ComfyUI/comfy_extras/controlnet_aux/utils.py
doctorpangloss 6ab1aa1e8a Improving MLLM/VLLM support and fixing bugs
- fix #29 str(model) no longer raises exceptions like with
   HyVideoModelLoader
 - don't try to format CUDA tensors because that can sometimes raise
   exceptions
 - cudaAllocAsync has been disabled for now due to 2.6.0 bugs
 - improve florence2 support
 - add support for paligemma 2. This requires the fix for transformers
   that is currently staged in another repo, install with
   `uv pip install --no-deps "transformers@git+https://github.com/zucchini-nlp/transformers.git#branch=paligemma-fix-kwargs"`
 - triton has been updated
 - fix missing __init__.py files
2025-02-05 14:02:28 -08:00

220 lines
7.8 KiB
Python

# pylint: skip-file
"""
Copyright 2024 Lvmin Zhang, fannovel16, Mikubill, Benjamin Berman
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import subprocess
import threading
from enum import Enum
import cv2
import numpy as np
import torch
from comfy.nodes.common import MAX_RESOLUTION
from comfy.nodes.package_typing import Seed
from comfy.utils import ProgressBar
import logging as log
# Sync with theoritical limit from Comfy base
# https://github.com/comfyanonymous/ComfyUI/blob/eecd69b53a896343775bcb02a4f8349e7442ffd1/nodes.py#L45
def common_annotator_call(model, tensor_image, input_batch=False, show_pbar=True, **kwargs):
if "detect_resolution" in kwargs:
del kwargs["detect_resolution"] #Prevent weird case?
if "resolution" in kwargs:
detect_resolution = kwargs["resolution"] if type(kwargs["resolution"]) == int and kwargs["resolution"] >= 64 else 512
del kwargs["resolution"]
else:
detect_resolution = 512
if input_batch:
np_images = np.asarray(tensor_image * 255., dtype=np.uint8)
np_results = model(np_images, output_type="np", detect_resolution=detect_resolution, **kwargs)
return torch.from_numpy(np_results.astype(np.float32) / 255.0)
batch_size = tensor_image.shape[0]
if show_pbar:
pbar = ProgressBar(batch_size)
out_tensor = None
for i, image in enumerate(tensor_image):
np_image = np.asarray(image.cpu() * 255., dtype=np.uint8)
np_result = model(np_image, output_type="np", detect_resolution=detect_resolution, **kwargs)
out = torch.from_numpy(np_result.astype(np.float32) / 255.0)
if out_tensor is None:
out_tensor = torch.zeros(batch_size, *out.shape, dtype=torch.float32)
out_tensor[i] = out
if show_pbar:
pbar.update(1)
return out_tensor
def define_preprocessor_inputs(**arguments):
return dict(
required=dict(image=INPUT.IMAGE()),
optional=arguments
)
class INPUT(Enum):
def IMAGE():
return ("IMAGE",)
def LATENT():
return ("LATENT",)
def MASK():
return ("MASK",)
def SEED(default=0):
return Seed
def RESOLUTION(default=512, min=64, max=MAX_RESOLUTION, step=64):
return ("INT", dict(default=default, min=min, max=max, step=step))
def INT(default=0, min=0, max=MAX_RESOLUTION, step=1):
return ("INT", dict(default=default, min=min, max=max, step=step))
def FLOAT(default=0, min=0, max=1, step=0.01):
return ("FLOAT", dict(default=default, min=min, max=max, step=step))
def STRING(default='', multiline=False):
return ("STRING", dict(default=default, multiline=multiline))
def COMBO(values, default=None):
return (values, dict(default=values[0] if default is None else default))
def BOOLEAN(default=True):
return ("BOOLEAN", dict(default=default))
class ResizeMode(Enum):
"""
Resize modes for ControlNet input images.
"""
RESIZE = "Just Resize"
INNER_FIT = "Crop and Resize"
OUTER_FIT = "Resize and Fill"
def int_value(self):
if self == ResizeMode.RESIZE:
return 0
elif self == ResizeMode.INNER_FIT:
return 1
elif self == ResizeMode.OUTER_FIT:
return 2
assert False, "NOTREACHED"
#https://github.com/Mikubill/sd-webui-controlnet/blob/e67e017731aad05796b9615dc6eadce911298ea1/internal_controlnet/external_code.py#L89
#Replaced logger with internal log
def pixel_perfect_resolution(
image: np.ndarray,
target_H: int,
target_W: int,
resize_mode: ResizeMode,
) -> int:
"""
Calculate the estimated resolution for resizing an image while preserving aspect ratio.
The function first calculates scaling factors for height and width of the image based on the target
height and width. Then, based on the chosen resize mode, it either takes the smaller or the larger
scaling factor to estimate the new resolution.
If the resize mode is OUTER_FIT, the function uses the smaller scaling factor, ensuring the whole image
fits within the target dimensions, potentially leaving some empty space.
If the resize mode is not OUTER_FIT, the function uses the larger scaling factor, ensuring the target
dimensions are fully filled, potentially cropping the image.
After calculating the estimated resolution, the function prints some debugging information.
Args:
image (np.ndarray): A 3D numpy array representing an image. The dimensions represent [height, width, channels].
target_H (int): The target height for the image.
target_W (int): The target width for the image.
resize_mode (ResizeMode): The mode for resizing.
Returns:
int: The estimated resolution after resizing.
"""
raw_H, raw_W, _ = image.shape
k0 = float(target_H) / float(raw_H)
k1 = float(target_W) / float(raw_W)
if resize_mode == ResizeMode.OUTER_FIT:
estimation = min(k0, k1) * float(min(raw_H, raw_W))
else:
estimation = max(k0, k1) * float(min(raw_H, raw_W))
log.debug(f"Pixel Perfect Computation:")
log.debug(f"resize_mode = {resize_mode}")
log.debug(f"raw_H = {raw_H}")
log.debug(f"raw_W = {raw_W}")
log.debug(f"target_H = {target_H}")
log.debug(f"target_W = {target_W}")
log.debug(f"estimation = {estimation}")
return int(np.round(estimation))
#https://github.com/Mikubill/sd-webui-controlnet/blob/e67e017731aad05796b9615dc6eadce911298ea1/scripts/controlnet.py#L404
def safe_numpy(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = y.copy()
y = np.ascontiguousarray(y)
y = y.copy()
return y
#https://github.com/Mikubill/sd-webui-controlnet/blob/e67e017731aad05796b9615dc6eadce911298ea1/scripts/utils.py#L140
def get_unique_axis0(data):
arr = np.asanyarray(data)
idxs = np.lexsort(arr.T)
arr = arr[idxs]
unique_idxs = np.empty(len(arr), dtype=np.bool_)
unique_idxs[:1] = True
unique_idxs[1:] = np.any(arr[:-1, :] != arr[1:, :], axis=-1)
return arr[unique_idxs]
#Ref: https://github.com/ltdrdata/ComfyUI-Manager/blob/284e90dc8296a2e1e4f14b4b2d10fba2f52f0e53/__init__.py#L14
def handle_stream(stream, prefix):
for line in stream:
print(prefix, line, end="")
def run_script(cmd, cwd='.'):
process = subprocess.Popen(cmd, cwd=cwd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1)
stdout_thread = threading.Thread(target=handle_stream, args=(process.stdout, ""))
stderr_thread = threading.Thread(target=handle_stream, args=(process.stderr, "[!]"))
stdout_thread.start()
stderr_thread.start()
stdout_thread.join()
stderr_thread.join()
return process.wait()
def nms(x, t, s):
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
z = np.zeros_like(y, dtype=np.uint8)
z[y > t] = 255
return z