ComfyUI/comfy_extras/silver_custom.py
Silversith 72d262d11e Update silver_custom.py
Change testing on hand tracking image to mask
2023-04-28 12:27:16 +02:00

63 lines
1.8 KiB
Python

import cv2
import torch
class ExpandImageMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE", )
}
}
CATEGORY = "mask"
RETURN_TYPES = ("IMAGE", "MASK", )
FUNCTION = "image_to_mask_image"
def image_to_mask_image(self, images):
mask_images = []
for image in images:
i = 255. * image.cpu().numpy()
# Convert to grayscale
image_gray = cv2.cvtColor(i, cv2.COLOR_BGR2GRAY)
# Apply blurring to grayscale image
image_gray = cv2.blur(image_gray, (10, 10))
image_gray = cv2.blur(image_gray, (20, 20))
# Convert image to the expected data type
image_gray = cv2.convertScaleAbs(image_gray)
# Apply threshold to grayscale image
(thresh, im_bw) = cv2.threshold(image_gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
# Apply blurring to binary mask image
ksize = (50, 50)
im_bw = cv2.blur(im_bw, ksize)
# Threshold binary mask image again
im_bw = cv2.threshold(im_bw, thresh, 255, cv2.THRESH_BINARY)[1]
# Invert binary mask image
# im_bw = cv2.bitwise_not(im_bw)
# Convert binary mask image to PyTorch tensor
img = torch.from_numpy(im_bw).unsqueeze(0).float()
# Append mask image tensor to list
mask_images.append(img)
# Stack list of mask image tensors into a single tensor
mask_images_tensor = torch.cat(mask_images)
# Return tuple of mask images and single mask image
single_mask_image = mask_images_tensor[0, :, :]
return mask_images_tensor, single_mask_image
NODE_CLASS_MAPPINGS = {
"ExpandImageMask": ExpandImageMask
}