfyExtension):
|
|
@override
|
|
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
|
return [
|
|
FreeU,
|
|
FreeU_V2,
|
|
]
|
|
|
|
|
|
async def comfy_entrypoint() -> FreelunchExtension:
|
|
return FreelunchExtension()
|