ComfyUI/comfy_api_nodes/nodes_elevenlabs.py
2026-02-01 15:58:10 +02:00

1270 lines
50 KiB
Python

import json
import uuid
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api_nodes.apis.elevenlabs import (
AddVoiceRequest,
AddVoiceResponse,
ComposeMusicRequest,
CreateCompositionPlanRequest,
DialogueInput,
DialogueSettings,
MusicPrompt,
MusicSection,
SpeechToSpeechRequest,
SpeechToTextRequest,
SpeechToTextResponse,
TextToDialogueRequest,
TextToSoundEffectsRequest,
TextToSpeechRequest,
TextToSpeechVoiceSettings,
)
from comfy_api_nodes.util import (
ApiEndpoint,
audio_bytes_to_audio_input,
audio_ndarray_to_bytesio,
audio_tensor_to_contiguous_ndarray,
sync_op,
sync_op_raw,
upload_audio_to_comfyapi,
validate_string,
)
ELEVENLABS_MUSIC_SECTIONS = "ELEVENLABS_MUSIC_SECTIONS" # Custom type for music sections
ELEVENLABS_COMPOSITION_PLAN = "ELEVENLABS_COMPOSITION_PLAN" # Custom type for composition plan
ELEVENLABS_VOICE = "ELEVENLABS_VOICE" # Custom type for voice selection
# Predefined ElevenLabs voices: (voice_id, display_name, gender, accent)
ELEVENLABS_VOICES = [
("CwhRBWXzGAHq8TQ4Fs17", "Roger", "male", "american"),
("EXAVITQu4vr4xnSDxMaL", "Sarah", "female", "american"),
("FGY2WhTYpPnrIDTdsKH5", "Laura", "female", "american"),
("IKne3meq5aSn9XLyUdCD", "Charlie", "male", "australian"),
("JBFqnCBsd6RMkjVDRZzb", "George", "male", "british"),
("N2lVS1w4EtoT3dr4eOWO", "Callum", "male", "american"),
("SAz9YHcvj6GT2YYXdXww", "River", "neutral", "american"),
("SOYHLrjzK2X1ezoPC6cr", "Harry", "male", "american"),
("TX3LPaxmHKxFdv7VOQHJ", "Liam", "male", "american"),
("Xb7hH8MSUJpSbSDYk0k2", "Alice", "female", "british"),
("XrExE9yKIg1WjnnlVkGX", "Matilda", "female", "american"),
("bIHbv24MWmeRgasZH58o", "Will", "male", "american"),
("cgSgspJ2msm6clMCkdW9", "Jessica", "female", "american"),
("cjVigY5qzO86Huf0OWal", "Eric", "male", "american"),
("hpp4J3VqNfWAUOO0d1Us", "Bella", "female", "american"),
("iP95p4xoKVk53GoZ742B", "Chris", "male", "american"),
("nPczCjzI2devNBz1zQrb", "Brian", "male", "american"),
("onwK4e9ZLuTAKqWW03F9", "Daniel", "male", "british"),
("pFZP5JQG7iQjIQuC4Bku", "Lily", "female", "british"),
("pNInz6obpgDQGcFmaJgB", "Adam", "male", "american"),
("pqHfZKP75CvOlQylNhV4", "Bill", "male", "american"),
]
ELEVENLABS_VOICE_OPTIONS = [f"{name} ({gender}, {accent})" for _, name, gender, accent in ELEVENLABS_VOICES]
ELEVENLABS_VOICE_MAP = {
f"{name} ({gender}, {accent})": voice_id for voice_id, name, gender, accent in ELEVENLABS_VOICES
}
def parse_multiline_to_list(text: str) -> list[str]:
if not text or not text.strip():
return []
return [line.strip() for line in text.splitlines() if line.strip()]
class ElevenLabsComposeMusicSection(IO.ComfyNode):
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="ElevenLabsComposeMusicSection",
display_name="ElevenLabs Compose Music Section",
category="api node/audio/ElevenLabs",
description="Define a section for structured music composition.",
inputs=[
IO.String.Input(
"section_name",
default="Verse",
tooltip="Name of this section (1-100 characters). "
"E.g., 'Intro', 'Verse', 'Chorus', 'Bridge', 'Outro'.",
),
IO.String.Input(
"positive_local_styles",
default="",
multiline=True,
tooltip="Styles for this section (one per line). E.g., 'energetic', 'upbeat', 'guitar-driven'.",
),
IO.String.Input(
"negative_local_styles",
default="",
multiline=True,
tooltip="Styles to avoid in this section (one per line). E.g., 'slow', 'acoustic'.",
),
IO.Float.Input(
"duration",
default=30,
min=3,
max=120,
step=0.01,
display_mode=IO.NumberDisplay.number,
tooltip="Duration of this section in seconds.",
),
IO.String.Input(
"content",
default="",
multiline=True,
tooltip="Lyrics for this section (one line per lyric line, max 200 characters per line).",
),
],
outputs=[
IO.Custom(ELEVENLABS_MUSIC_SECTIONS).Output(display_name="section"),
],
is_api_node=False,
)
@classmethod
def execute(
cls,
section_name: str,
positive_local_styles: str,
negative_local_styles: str,
duration: float,
content: str,
) -> IO.NodeOutput:
validate_string(section_name, min_length=1, max_length=100)
lines = parse_multiline_to_list(content)
for i, line in enumerate(lines, 1):
if len(line) > 200:
raise ValueError(f"Line {i} exceeds 200 characters (has {len(line)}).")
section = {
"section_name": section_name,
"positive_local_styles": parse_multiline_to_list(positive_local_styles),
"negative_local_styles": parse_multiline_to_list(negative_local_styles),
"duration_ms": int(duration * 1000),
"lines": lines,
}
return IO.NodeOutput(json.dumps(section))
class ElevenLabsCreateCompositionPlan(IO.ComfyNode):
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="ElevenLabsCreateCompositionPlan",
display_name="ElevenLabs Create Composition Plan",
category="api node/audio/ElevenLabs",
description="Generate a composition plan from lyrics. "
"Connect output to a 'Preview as Text' node to view the plan, then copy values to Section nodes.",
inputs=[
IO.String.Input(
"prompt",
default="",
multiline=True,
tooltip="Lyrics or description to generate a composition plan from.",
),
IO.Float.Input(
"duration",
default=60,
min=3,
max=600,
step=0.1,
display_mode=IO.NumberDisplay.number,
),
IO.DynamicCombo.Input(
"model",
options=[
IO.DynamicCombo.Option("music_v1", []),
],
tooltip="Model to use for plan generation.",
),
],
outputs=[
IO.String.Output(display_name="composition_plan"),
IO.Custom(ELEVENLABS_COMPOSITION_PLAN).Output(display_name="plan_data"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
)
@classmethod
async def execute(
cls,
prompt: str,
duration: float,
model: dict,
) -> IO.NodeOutput:
validate_string(prompt, min_length=1)
request = CreateCompositionPlanRequest(
prompt=prompt,
music_length_ms=int(duration * 1000) if duration else None,
model_id=model["model"],
)
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/elevenlabs/v1/music/plan", method="POST"),
response_model=MusicPrompt,
data=request,
)
output_lines = [
"=== COMPOSITION PLAN ===",
"",
"--- GLOBAL STYLES ---",
"Positive (copy to positive_global_styles):",
"\n".join(response.positive_global_styles) if response.positive_global_styles else "(none)",
"",
"Negative (copy to negative_global_styles):",
"\n".join(response.negative_global_styles) if response.negative_global_styles else "(none)",
"",
"--- SECTIONS ---",
]
for i, section in enumerate(response.sections, 1):
output_lines.extend(
[
"",
f"=== Section {i}: {section.section_name} ===",
f"section_name: {section.section_name}",
f"duration: {section.duration_ms / 1000:.2f} seconds",
"",
"positive_local_styles:",
"\n".join(section.positive_local_styles) if section.positive_local_styles else "(none)",
"",
"negative_local_styles:",
"\n".join(section.negative_local_styles) if section.negative_local_styles else "(none)",
"",
"content (lyrics):",
"\n".join(section.lines) if section.lines else "(instrumental)",
]
)
return IO.NodeOutput("\n".join(output_lines), response.model_dump_json())
class ElevenLabsComposeMusic(IO.ComfyNode):
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="ElevenLabsComposeMusic",
display_name="ElevenLabs Compose Music",
category="api node/audio/ElevenLabs",
description="Generate music. Use a simple text prompt or a detailed composition plan with sections.",
inputs=[
IO.DynamicCombo.Input(
"model",
options=[
IO.DynamicCombo.Option(
"music_v1",
[],
),
],
tooltip="Model to use for music generation.",
),
IO.DynamicCombo.Input(
"content",
options=[
IO.DynamicCombo.Option(
"prompt",
[
IO.String.Input(
"prompt",
default="",
multiline=True,
tooltip="A simple text prompt to generate a song from (max 4100 characters).",
),
IO.Float.Input(
"duration",
default=60,
min=3,
max=600,
step=0.1,
display_mode=IO.NumberDisplay.number,
),
IO.Boolean.Input(
"force_instrumental",
default=False,
tooltip="If true, guarantees the generated song will be instrumental.",
),
],
),
IO.DynamicCombo.Option(
"composition_plan",
[
IO.String.Input(
"positive_global_styles",
default="",
multiline=True,
tooltip="Global styles for the entire song (one per line). "
"E.g., 'pop', 'electronic', 'uplifting'.",
),
IO.String.Input(
"negative_global_styles",
default="",
multiline=True,
tooltip="Styles to avoid in the entire song (one per line). "
"E.g., 'metal', 'aggressive'.",
),
IO.Boolean.Input(
"respect_sections_durations",
default=True,
tooltip="When true, strictly enforces each section's duration. "
"When false, may adjust for better quality.",
),
IO.Autogrow.Input(
"sections",
template=IO.Autogrow.TemplatePrefix(
IO.Custom(ELEVENLABS_MUSIC_SECTIONS).Input("sections"),
prefix="section",
min=1,
max=30,
),
),
],
),
IO.DynamicCombo.Option(
"from_plan",
[
IO.Custom(ELEVENLABS_COMPOSITION_PLAN).Input(
"plan_data",
tooltip="Connect the plan_data output from ElevenLabsCreateCompositionPlan node.",
),
IO.Boolean.Input(
"respect_sections_durations",
default=True,
tooltip="When true, strictly enforces each section's duration. "
"When false, may adjust for better quality.",
),
],
),
],
tooltip="Choose between a simple text prompt, a structured composition plan, "
"or connect directly from ElevenLabsCreateCompositionPlan.",
),
IO.Combo.Input(
"output_format",
options=["mp3_44100_192", "opus_48000_192"],
),
],
outputs=[
IO.Audio.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: dict,
content: dict,
output_format: str,
) -> IO.NodeOutput:
if content["content"] == "prompt":
validate_string(content["prompt"], min_length=1, max_length=4100)
request = ComposeMusicRequest(
model_id=model["model"],
prompt=content["prompt"],
music_length_ms=content["duration"] * 1000,
force_instrumental=content["force_instrumental"],
output_format=output_format,
respect_sections_durations=None,
composition_plan=None,
)
elif content["content"] == "from_plan":
composition_plan = MusicPrompt.model_validate_json(content["plan_data"])
request = ComposeMusicRequest(
model_id=model["model"],
composition_plan=composition_plan,
respect_sections_durations=content["respect_sections_durations"],
output_format=output_format,
prompt=None,
music_length_ms=None,
force_instrumental=None,
)
else: # composition_plan
sections_autogrow = content["sections"]
sections: list[MusicSection] = []
for key in sections_autogrow:
section_json = sections_autogrow[key]
s = json.loads(section_json)
sections.append(
MusicSection(
section_name=s["section_name"],
positive_local_styles=s["positive_local_styles"],
negative_local_styles=s["negative_local_styles"],
duration_ms=s["duration_ms"],
lines=s["lines"],
)
)
if not sections:
raise ValueError("At least one section is required for composition_plan.")
request = ComposeMusicRequest(
model_id=model["model"],
composition_plan=MusicPrompt(
positive_global_styles=parse_multiline_to_list(content["positive_global_styles"]),
negative_global_styles=parse_multiline_to_list(content["negative_global_styles"]),
sections=sections,
),
respect_sections_durations=content["respect_sections_durations"],
output_format=output_format,
prompt=None,
music_length_ms=None,
force_instrumental=None,
)
response = await sync_op_raw(
cls,
ApiEndpoint(path="/proxy/elevenlabs/v1/music", method="POST"),
data=request,
as_binary=True,
)
return IO.NodeOutput(audio_bytes_to_audio_input(response))
class ElevenLabsSpeechToText(IO.ComfyNode):
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="ElevenLabsSpeechToText",
display_name="ElevenLabs Speech to Text",
category="api node/audio/ElevenLabs",
description="Transcribe audio to text. "
"Supports automatic language detection, speaker diarization, and audio event tagging.",
inputs=[
IO.Audio.Input(
"audio",
tooltip="Audio to transcribe.",
),
IO.DynamicCombo.Input(
"model",
options=[
IO.DynamicCombo.Option(
"scribe_v2",
[
IO.Boolean.Input(
"tag_audio_events",
default=False,
tooltip="Annotate sounds like (laughter), (music), etc. in transcript.",
),
IO.Boolean.Input(
"diarize",
default=False,
tooltip="Annotate which speaker is talking.",
),
IO.Float.Input(
"diarization_threshold",
default=0.22,
min=0.1,
max=0.4,
step=0.01,
display_mode=IO.NumberDisplay.slider,
tooltip="Speaker separation sensitivity. "
"Lower values are more sensitive to speaker changes.",
),
IO.Float.Input(
"temperature",
default=0.0,
min=0.0,
max=2.0,
step=0.01,
display_mode=IO.NumberDisplay.slider,
tooltip="Randomness control. "
"0.0 uses model default. Higher values increase randomness.",
),
IO.Combo.Input(
"timestamps_granularity",
options=["word", "character", "none"],
default="word",
tooltip="Timing precision for transcript words.",
),
],
),
],
tooltip="Model to use for transcription.",
),
IO.String.Input(
"language_code",
default="",
tooltip="ISO-639-1 or ISO-639-3 language code (e.g., 'en', 'es', 'fra'). "
"Leave empty for automatic detection.",
),
IO.Int.Input(
"num_speakers",
default=0,
min=0,
max=32,
display_mode=IO.NumberDisplay.slider,
tooltip="Maximum number of speakers to predict. Set to 0 for automatic detection.",
),
IO.Int.Input(
"seed",
default=1,
min=0,
max=2147483647,
tooltip="Seed for reproducibility (determinism not guaranteed).",
),
],
outputs=[
IO.String.Output(display_name="text"),
IO.String.Output(display_name="language_code"),
IO.String.Output(display_name="words_json"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
audio: Input.Audio,
model: dict,
language_code: str,
num_speakers: int,
seed: int,
) -> IO.NodeOutput:
if model["diarize"] and num_speakers:
raise ValueError(
"Number of speakers cannot be specified when diarization is enabled. "
"Either disable diarization or set num_speakers to 0."
)
request = SpeechToTextRequest(
model_id=model["model"],
cloud_storage_url=await upload_audio_to_comfyapi(
cls, audio, container_format="mp4", codec_name="aac", mime_type="audio/mp4"
),
language_code=language_code if language_code.strip() else None,
tag_audio_events=model["tag_audio_events"],
num_speakers=num_speakers if num_speakers > 0 else None,
timestamps_granularity=model["timestamps_granularity"],
diarize=model["diarize"],
diarization_threshold=model["diarization_threshold"] if model["diarize"] else None,
seed=seed,
temperature=model["temperature"],
)
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/elevenlabs/v1/speech-to-text", method="POST"),
response_model=SpeechToTextResponse,
data=request,
content_type="multipart/form-data",
)
words_json = json.dumps(
[w.model_dump(exclude_none=True) for w in response.words] if response.words else [],
indent=2,
)
return IO.NodeOutput(response.text, response.language_code, words_json)
class ElevenLabsVoiceSelector(IO.ComfyNode):
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="ElevenLabsVoiceSelector",
display_name="ElevenLabs Voice Selector",
category="api node/audio/ElevenLabs",
description="Select a predefined ElevenLabs voice for text-to-speech generation.",
inputs=[
IO.Combo.Input(
"voice",
options=ELEVENLABS_VOICE_OPTIONS,
tooltip="Choose a voice from the predefined ElevenLabs voices.",
),
],
outputs=[
IO.Custom(ELEVENLABS_VOICE).Output(display_name="voice"),
],
is_api_node=False,
)
@classmethod
def execute(cls, voice: str) -> IO.NodeOutput:
voice_id = ELEVENLABS_VOICE_MAP.get(voice)
if not voice_id:
raise ValueError(f"Unknown voice: {voice}")
return IO.NodeOutput(voice_id)
class ElevenLabsTextToSpeech(IO.ComfyNode):
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="ElevenLabsTextToSpeech",
display_name="ElevenLabs Text to Speech",
category="api node/audio/ElevenLabs",
description="Convert text to speech.",
inputs=[
IO.Custom(ELEVENLABS_VOICE).Input(
"voice",
tooltip="Voice to use for speech synthesis. Connect from Voice Selector or Instant Voice Clone.",
),
IO.String.Input(
"text",
multiline=True,
default="",
tooltip="The text to convert to speech.",
),
IO.Float.Input(
"stability",
default=0.5,
min=0.0,
max=1.0,
step=0.01,
display_mode=IO.NumberDisplay.slider,
tooltip="Voice stability. Lower values give broader emotional range, "
"higher values produce more consistent but potentially monotonous speech.",
),
IO.Combo.Input(
"apply_text_normalization",
options=["auto", "on", "off"],
tooltip="Text normalization mode. 'auto' lets the system decide, "
"'on' always applies normalization, 'off' skips it.",
),
IO.DynamicCombo.Input(
"model",
options=[
IO.DynamicCombo.Option(
"eleven_multilingual_v2",
[
IO.Float.Input(
"speed",
default=1.0,
min=0.7,
max=1.3,
step=0.01,
display_mode=IO.NumberDisplay.slider,
tooltip="Speech speed. 1.0 is normal, <1.0 slower, >1.0 faster.",
),
IO.Float.Input(
"similarity_boost",
default=0.75,
min=0.0,
max=1.0,
step=0.01,
display_mode=IO.NumberDisplay.slider,
tooltip="Similarity boost. Higher values make the voice more similar to the original.",
),
IO.Boolean.Input(
"use_speaker_boost",
default=False,
tooltip="Boost similarity to the original speaker voice.",
),
IO.Float.Input(
"style",
default=0.0,
min=0.0,
max=0.2,
step=0.01,
display_mode=IO.NumberDisplay.slider,
tooltip="Style exaggeration. Higher values increase stylistic expression "
"but may reduce stability.",
),
],
),
IO.DynamicCombo.Option(
"eleven_v3",
[
IO.Float.Input(
"speed",
default=1.0,
min=0.7,
max=1.3,
step=0.01,
display_mode=IO.NumberDisplay.slider,
tooltip="Speech speed. 1.0 is normal, <1.0 slower, >1.0 faster.",
),
IO.Float.Input(
"similarity_boost",
default=0.75,
min=0.0,
max=1.0,
step=0.01,
display_mode=IO.NumberDisplay.slider,
tooltip="Similarity boost. Higher values make the voice more similar to the original.",
),
],
),
],
tooltip="Model to use for text-to-speech.",
),
IO.String.Input(
"language_code",
default="",
tooltip="ISO-639-1 or ISO-639-3 language code (e.g., 'en', 'es', 'fra'). "
"Leave empty for automatic detection.",
),
IO.Int.Input(
"seed",
default=1,
min=0,
max=2147483647,
tooltip="Seed for reproducibility (determinism not guaranteed).",
),
IO.Combo.Input(
"output_format",
options=["mp3_44100_192", "opus_48000_192"],
tooltip="Audio output format.",
),
],
outputs=[
IO.Audio.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
voice: str,
text: str,
stability: float,
apply_text_normalization: str,
model: dict,
language_code: str,
seed: int,
output_format: str,
) -> IO.NodeOutput:
validate_string(text, min_length=1)
request = TextToSpeechRequest(
text=text,
model_id=model["model"],
language_code=language_code if language_code.strip() else None,
voice_settings=TextToSpeechVoiceSettings(
stability=stability,
similarity_boost=model["similarity_boost"],
speed=model["speed"],
use_speaker_boost=model.get("use_speaker_boost", None),
style=model.get("style", None),
),
seed=seed,
apply_text_normalization=apply_text_normalization,
)
response = await sync_op_raw(
cls,
ApiEndpoint(
path=f"/proxy/elevenlabs/v1/text-to-speech/{voice}",
method="POST",
query_params={"output_format": output_format},
),
data=request,
as_binary=True,
)
return IO.NodeOutput(audio_bytes_to_audio_input(response))
class ElevenLabsAudioIsolation(IO.ComfyNode):
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="ElevenLabsAudioIsolation",
display_name="ElevenLabs Voice Isolation",
category="api node/audio/ElevenLabs",
description="Remove background noise from audio, isolating vocals or speech.",
inputs=[
IO.Audio.Input(
"audio",
tooltip="Audio to process for background noise removal.",
),
],
outputs=[
IO.Audio.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
audio: Input.Audio,
) -> IO.NodeOutput:
audio_data_np = audio_tensor_to_contiguous_ndarray(audio["waveform"])
audio_bytes_io = audio_ndarray_to_bytesio(audio_data_np, audio["sample_rate"], "mp4", "aac")
response = await sync_op_raw(
cls,
ApiEndpoint(path="/proxy/elevenlabs/v1/audio-isolation", method="POST"),
files={"audio": ("audio.mp4", audio_bytes_io, "audio/mp4")},
content_type="multipart/form-data",
as_binary=True,
)
return IO.NodeOutput(audio_bytes_to_audio_input(response))
class ElevenLabsTextToSoundEffects(IO.ComfyNode):
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="ElevenLabsTextToSoundEffects",
display_name="ElevenLabs Text to Sound Effects",
category="api node/audio/ElevenLabs",
description="Generate sound effects from text descriptions.",
inputs=[
IO.String.Input(
"text",
multiline=True,
default="",
tooltip="Text description of the sound effect to generate.",
),
IO.DynamicCombo.Input(
"model",
options=[
IO.DynamicCombo.Option(
"eleven_sfx_v2",
[
IO.Float.Input(
"duration",
default=5.0,
min=0.5,
max=30.0,
step=0.1,
display_mode=IO.NumberDisplay.slider,
tooltip="Duration of generated sound in seconds.",
),
IO.Boolean.Input(
"loop",
default=False,
tooltip="Create a smoothly looping sound effect.",
),
IO.Float.Input(
"prompt_influence",
default=0.3,
min=0.0,
max=1.0,
step=0.01,
display_mode=IO.NumberDisplay.slider,
tooltip="How closely generation follows the prompt. "
"Higher values make the sound follow the text more closely.",
),
],
),
],
tooltip="Model to use for sound effect generation.",
),
IO.Combo.Input(
"output_format",
options=["mp3_44100_192", "opus_48000_192"],
tooltip="Audio output format.",
),
],
outputs=[
IO.Audio.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
text: str,
model: dict,
output_format: str,
) -> IO.NodeOutput:
validate_string(text, min_length=1)
response = await sync_op_raw(
cls,
ApiEndpoint(
path="/proxy/elevenlabs/v1/sound-generation",
method="POST",
query_params={"output_format": output_format},
),
data=TextToSoundEffectsRequest(
text=text,
duration_seconds=model["duration"],
prompt_influence=model["prompt_influence"],
loop=model.get("loop", None),
),
as_binary=True,
)
return IO.NodeOutput(audio_bytes_to_audio_input(response))
class ElevenLabsInstantVoiceClone(IO.ComfyNode):
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="ElevenLabsInstantVoiceClone",
display_name="ElevenLabs Instant Voice Clone",
category="api node/audio/ElevenLabs",
description="Create a cloned voice from audio samples. "
"Provide 1-8 audio recordings of the voice to clone.",
inputs=[
IO.Autogrow.Input(
"files",
template=IO.Autogrow.TemplatePrefix(
IO.Audio.Input("audio"),
prefix="audio",
min=1,
max=8,
),
tooltip="Audio recordings for voice cloning.",
),
IO.Boolean.Input(
"remove_background_noise",
default=False,
tooltip="Remove background noise from voice samples using audio isolation.",
),
],
outputs=[
IO.Custom(ELEVENLABS_VOICE).Output(display_name="voice"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
files: IO.Autogrow.Type,
remove_background_noise: bool,
) -> IO.NodeOutput:
file_tuples: list[tuple[str, tuple[str, bytes, str]]] = []
for key in files:
audio = files[key]
sample_rate: int = audio["sample_rate"]
waveform = audio["waveform"]
audio_data_np = audio_tensor_to_contiguous_ndarray(waveform)
audio_bytes_io = audio_ndarray_to_bytesio(audio_data_np, sample_rate, "mp4", "aac")
file_tuples.append(("files", (f"{key}.mp4", audio_bytes_io.getvalue(), "audio/mp4")))
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/elevenlabs/v1/voices/add", method="POST"),
response_model=AddVoiceResponse,
data=AddVoiceRequest(
name=str(uuid.uuid4()),
remove_background_noise=remove_background_noise,
),
files=file_tuples,
content_type="multipart/form-data",
)
return IO.NodeOutput(response.voice_id)
ELEVENLABS_STS_VOICE_SETTINGS = [
IO.Float.Input(
"speed",
default=1.0,
min=0.7,
max=1.3,
step=0.01,
display_mode=IO.NumberDisplay.slider,
tooltip="Speech speed. 1.0 is normal, <1.0 slower, >1.0 faster.",
),
IO.Float.Input(
"similarity_boost",
default=0.75,
min=0.0,
max=1.0,
step=0.01,
display_mode=IO.NumberDisplay.slider,
tooltip="Similarity boost. Higher values make the voice more similar to the original.",
),
IO.Boolean.Input(
"use_speaker_boost",
default=False,
tooltip="Boost similarity to the original speaker voice.",
),
IO.Float.Input(
"style",
default=0.0,
min=0.0,
max=0.2,
step=0.01,
display_mode=IO.NumberDisplay.slider,
tooltip="Style exaggeration. Higher values increase stylistic expression but may reduce stability.",
),
]
class ElevenLabsSpeechToSpeech(IO.ComfyNode):
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="ElevenLabsSpeechToSpeech",
display_name="ElevenLabs Speech to Speech",
category="api node/audio/ElevenLabs",
description="Transform speech from one voice to another while preserving the original content and emotion.",
inputs=[
IO.Custom(ELEVENLABS_VOICE).Input(
"voice",
tooltip="Target voice for the transformation. "
"Connect from Voice Selector or Instant Voice Clone.",
),
IO.Audio.Input(
"audio",
tooltip="Source audio to transform.",
),
IO.Float.Input(
"stability",
default=0.5,
min=0.0,
max=1.0,
step=0.01,
display_mode=IO.NumberDisplay.slider,
tooltip="Voice stability. Lower values give broader emotional range, "
"higher values produce more consistent but potentially monotonous speech.",
),
IO.DynamicCombo.Input(
"model",
options=[
IO.DynamicCombo.Option(
"eleven_multilingual_sts_v2",
ELEVENLABS_STS_VOICE_SETTINGS,
),
IO.DynamicCombo.Option(
"eleven_english_sts_v2",
ELEVENLABS_STS_VOICE_SETTINGS,
),
],
tooltip="Model to use for speech-to-speech transformation.",
),
IO.Combo.Input(
"output_format",
options=["mp3_44100_192", "opus_48000_192"],
tooltip="Audio output format.",
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=4294967295,
tooltip="Seed for reproducibility.",
),
IO.Boolean.Input(
"remove_background_noise",
default=False,
tooltip="Remove background noise from input audio using audio isolation.",
),
],
outputs=[
IO.Audio.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
voice: str,
audio: Input.Audio,
stability: float,
model: dict,
output_format: str,
seed: int,
remove_background_noise: bool,
) -> IO.NodeOutput:
audio_data_np = audio_tensor_to_contiguous_ndarray(audio["waveform"])
audio_bytes_io = audio_ndarray_to_bytesio(audio_data_np, audio["sample_rate"], "mp4", "aac")
voice_settings = TextToSpeechVoiceSettings(
stability=stability,
similarity_boost=model["similarity_boost"],
style=model["style"],
use_speaker_boost=model["use_speaker_boost"],
speed=model["speed"],
)
response = await sync_op_raw(
cls,
ApiEndpoint(
path=f"/proxy/elevenlabs/v1/speech-to-speech/{voice}",
method="POST",
query_params={"output_format": output_format},
),
data=SpeechToSpeechRequest(
model_id=model["model"],
voice_settings=voice_settings.model_dump_json(exclude_none=True),
seed=seed,
remove_background_noise=remove_background_noise,
),
files={"audio": ("audio.mp4", audio_bytes_io.getvalue(), "audio/mp4")},
content_type="multipart/form-data",
as_binary=True,
)
return IO.NodeOutput(audio_bytes_to_audio_input(response))
def _generate_dialogue_inputs(count: int) -> list:
"""Generate input widgets for a given number of dialogue entries."""
inputs = []
for i in range(1, count + 1):
inputs.extend(
[
IO.String.Input(
f"text{i}",
multiline=True,
default="",
tooltip=f"Text content for dialogue entry {i}.",
),
IO.Custom(ELEVENLABS_VOICE).Input(
f"voice{i}",
tooltip=f"Voice for dialogue entry {i}. Connect from Voice Selector or Instant Voice Clone.",
),
]
)
return inputs
class ElevenLabsTextToDialogue(IO.ComfyNode):
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="ElevenLabsTextToDialogue",
display_name="ElevenLabs Text to Dialogue",
category="api node/audio/ElevenLabs",
description="Generate multi-speaker dialogue from text. Each dialogue entry has its own text and voice.",
inputs=[
IO.Float.Input(
"stability",
default=0.5,
min=0.0,
max=1.0,
step=0.5,
display_mode=IO.NumberDisplay.slider,
tooltip="Voice stability. Lower values give broader emotional range, "
"higher values produce more consistent but potentially monotonous speech.",
),
IO.Combo.Input(
"apply_text_normalization",
options=["auto", "on", "off"],
tooltip="Text normalization mode. 'auto' lets the system decide, "
"'on' always applies normalization, 'off' skips it.",
),
IO.Combo.Input(
"model",
options=["eleven_v3"],
tooltip="Model to use for dialogue generation.",
),
IO.DynamicCombo.Input(
"inputs",
options=[
IO.DynamicCombo.Option("1", _generate_dialogue_inputs(1)),
IO.DynamicCombo.Option("2", _generate_dialogue_inputs(2)),
IO.DynamicCombo.Option("3", _generate_dialogue_inputs(3)),
IO.DynamicCombo.Option("4", _generate_dialogue_inputs(4)),
IO.DynamicCombo.Option("5", _generate_dialogue_inputs(5)),
IO.DynamicCombo.Option("6", _generate_dialogue_inputs(6)),
IO.DynamicCombo.Option("7", _generate_dialogue_inputs(7)),
IO.DynamicCombo.Option("8", _generate_dialogue_inputs(8)),
IO.DynamicCombo.Option("9", _generate_dialogue_inputs(9)),
IO.DynamicCombo.Option("10", _generate_dialogue_inputs(10)),
],
tooltip="Number of dialogue entries.",
),
IO.String.Input(
"language_code",
default="",
tooltip="ISO-639-1 or ISO-639-3 language code (e.g., 'en', 'es', 'fra'). "
"Leave empty for automatic detection.",
),
IO.Int.Input(
"seed",
default=1,
min=0,
max=4294967295,
tooltip="Seed for reproducibility.",
),
IO.Combo.Input(
"output_format",
options=["mp3_44100_192", "opus_48000_192"],
tooltip="Audio output format.",
),
],
outputs=[
IO.Audio.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
stability: float,
apply_text_normalization: str,
model: str,
inputs: dict,
language_code: str,
seed: int,
output_format: str,
) -> IO.NodeOutput:
num_entries = int(inputs["inputs"])
dialogue_inputs: list[DialogueInput] = []
for i in range(1, num_entries + 1):
text = inputs[f"text{i}"]
voice_id = inputs[f"voice{i}"]
validate_string(text, min_length=1)
dialogue_inputs.append(DialogueInput(text=text, voice_id=voice_id))
request = TextToDialogueRequest(
inputs=dialogue_inputs,
model_id=model,
language_code=language_code if language_code.strip() else None,
settings=DialogueSettings(stability=stability),
seed=seed,
apply_text_normalization=apply_text_normalization,
)
response = await sync_op_raw(
cls,
ApiEndpoint(
path="/proxy/elevenlabs/v1/text-to-dialogue",
method="POST",
query_params={"output_format": output_format},
),
data=request,
as_binary=True,
)
return IO.NodeOutput(audio_bytes_to_audio_input(response))
class ElevenLabsExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
# ElevenLabsComposeMusicSection,
# ElevenLabsCreateCompositionPlan,
# ElevenLabsComposeMusic,
ElevenLabsSpeechToText,
ElevenLabsVoiceSelector,
ElevenLabsTextToSpeech,
ElevenLabsAudioIsolation,
ElevenLabsTextToSoundEffects,
ElevenLabsInstantVoiceClone,
ElevenLabsSpeechToSpeech,
ElevenLabsTextToDialogue,
]
async def comfy_entrypoint() -> ElevenLabsExtension:
return ElevenLabsExtension()