ComfyUI/comfy_extras/nodes_post_processing.py
2023-04-09 18:48:05 -06:00

409 lines
13 KiB
Python

import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image, ImageColor
import re
import comfy.utils
class Blend:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image1": ("IMAGE",),
"image2": ("IMAGE",),
"blend_factor": ("FLOAT", {
"default": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01
}),
"blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "blend_images"
CATEGORY = "image/postprocessing"
def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
if image1.shape != image2.shape:
image2 = image2.permute(0, 3, 1, 2)
image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
image2 = image2.permute(0, 2, 3, 1)
blended_image = self.blend_mode(image1, image2, blend_mode)
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
blended_image = torch.clamp(blended_image, 0, 1)
return (blended_image,)
def blend_mode(self, img1, img2, mode):
if mode == "normal":
return img2
elif mode == "multiply":
return img1 * img2
elif mode == "screen":
return 1 - (1 - img1) * (1 - img2)
elif mode == "overlay":
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
elif mode == "soft_light":
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
else:
raise ValueError(f"Unsupported blend mode: {mode}")
def g(self, x):
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
class Blur:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"blur_radius": ("INT", {
"default": 1,
"min": 1,
"max": 31,
"step": 1
}),
"sigma": ("FLOAT", {
"default": 1.0,
"min": 0.1,
"max": 10.0,
"step": 0.1
}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "blur"
CATEGORY = "image/postprocessing"
def gaussian_kernel(self, kernel_size: int, sigma: float):
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij")
d = torch.sqrt(x * x + y * y)
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
return g / g.sum()
def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
if blur_radius == 0:
return (image,)
batch_size, height, width, channels = image.shape
kernel_size = blur_radius * 2 + 1
kernel = self.gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1)
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
blurred = F.conv2d(image, kernel, padding=kernel_size // 2, groups=channels)
blurred = blurred.permute(0, 2, 3, 1)
return (blurred,)
class Quantize:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"colors": ("INT", {
"default": 256,
"min": 1,
"max": 256,
"step": 1
}),
"dither": (["none", "floyd-steinberg"],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "quantize"
CATEGORY = "image/postprocessing"
def quantize(self, image: torch.Tensor, colors: int = 256, dither: str = "FLOYDSTEINBERG"):
batch_size, height, width, _ = image.shape
result = torch.zeros_like(image)
dither_option = Image.Dither.FLOYDSTEINBERG if dither == "floyd-steinberg" else Image.Dither.NONE
for b in range(batch_size):
tensor_image = image[b]
img = (tensor_image * 255).to(torch.uint8).numpy()
pil_image = Image.fromarray(img, mode='RGB')
palette = pil_image.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
quantized_image = pil_image.quantize(colors=colors, palette=palette, dither=dither_option)
quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
result[b] = quantized_array
return (result,)
class Sharpen:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"sharpen_radius": ("INT", {
"default": 1,
"min": 1,
"max": 31,
"step": 1
}),
"alpha": ("FLOAT", {
"default": 1.0,
"min": 0.1,
"max": 5.0,
"step": 0.1
}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "sharpen"
CATEGORY = "image/postprocessing"
def sharpen(self, image: torch.Tensor, sharpen_radius: int, alpha: float):
if sharpen_radius == 0:
return (image,)
batch_size, height, width, channels = image.shape
kernel_size = sharpen_radius * 2 + 1
kernel = torch.ones((kernel_size, kernel_size), dtype=torch.float32) * -1
center = kernel_size // 2
kernel[center, center] = kernel_size**2
kernel *= alpha
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)
sharpened = sharpened.permute(0, 2, 3, 1)
result = torch.clamp(sharpened, 0, 1)
return (result,)
class Transpose:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"method": ([
"Flip horizontal",
"Flip vertical",
"Rotate 90°",
"Rotate 180°",
"Rotate 270°",
"Transpose",
"Transverse",
],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "transpose"
CATEGORY = "image/postprocessing"
def transpose(self, image: torch.Tensor, method: str):
batch_size, height, width, _ = image.shape
result = torch.zeros_like(image)
methods = {
"Flip horizontal": Image.Transpose.FLIP_LEFT_RIGHT,
"Flip vertical": Image.Transpose.FLIP_TOP_BOTTOM,
"Rotate 90°": Image.Transpose.ROTATE_90,
"Rotate 180°": Image.Transpose.ROTATE_180,
"Rotate 270°": Image.Transpose.ROTATE_270,
"Transpose": Image.Transpose.TRANSPOSE,
"Transverse": Image.Transpose.TRANSVERSE,
}
for b in range(batch_size):
tensor_image = image[b]
img = (tensor_image * 255).to(torch.uint8).numpy()
pil_image = Image.fromarray(img, mode='RGB')
transposed_image = pil_image.transpose(methods[method])
transposed_array = torch.tensor(np.array(transposed_image.convert("RGB"))).float() / 255
result[b] = transposed_array
return (result,)
class Rotate:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"angle": ("FLOAT", {
"default": 0,
"min": 0,
"max": 360,
"step": 0.1
}),
"resample": ([
"Nearest Neighbor",
"Bilinear",
"Bicubic",
],),
"fill_color": ("STRING", {"default": "#000000"}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "rotate"
CATEGORY = "image/postprocessing"
def rotate(self, image: torch.Tensor, angle: int, resample: str, fill_color: str):
batch_size, height, width, _ = image.shape
result = torch.zeros_like(image)
resamplers = {
"Nearest Neighbor": Image.Resampling.NEAREST,
"Bilinear": Image.Resampling.BILINEAR,
"Bicubic": Image.Resampling.BICUBIC,
}
for b in range(batch_size):
tensor_image = image[b]
img = (tensor_image * 255).to(torch.uint8).numpy()
pil_image = Image.fromarray(img, mode='RGB')
fill_color = fill_color or "#000000"
def parse_palette(color_str):
if re.match(r'^#[a-fA-F0-9]{6}$', color_str) or color_str.lower() in ImageColor.colormap:
return ImageColor.getrgb(color_str)
color_rgb = re.match(r'^\(?(\d{1,3}),(\d{1,3}),(\d{1,3})\)?$', color_str)
if color_rgb and int(color_rgb.group(1)) <= 255 and int(color_rgb.group(2)) <= 255 and int(color_rgb.group(3)) <= 255:
return tuple(map(int, re.findall(r'\d{1,3}', color_str)))
else:
raise ValueError(f"Invalid color format: {color_str}")
color = fill_color.replace(" ", "")
color = parse_palette(color)
rotated_image = pil_image.rotate(angle=angle, resample=resamplers[resample], expand=False, fillcolor=color)
rotated_array = torch.tensor(np.array(rotated_image.convert("RGB"))).float() / 255
result[b] = rotated_array
return (result,)
class GetChannel:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"channel": ([
"Red",
"Green",
"Blue",
],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "getchannel"
CATEGORY = "image/postprocessing"
def getchannel(self, image: torch.Tensor, channel: str):
batch_size, height, width, _ = image.shape
result = torch.zeros_like(image)
for b in range(batch_size):
tensor_image = image[b]
img = (tensor_image * 255).to(torch.uint8).numpy()
pil_image = Image.fromarray(img, mode='RGB')
output_image = pil_image.getchannel(channel[0])
output_array = torch.tensor(np.array(output_image.convert("RGB"))).float() / 255
result[b] = output_array
return (result,)
class Split:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE")
FUNCTION = "split"
CATEGORY = "image/postprocessing"
def split(self, image: torch.Tensor):
batch_size, height, width, _ = image.shape
result_r = torch.zeros_like(image)
result_g = torch.zeros_like(image)
result_b = torch.zeros_like(image)
for b in range(batch_size):
tensor_image = image[b]
img = (tensor_image * 255).to(torch.uint8).numpy()
pil_image = Image.fromarray(img, mode='RGB')
output_r, output_g, output_b = pil_image.split()
output_array_r = torch.tensor(np.array(output_r.convert("RGB"))).float() / 255
output_array_g = torch.tensor(np.array(output_g.convert("RGB"))).float() / 255
output_array_b = torch.tensor(np.array(output_b.convert("RGB"))).float() / 255
result_r[b], result_g[b], result_b[b] = output_array_r, output_array_g, output_array_b
return (result_r, result_g, result_b)
NODE_CLASS_MAPPINGS = {
"ImageBlend": Blend,
"ImageBlur": Blur,
"ImageQuantize": Quantize,
"ImageSharpen": Sharpen,
"ImageTranspose": Transpose,
"ImageRotate": Rotate,
"ImageGetChannel": GetChannel,
"ImageSplit": Split,
}