ComfyUI/comfy_extras/nodes_lt_upsampler.py

82 lines
2.6 KiB
Python

from comfy import model_management
from comfy_api.latest import ComfyExtension, IO
from typing_extensions import override
import math
class LTXVLatentUpsampler(IO.ComfyNode):
"""
Upsamples a video latent by a factor of 2.
"""
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="LTXVLatentUpsampler",
category="latent/video",
is_experimental=True,
inputs=[
IO.Latent.Input("samples"),
IO.LatentUpscaleModel.Input("upscale_model"),
IO.Vae.Input("vae"),
],
outputs=[
IO.Latent.Output(),
],
)
@classmethod
def execute(cls, samples, upscale_model, vae) -> IO.NodeOutput:
"""
Upsample the input latent using the provided model.
Args:
samples (dict): Input latent samples
upscale_model (LatentUpsampler): Loaded upscale model
vae: VAE model for normalization
Returns:
tuple: Tuple containing the upsampled latent
"""
device = model_management.get_torch_device()
memory_required = model_management.module_size(upscale_model)
model_dtype = next(upscale_model.parameters()).dtype
latents = samples["samples"]
input_dtype = latents.dtype
memory_required += math.prod(latents.shape) * 3000.0 # TODO: more accurate
model_management.free_memory(memory_required, device)
try:
upscale_model.to(device) # TODO: use the comfy model management system.
latents = latents.to(dtype=model_dtype, device=device)
"""Upsample latents without tiling."""
latents = vae.first_stage_model.per_channel_statistics.un_normalize(latents)
upsampled_latents = upscale_model(latents)
finally:
upscale_model.cpu()
upsampled_latents = vae.first_stage_model.per_channel_statistics.normalize(
upsampled_latents
)
upsampled_latents = upsampled_latents.to(dtype=input_dtype, device=model_management.intermediate_device())
return_dict = samples.copy()
return_dict["samples"] = upsampled_latents
return_dict.pop("noise_mask", None)
return IO.NodeOutput(return_dict)
upsample_latent = execute # TODO: remove
class LTXVLatentUpsamplerExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [LTXVLatentUpsampler]
async def comfy_entrypoint() -> LTXVLatentUpsamplerExtension:
return LTXVLatentUpsamplerExtension()