ComfyUI/comfy/text_encoders/genmo.py
2025-12-12 12:11:25 -08:00

48 lines
2.0 KiB
Python

from ..transformers_compat import T5TokenizerFast
from .. import sd1_clip
from . import sd3_clip
from ..component_model import files
class T5XXLModel(sd3_clip.T5XXLModel):
def __init__(self, **kwargs):
kwargs["attention_mask"] = True
super().__init__(**kwargs)
class MochiT5XXL(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options=None):
if model_options is None:
model_options = {}
super().__init__(device=device, dtype=dtype, name="t5xxl", clip_model=T5XXLModel, model_options=model_options)
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data=None):
if tokenizer_data is None:
tokenizer_data = {}
tokenizer_path = files.get_package_as_path("comfy.text_encoders.t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
class MochiT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data=None):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
if tokenizer_data is None:
tokenizer_data = {}
def mochi_te(dtype_t5=None, t5_quantization_metadata=None):
class MochiTEModel_(MochiT5XXL):
def __init__(self, device="cpu", dtype=None, model_options=None):
if model_options is None:
model_options = {}
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)
return MochiTEModel_