mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-16 01:37:04 +08:00
55 lines
1.6 KiB
Python
55 lines
1.6 KiB
Python
import warnings
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
try:
|
|
from apex.normalization import FusedRMSNorm as RMSNorm
|
|
except ImportError:
|
|
warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation")
|
|
|
|
class RMSNorm(torch.nn.Module):
|
|
def __init__(self, dim: int, eps: float = 1e-6):
|
|
"""
|
|
Initialize the RMSNorm normalization layer.
|
|
|
|
Args:
|
|
dim (int): The dimension of the input tensor.
|
|
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
|
|
|
Attributes:
|
|
eps (float): A small value added to the denominator for numerical stability.
|
|
weight (nn.Parameter): Learnable scaling parameter.
|
|
|
|
"""
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
def _norm(self, x):
|
|
"""
|
|
Apply the RMSNorm normalization to the input tensor.
|
|
|
|
Args:
|
|
x (torch.Tensor): The input tensor.
|
|
|
|
Returns:
|
|
torch.Tensor: The normalized tensor.
|
|
|
|
"""
|
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass through the RMSNorm layer.
|
|
|
|
Args:
|
|
x (torch.Tensor): The input tensor.
|
|
|
|
Returns:
|
|
torch.Tensor: The output tensor after applying RMSNorm.
|
|
|
|
"""
|
|
output = self._norm(x.float()).type_as(x)
|
|
return output * self.weight
|