ComfyUI/comfy/cmd/main_pre.py
doctorpangloss 6ab1aa1e8a Improving MLLM/VLLM support and fixing bugs
- fix #29 str(model) no longer raises exceptions like with
   HyVideoModelLoader
 - don't try to format CUDA tensors because that can sometimes raise
   exceptions
 - cudaAllocAsync has been disabled for now due to 2.6.0 bugs
 - improve florence2 support
 - add support for paligemma 2. This requires the fix for transformers
   that is currently staged in another repo, install with
   `uv pip install --no-deps "transformers@git+https://github.com/zucchini-nlp/transformers.git#branch=paligemma-fix-kwargs"`
 - triton has been updated
 - fix missing __init__.py files
2025-02-05 14:02:28 -08:00

142 lines
5.2 KiB
Python

"""
This should be imported before entrypoints to correctly configure global options prior to importing packages like torch and cv2.
Use this instead of cli_args to import the args:
>>> from comfy.cmd.main_pre import args
It will enable command line argument parsing. If this isn't desired, you must author your own implementation of these fixes.
"""
import ctypes
import importlib.util
import logging
import os
import shutil
import sys
import warnings
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.instrumentation.aio_pika import AioPikaInstrumentor
from opentelemetry.instrumentation.requests import RequestsInstrumentor
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor, SpanExporter
from opentelemetry.semconv.resource import ResourceAttributes as ResAttrs
from .. import options
from ..app import logger
from ..tracing_compatibility import ProgressSpanSampler
from ..tracing_compatibility import patch_spanbuilder_set_channel
from ..vendor.aiohttp_server_instrumentation import AioHttpServerInstrumentor
this_logger = logging.getLogger(__name__)
options.enable_args_parsing()
if os.name == "nt":
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
warnings.filterwarnings("ignore", message="torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.")
warnings.filterwarnings("ignore", message="Torch was not compiled with flash attention.")
warnings.filterwarnings("ignore", message=".*Torch was not compiled with flash attention.*")
warnings.filterwarnings('ignore', category=FutureWarning, message=r'`torch\.cuda\.amp\.custom_fwd.*')
from ..cli_args import args
if args.cuda_device is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device)
os.environ['HIP_VISIBLE_DEVICES'] = str(args.cuda_device)
this_logger.info("Set cuda device to: {}".format(args.cuda_device))
if args.deterministic:
if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ:
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8"
if args.oneapi_device_selector is not None:
os.environ['ONEAPI_DEVICE_SELECTOR'] = args.oneapi_device_selector
this_logger.info("Set oneapi device selector to: {}".format(args.oneapi_device_selector))
try:
from . import cuda_malloc
except Exception:
pass
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
os.environ["TORCHINDUCTOR_AUTOGRAD_CACHE"] = "1"
def _fix_pytorch_240():
"""Fixes pytorch 2.4.0"""
torch_spec = importlib.util.find_spec("torch")
for folder in torch_spec.submodule_search_locations:
lib_folder = os.path.join(folder, "lib")
test_file = os.path.join(lib_folder, "fbgemm.dll")
dest = os.path.join(lib_folder, "libomp140.x86_64.dll")
if os.path.exists(dest):
break
try:
with open(test_file, 'rb') as f:
contents = f.read()
# todo: dubious
if b"libomp140.x86_64.dll" not in contents:
break
try:
_ = ctypes.cdll.LoadLibrary(test_file)
except FileNotFoundError:
this_logger.warning("Detected pytorch version with libomp issue, trying to patch")
try:
shutil.copyfile(os.path.join(lib_folder, "libiomp5md.dll"), dest)
except Exception as exc_info:
this_logger.error("While trying to patch a fix for torch 2.4.0, an error occurred, which means this is unlikely to work", exc_info=exc_info)
except:
pass
def _create_tracer():
resource = Resource.create({
ResAttrs.SERVICE_NAME: args.otel_service_name,
ResAttrs.SERVICE_VERSION: args.otel_service_version,
})
# omit progress spans from aio pika
sampler = ProgressSpanSampler()
provider = TracerProvider(resource=resource, sampler=sampler)
is_debugging = hasattr(sys, 'gettrace') and sys.gettrace() is not None
has_endpoint = args.otel_exporter_otlp_endpoint is not None
if has_endpoint:
otlp_exporter = OTLPSpanExporter()
# elif is_debugging:
# otlp_exporter = ConsoleSpanExporter("comfyui")
else:
otlp_exporter = SpanExporter()
processor = BatchSpanProcessor(otlp_exporter)
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
# enable instrumentation
patch_spanbuilder_set_channel()
AioPikaInstrumentor().instrument()
AioHttpServerInstrumentor().instrument()
RequestsInstrumentor().instrument()
return trace.get_tracer(args.otel_service_name)
def _configure_logging():
logging_level = args.logging_level
if args.distributed_queue_worker or args.distributed_queue_frontend or args.distributed_queue_connection_uri is not None:
logging.basicConfig(level=logging_level)
else:
logger.setup_logger(logging_level)
_configure_logging()
_fix_pytorch_240()
tracer = _create_tracer()
__all__ = ["args", "tracer"]