ComfyUI/comfy/ldm/qwen_image/model.py
2025-10-27 22:00:47 -07:00

754 lines
32 KiB
Python

# https://github.com/QwenLM/Qwen-Image (Apache 2.0)
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import logging
from typing import Optional, Tuple
from einops import repeat, rearrange
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND
import comfy.ldm.common_dit
import comfy.patcher_extension
logger = logging.getLogger(__name__)
class GELU(nn.Module):
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True, dtype=None, device=None, operations=None):
super().__init__()
self.proj = operations.Linear(dim_in, dim_out, bias=bias, dtype=dtype, device=device)
self.approximate = approximate
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = F.gelu(hidden_states, approximate=self.approximate)
return hidden_states
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
inner_dim=None,
bias: bool = True,
dtype=None, device=None, operations=None
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
self.net = nn.ModuleList([])
self.net.append(GELU(dim, inner_dim, approximate="tanh", bias=bias, dtype=dtype, device=device, operations=operations))
self.net.append(nn.Dropout(dropout))
self.net.append(operations.Linear(inner_dim, dim_out, bias=bias, dtype=dtype, device=device))
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
def apply_rotary_emb(x, freqs_cis):
if x.shape[1] == 0:
return x
t_ = x.reshape(*x.shape[:-1], -1, 1, 2)
t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
return t_out.reshape(*x.shape)
class QwenTimestepProjEmbeddings(nn.Module):
def __init__(self, embedding_dim, pooled_projection_dim, dtype=None, device=None, operations=None):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
self.timestep_embedder = TimestepEmbedding(
in_channels=256,
time_embed_dim=embedding_dim,
dtype=dtype,
device=device,
operations=operations
)
def forward(self, timestep, hidden_states):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype))
return timesteps_emb
class Attention(nn.Module):
def __init__(
self,
query_dim: int,
dim_head: int = 64,
heads: int = 8,
dropout: float = 0.0,
bias: bool = False,
eps: float = 1e-5,
out_bias: bool = True,
out_dim: int = None,
out_context_dim: int = None,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.inner_kv_dim = self.inner_dim
self.heads = heads
self.dim_head = dim_head
self.out_dim = out_dim if out_dim is not None else query_dim
self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
self.dropout = dropout
# Q/K normalization
self.norm_q = operations.RMSNorm(dim_head, eps=eps, elementwise_affine=True, dtype=dtype, device=device)
self.norm_k = operations.RMSNorm(dim_head, eps=eps, elementwise_affine=True, dtype=dtype, device=device)
self.norm_added_q = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
self.norm_added_k = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
# Image stream projections
self.to_q = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
self.to_k = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
self.to_v = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
# Text stream projections
self.add_q_proj = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
self.add_k_proj = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
self.add_v_proj = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
# Output projections
self.to_out = nn.ModuleList([
operations.Linear(self.inner_dim, self.out_dim, bias=out_bias, dtype=dtype, device=device),
nn.Dropout(dropout)
])
self.to_add_out = operations.Linear(self.inner_dim, self.out_context_dim, bias=out_bias, dtype=dtype, device=device)
def forward(
self,
hidden_states: torch.FloatTensor, # Image stream
encoder_hidden_states: torch.FloatTensor = None, # Text stream
encoder_hidden_states_mask: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
transformer_options={},
) -> Tuple[torch.Tensor, torch.Tensor]:
seq_txt = encoder_hidden_states.shape[1]
img_query = self.to_q(hidden_states).unflatten(-1, (self.heads, -1))
img_key = self.to_k(hidden_states).unflatten(-1, (self.heads, -1))
img_value = self.to_v(hidden_states).unflatten(-1, (self.heads, -1))
txt_query = self.add_q_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_key = self.add_k_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_value = self.add_v_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
img_query = self.norm_q(img_query)
img_key = self.norm_k(img_key)
txt_query = self.norm_added_q(txt_query)
txt_key = self.norm_added_k(txt_key)
# Concatenate text and image streams
joint_query = torch.cat([txt_query, img_query], dim=1)
joint_key = torch.cat([txt_key, img_key], dim=1)
joint_value = torch.cat([txt_value, img_value], dim=1)
# Apply RoPE to concatenated queries and keys
joint_query = apply_rotary_emb(joint_query, image_rotary_emb)
joint_key = apply_rotary_emb(joint_key, image_rotary_emb)
# Apply EliGen attention mask if present
effective_mask = attention_mask
if transformer_options is not None:
eligen_mask = transformer_options.get("eligen_attention_mask", None)
if eligen_mask is not None:
effective_mask = eligen_mask
# Validate shape
expected_seq = joint_query.shape[1]
if eligen_mask.shape[-1] != expected_seq:
raise ValueError(
f"EliGen attention mask shape mismatch: {eligen_mask.shape} "
f"doesn't match sequence length {expected_seq}"
)
# Use ComfyUI's optimized attention
joint_query = joint_query.flatten(start_dim=2)
joint_key = joint_key.flatten(start_dim=2)
joint_value = joint_value.flatten(start_dim=2)
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, effective_mask, transformer_options=transformer_options)
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
img_attn_output = joint_hidden_states[:, seq_txt:, :]
img_attn_output = self.to_out[0](img_attn_output)
img_attn_output = self.to_out[1](img_attn_output)
txt_attn_output = self.to_add_out(txt_attn_output)
return img_attn_output, txt_attn_output
class QwenImageTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
eps: float = 1e-6,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.dim = dim
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.img_mod = nn.Sequential(
nn.SiLU(),
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device),
)
self.img_norm1 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
self.img_norm2 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
self.img_mlp = FeedForward(dim=dim, dim_out=dim, dtype=dtype, device=device, operations=operations)
self.txt_mod = nn.Sequential(
nn.SiLU(),
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device),
)
self.txt_norm1 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
self.txt_norm2 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
self.txt_mlp = FeedForward(dim=dim, dim_out=dim, dtype=dtype, device=device, operations=operations)
self.attn = Attention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=True,
eps=eps,
dtype=dtype,
device=device,
operations=operations,
)
def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
shift, scale, gate = torch.chunk(mod_params, 3, dim=-1)
return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_mask: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
transformer_options={},
) -> Tuple[torch.Tensor, torch.Tensor]:
img_mod_params = self.img_mod(temb)
txt_mod_params = self.txt_mod(temb)
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1)
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1)
img_normed = self.img_norm1(hidden_states)
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
txt_normed = self.txt_norm1(encoder_hidden_states)
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
img_attn_output, txt_attn_output = self.attn(
hidden_states=img_modulated,
encoder_hidden_states=txt_modulated,
encoder_hidden_states_mask=encoder_hidden_states_mask,
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
hidden_states = hidden_states + img_gate1 * img_attn_output
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
img_normed2 = self.img_norm2(hidden_states)
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
hidden_states = torch.addcmul(hidden_states, img_gate2, self.img_mlp(img_modulated2))
txt_normed2 = self.txt_norm2(encoder_hidden_states)
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
encoder_hidden_states = torch.addcmul(encoder_hidden_states, txt_gate2, self.txt_mlp(txt_modulated2))
return encoder_hidden_states, hidden_states
class LastLayer(nn.Module):
def __init__(
self,
embedding_dim: int,
conditioning_embedding_dim: int,
elementwise_affine=False,
eps=1e-6,
bias=True,
dtype=None, device=None, operations=None
):
super().__init__()
self.silu = nn.SiLU()
self.linear = operations.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias, dtype=dtype, device=device)
self.norm = operations.LayerNorm(embedding_dim, eps, elementwise_affine=False, bias=bias, dtype=dtype, device=device)
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
emb = self.linear(self.silu(conditioning_embedding))
scale, shift = torch.chunk(emb, 2, dim=1)
x = torch.addcmul(shift[:, None, :], self.norm(x), (1 + scale)[:, None, :])
return x
class QwenImageTransformer2DModel(nn.Module):
# Constants for EliGen processing
LATENT_TO_PIXEL_RATIO = 8 # Latents are 8x downsampled from pixel space
PATCH_TO_LATENT_RATIO = 2 # 2x2 patches in latent space
PATCH_TO_PIXEL_RATIO = 16 # Combined: 2x2 patches on 8x downsampled latents = 16x in pixel space
def __init__(
self,
patch_size: int = 2,
in_channels: int = 64,
out_channels: Optional[int] = 16,
num_layers: int = 60,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 3584,
pooled_projection_dim: int = 768,
guidance_embeds: bool = False,
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
image_model=None,
final_layer=True,
dtype=None,
device=None,
operations=None,
):
super().__init__()
self.dtype = dtype
self.patch_size = patch_size
self.in_channels = in_channels
self.out_channels = out_channels or in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.pe_embedder = EmbedND(dim=attention_head_dim, theta=10000, axes_dim=list(axes_dims_rope))
self.time_text_embed = QwenTimestepProjEmbeddings(
embedding_dim=self.inner_dim,
pooled_projection_dim=pooled_projection_dim,
dtype=dtype,
device=device,
operations=operations
)
self.txt_norm = operations.RMSNorm(joint_attention_dim, eps=1e-6, dtype=dtype, device=device)
self.img_in = operations.Linear(in_channels, self.inner_dim, dtype=dtype, device=device)
self.txt_in = operations.Linear(joint_attention_dim, self.inner_dim, dtype=dtype, device=device)
self.transformer_blocks = nn.ModuleList([
QwenImageTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
dtype=dtype,
device=device,
operations=operations
)
for _ in range(num_layers)
])
if final_layer:
self.norm_out = LastLayer(self.inner_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
self.proj_out = operations.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True, dtype=dtype, device=device)
def process_img(self, x, index=0, h_offset=0, w_offset=0):
bs, c, t, h, w = x.shape
patch_size = self.patch_size
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (1, self.patch_size, self.patch_size))
orig_shape = hidden_states.shape
hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2)
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5)
hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4)
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device)
img_ids[:, :, 0] = img_ids[:, :, 1] + index
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1) - (h_len // 2)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) - (w_len // 2)
return hidden_states, repeat(img_ids, "h w c -> b (h w) c", b=bs), orig_shape
def process_entity_masks(self, latents, prompt_emb, prompt_emb_mask, entity_prompt_emb,
entity_prompt_emb_mask, entity_masks, height, width, image,
cond_or_uncond=None, batch_size=None):
"""
Process entity masks and build spatial attention mask for EliGen.
Concatenates entity+global prompts, builds RoPE embeddings, creates attention mask
enforcing spatial restrictions, and handles CFG batching with separate masks.
Based on: https://github.com/modelscope/DiffSynth-Studio
"""
num_entities = len(entity_prompt_emb)
actual_batch_size = latents.shape[0]
has_positive = cond_or_uncond and 0 in cond_or_uncond
has_negative = cond_or_uncond and 1 in cond_or_uncond
is_cfg_batched = has_positive and has_negative
logger.debug(
f"[EliGen Model] Processing {num_entities} entities for {height}x{width}px, "
f"batch_size={actual_batch_size}, CFG_batched={is_cfg_batched}"
)
# Concatenate entity + global prompts
all_prompt_emb = entity_prompt_emb + [prompt_emb]
all_prompt_emb = [self.txt_in(self.txt_norm(local_prompt_emb)) for local_prompt_emb in all_prompt_emb]
all_prompt_emb = torch.cat(all_prompt_emb, dim=1)
# Build RoPE embeddings
patch_h = height // self.PATCH_TO_PIXEL_RATIO
patch_w = width // self.PATCH_TO_PIXEL_RATIO
entity_seq_lens = [int(mask.sum(dim=1)[0].item()) for mask in entity_prompt_emb_mask]
if prompt_emb_mask is not None:
global_seq_len = int(prompt_emb_mask.sum(dim=1)[0].item())
else:
global_seq_len = int(prompt_emb.shape[1])
max_vid_index = max(patch_h // 2, patch_w // 2)
# Generate per-entity text RoPE (each entity starts from same offset)
entity_txt_embs = []
for entity_seq_len in entity_seq_lens:
entity_ids = torch.arange(
max_vid_index,
max_vid_index + entity_seq_len,
device=latents.device
).reshape(1, -1, 1).repeat(1, 1, 3)
entity_rope = self.pe_embedder(entity_ids).squeeze(1).squeeze(0)
entity_txt_embs.append(entity_rope)
# Generate global text RoPE
global_ids = torch.arange(
max_vid_index,
max_vid_index + global_seq_len,
device=latents.device
).reshape(1, -1, 1).repeat(1, 1, 3)
global_rope = self.pe_embedder(global_ids).squeeze(1).squeeze(0)
txt_rotary_emb = torch.cat(entity_txt_embs + [global_rope], dim=0)
h_coords = torch.arange(-(patch_h - patch_h // 2), patch_h // 2, device=latents.device)
w_coords = torch.arange(-(patch_w - patch_w // 2), patch_w // 2, device=latents.device)
img_ids = torch.zeros((patch_h, patch_w, 3), device=latents.device)
img_ids[:, :, 0] = 0
img_ids[:, :, 1] = h_coords.unsqueeze(1)
img_ids[:, :, 2] = w_coords.unsqueeze(0)
img_ids = img_ids.reshape(1, -1, 3)
img_rope = self.pe_embedder(img_ids).squeeze(1).squeeze(0)
logger.debug(f"[EliGen Model] RoPE shapes - img: {img_rope.shape}, txt: {txt_rotary_emb.shape}")
# Concatenate text and image RoPE embeddings
# Convert to latent dtype to match queries/keys
image_rotary_emb = torch.cat([txt_rotary_emb, img_rope], dim=0).unsqueeze(1).to(dtype=latents.dtype)
# Prepare spatial masks
repeat_dim = latents.shape[1]
max_masks = entity_masks.shape[1]
entity_masks = entity_masks.repeat(1, 1, repeat_dim, 1, 1)
padded_h = height // self.LATENT_TO_PIXEL_RATIO
padded_w = width // self.LATENT_TO_PIXEL_RATIO
if entity_masks.shape[3] != padded_h or entity_masks.shape[4] != padded_w:
pad_h = padded_h - entity_masks.shape[3]
pad_w = padded_w - entity_masks.shape[4]
logger.debug(f"[EliGen Model] Padding masks by ({pad_h}, {pad_w})")
entity_masks = torch.nn.functional.pad(entity_masks, (0, pad_w, 0, pad_h), mode='constant', value=0)
entity_masks = [entity_masks[:, i, None].squeeze(1) for i in range(max_masks)]
global_mask = torch.ones((entity_masks[0].shape[0], entity_masks[0].shape[1], padded_h, padded_w),
device=latents.device, dtype=latents.dtype)
entity_masks = entity_masks + [global_mask]
# Patchify masks
N = len(entity_masks)
batch_size = int(entity_masks[0].shape[0])
seq_lens = entity_seq_lens + [global_seq_len]
total_seq_len = int(sum(seq_lens) + image.shape[1])
logger.debug(f"[EliGen Model] total_seq={total_seq_len}")
patched_masks = []
for i in range(N):
patched_mask = rearrange(
entity_masks[i],
"B C (H P) (W Q) -> B (H W) (C P Q)",
H=height // self.PATCH_TO_PIXEL_RATIO,
W=width // self.PATCH_TO_PIXEL_RATIO,
P=self.PATCH_TO_LATENT_RATIO,
Q=self.PATCH_TO_LATENT_RATIO
)
patched_masks.append(patched_mask)
# Build attention mask matrix
attention_mask = torch.ones(
(batch_size, total_seq_len, total_seq_len),
dtype=torch.bool
).to(device=entity_masks[0].device)
# Calculate positions
image_start = int(sum(seq_lens))
image_end = int(total_seq_len)
cumsum = [0]
single_image_seq = int(image_end - image_start)
for length in seq_lens:
cumsum.append(cumsum[-1] + length)
# Spatial restriction (prompt <-> image)
for i in range(N):
prompt_start = cumsum[i]
prompt_end = cumsum[i+1]
# Create binary mask for which image patches this entity can attend to
image_mask = torch.sum(patched_masks[i], dim=-1) > 0
image_mask = image_mask.unsqueeze(1).repeat(1, seq_lens[i], 1)
# Always repeat mask to match image sequence length
repeat_time = single_image_seq // image_mask.shape[-1]
image_mask = image_mask.repeat(1, 1, repeat_time)
# Bidirectional restriction:
# - Entity prompt can only attend to its masked image regions
attention_mask[:, prompt_start:prompt_end, image_start:image_end] = image_mask
# - Image patches can only be updated by prompts that own them
attention_mask[:, image_start:image_end, prompt_start:prompt_end] = image_mask.transpose(1, 2)
# Entity isolation
for i in range(N):
for j in range(N):
if i == j:
continue
start_i, end_i = cumsum[i], cumsum[i+1]
start_j, end_j = cumsum[j], cumsum[j+1]
attention_mask[:, start_i:end_i, start_j:end_j] = False
# Convert to additive bias and handle CFG batching
attention_mask = attention_mask.float()
num_valid_connections = (attention_mask == 1).sum().item()
attention_mask[attention_mask == 0] = float('-inf')
attention_mask[attention_mask == 1] = 0
attention_mask = attention_mask.to(device=latents.device, dtype=latents.dtype)
# Handle CFG batching: Create separate masks for positive and negative
if is_cfg_batched and actual_batch_size > 1:
# CFG batch: [positive, negative] - need different masks for each
# Positive gets entity constraints, negative gets standard attention (all zeros)
logger.debug(
f"[EliGen Model] CFG batched detected - creating separate masks. "
f"Positive (index 0) gets entity mask, Negative (index 1) gets standard mask"
)
# Create standard attention mask (all zeros = no constraints)
standard_mask = torch.zeros_like(attention_mask)
# Stack masks according to cond_or_uncond order
mask_list = []
for cond_type in cond_or_uncond:
if cond_type == 0: # Positive - use entity mask
mask_list.append(attention_mask[0:1]) # Take first (and only) entity mask
else: # Negative - use standard mask
mask_list.append(standard_mask[0:1])
# Concatenate masks to match batch
attention_mask = torch.cat(mask_list, dim=0)
logger.debug(
f"[EliGen Model] Created {len(mask_list)} masks for CFG batch. "
f"Final shape: {attention_mask.shape}"
)
# Add head dimension: [B, 1, seq, seq]
attention_mask = attention_mask.unsqueeze(1)
logger.debug(
f"[EliGen Model] Attention mask created: shape={attention_mask.shape}, "
f"valid_connections={num_valid_connections}/{total_seq_len * total_seq_len}"
)
return all_prompt_emb, image_rotary_emb, attention_mask
def forward(self, x, timestep, context, attention_mask=None, guidance=None, ref_latents=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, attention_mask, guidance, ref_latents, transformer_options, **kwargs)
def _forward(
self,
x,
timesteps,
context,
attention_mask=None,
guidance: torch.Tensor = None,
ref_latents=None,
transformer_options={},
control=None,
**kwargs
):
timestep = timesteps
encoder_hidden_states = context
encoder_hidden_states_mask = attention_mask
hidden_states, img_ids, orig_shape = self.process_img(x)
num_embeds = hidden_states.shape[1]
if ref_latents is not None:
h = 0
w = 0
index = 0
index_ref_method = kwargs.get("ref_latents_method", "index") == "index"
for ref in ref_latents:
if index_ref_method:
index += 1
h_offset = 0
w_offset = 0
else:
index = 1
h_offset = 0
w_offset = 0
if ref.shape[-2] + h > ref.shape[-1] + w:
w_offset = w
else:
h_offset = h
h = max(h, ref.shape[-2] + h_offset)
w = max(w, ref.shape[-1] + w_offset)
kontext, kontext_ids, _ = self.process_img(ref, index=index, h_offset=h_offset, w_offset=w_offset)
hidden_states = torch.cat([hidden_states, kontext], dim=1)
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
# Extract EliGen entity data
entity_prompt_emb = kwargs.get("entity_prompt_emb", None)
entity_prompt_emb_mask = kwargs.get("entity_prompt_emb_mask", None)
entity_masks = kwargs.get("entity_masks", None)
# Detect batch composition for CFG handling
cond_or_uncond = transformer_options.get("cond_or_uncond", []) if transformer_options else []
is_positive_cond = 0 in cond_or_uncond
is_negative_cond = 1 in cond_or_uncond
batch_size = x.shape[0]
if entity_prompt_emb is not None:
logger.debug(
f"[EliGen Forward] batch_size={batch_size}, cond_or_uncond={cond_or_uncond}, "
f"has_positive={is_positive_cond}, has_negative={is_negative_cond}"
)
if entity_prompt_emb is not None and entity_masks is not None and entity_prompt_emb_mask is not None and is_positive_cond:
# EliGen path
height = int(orig_shape[-2] * 8)
width = int(orig_shape[-1] * 8)
encoder_hidden_states, image_rotary_emb, eligen_attention_mask = self.process_entity_masks(
latents=x,
prompt_emb=encoder_hidden_states,
prompt_emb_mask=encoder_hidden_states_mask,
entity_prompt_emb=entity_prompt_emb,
entity_prompt_emb_mask=entity_prompt_emb_mask,
entity_masks=entity_masks,
height=height,
width=width,
image=hidden_states,
cond_or_uncond=cond_or_uncond,
batch_size=batch_size
)
hidden_states = self.img_in(hidden_states)
if transformer_options is None:
transformer_options = {}
transformer_options["eligen_attention_mask"] = eligen_attention_mask
del img_ids
else:
# Standard path
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
del ids, txt_ids, img_ids
hidden_states = self.img_in(hidden_states)
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
encoder_hidden_states = self.txt_in(encoder_hidden_states)
if guidance is not None:
guidance = guidance * 1000
temb = (
self.time_text_embed(timestep, hidden_states)
if guidance is None
else self.time_text_embed(timestep, guidance, hidden_states)
)
patches_replace = transformer_options.get("patches_replace", {})
patches = transformer_options.get("patches", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.transformer_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
if "double_block" in patches:
for p in patches["double_block"]:
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i, "transformer_options": transformer_options})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
hidden_states[:, :add.shape[1]] += add
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states[:, :num_embeds].view(orig_shape[0], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2)
hidden_states = hidden_states.permute(0, 3, 1, 4, 2, 5)
return hidden_states.reshape(orig_shape)[:, :, :, :x.shape[-2], :x.shape[-1]]