mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-10 06:10:50 +08:00
475 lines
21 KiB
Python
475 lines
21 KiB
Python
from __future__ import annotations
|
|
|
|
from ..cmd.main_pre import tracer
|
|
|
|
import asyncio
|
|
import concurrent.futures
|
|
import contextlib
|
|
import copy
|
|
import gc
|
|
import json
|
|
import logging
|
|
import threading
|
|
import uuid
|
|
from asyncio import get_event_loop
|
|
from multiprocessing import RLock
|
|
from typing import Optional, Literal
|
|
|
|
from opentelemetry import context, propagate
|
|
from opentelemetry.context import Context, attach, detach
|
|
from opentelemetry.trace import Status, StatusCode
|
|
|
|
from .async_progress_iterable import QueuePromptWithProgress
|
|
from .client_types import V1QueuePromptResponse
|
|
from ..api.components.schema.prompt import PromptDict
|
|
from ..cli_args_types import Configuration
|
|
from ..cli_args import default_configuration
|
|
from ..cmd.folder_paths import init_default_paths # pylint: disable=import-error
|
|
from ..component_model.executor_types import ExecutorToClientProgress
|
|
from ..component_model.make_mutable import make_mutable
|
|
from ..component_model.queue_types import QueueItem, ExecutionStatus, TaskInvocation, QueueTuple, ExtraData
|
|
from ..distributed.executors import ContextVarExecutor
|
|
from ..distributed.history import History
|
|
from ..distributed.process_pool_executor import ProcessPoolExecutor
|
|
from ..distributed.server_stub import ServerStub
|
|
from ..component_model.configuration import MODEL_MANAGEMENT_ARGS, requires_process_pool_executor
|
|
|
|
_prompt_executor = threading.local()
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _execute_prompt(
|
|
prompt: dict,
|
|
prompt_id: str,
|
|
client_id: str,
|
|
span_context: dict,
|
|
progress_handler: ExecutorToClientProgress | None,
|
|
configuration: Configuration | None,
|
|
partial_execution_targets: Optional[list[str]] = None) -> dict:
|
|
configuration = copy.deepcopy(configuration) if configuration is not None else None
|
|
from ..execution_context import current_execution_context
|
|
execution_context = current_execution_context()
|
|
if len(execution_context.folder_names_and_paths) == 0 or configuration is not None:
|
|
init_default_paths(execution_context.folder_names_and_paths, configuration, replace_existing=True)
|
|
span_context: Context = propagate.extract(span_context)
|
|
token = attach(span_context)
|
|
try:
|
|
# there is never an event loop running on a thread or process pool thread here
|
|
# this also guarantees nodes will be able to successfully call await
|
|
return asyncio.run(__execute_prompt(prompt, prompt_id, client_id, span_context, progress_handler, configuration, partial_execution_targets))
|
|
finally:
|
|
detach(token)
|
|
|
|
|
|
async def __execute_prompt(
|
|
prompt: dict,
|
|
prompt_id: str,
|
|
client_id: str,
|
|
span_context: Context,
|
|
progress_handler: ExecutorToClientProgress | None,
|
|
configuration: Configuration | None,
|
|
partial_execution_targets: list[str] | None) -> dict:
|
|
from ..execution_context import context_configuration
|
|
with context_configuration(configuration):
|
|
return await ___execute_prompt(prompt, prompt_id, client_id, span_context, progress_handler, partial_execution_targets)
|
|
|
|
|
|
async def ___execute_prompt(
|
|
prompt: dict,
|
|
prompt_id: str,
|
|
client_id: str,
|
|
span_context: Context,
|
|
progress_handler: ExecutorToClientProgress | None,
|
|
partial_execution_targets: list[str] | None) -> dict:
|
|
from ..cmd.execution import PromptExecutor
|
|
|
|
progress_handler = progress_handler or ServerStub()
|
|
prompt_executor: PromptExecutor = None
|
|
try:
|
|
prompt_executor: PromptExecutor = _prompt_executor.executor
|
|
except (LookupError, AttributeError):
|
|
with tracer.start_as_current_span("Initialize Prompt Executor", context=span_context):
|
|
# todo: deal with new caching features
|
|
prompt_executor = PromptExecutor(progress_handler)
|
|
prompt_executor.raise_exceptions = True
|
|
_prompt_executor.executor = prompt_executor
|
|
|
|
with tracer.start_as_current_span("Execute Prompt", context=span_context) as span:
|
|
try:
|
|
prompt_mut = make_mutable(prompt)
|
|
from ..cmd.execution import validate_prompt
|
|
validation_tuple = await validate_prompt(prompt_id, prompt_mut, partial_execution_targets)
|
|
if not validation_tuple.valid:
|
|
if validation_tuple.node_errors is not None and len(validation_tuple.node_errors) > 0:
|
|
validation_error_dict = validation_tuple.node_errors
|
|
elif validation_tuple.error is not None:
|
|
validation_error_dict = validation_tuple.error
|
|
else:
|
|
validation_error_dict = {"message": "Unknown", "details": ""}
|
|
raise ValueError(json.dumps(validation_error_dict))
|
|
|
|
if client_id is None:
|
|
prompt_executor.server = ServerStub()
|
|
else:
|
|
prompt_executor.server = progress_handler
|
|
|
|
await prompt_executor.execute_async(prompt_mut, prompt_id, {"client_id": client_id},
|
|
execute_outputs=validation_tuple.good_output_node_ids)
|
|
return prompt_executor.outputs_ui
|
|
except Exception as exc_info:
|
|
span.set_status(Status(StatusCode.ERROR))
|
|
span.record_exception(exc_info)
|
|
raise exc_info
|
|
|
|
|
|
def _cleanup(invalidate_nodes=True):
|
|
from ..cmd.execution import PromptExecutor
|
|
from ..nodes_context import invalidate
|
|
try:
|
|
prompt_executor: PromptExecutor = _prompt_executor.executor
|
|
# this should clear all references to output tensors and make it easier to collect back the memory
|
|
prompt_executor.reset()
|
|
except (LookupError, AttributeError):
|
|
pass
|
|
from .. import model_management
|
|
model_management.unload_all_models()
|
|
gc.collect()
|
|
try:
|
|
model_management.soft_empty_cache()
|
|
except:
|
|
pass
|
|
if invalidate_nodes:
|
|
try:
|
|
invalidate()
|
|
except:
|
|
pass
|
|
|
|
|
|
class Comfy:
|
|
"""
|
|
A client for running ComfyUI workflows within a Python application.
|
|
|
|
This client allows you to execute ComfyUI workflows (in API JSON format) programmatically.
|
|
It manages the execution environment, including model loading and resource cleanup.
|
|
|
|
### Configuration and Executors
|
|
|
|
ComfyUI relies on global state for model management (e.g., loaded models in VRAM). To handle this safely, `Comfy`
|
|
executes workflows using one of two strategies based on your `configuration`:
|
|
|
|
1. **ContextVarExecutor (Default)**: Runs in a thread pool within the current process.
|
|
- **Pros**: Efficient, low overhead.
|
|
- **Cons**: Modifies global state in the current process.
|
|
- **Use Case**: Standard workflows where you are happy with the default ComfyUI settings or sharing state.
|
|
|
|
2. **ProcessPoolExecutor**: Runs in a separate process.
|
|
- **Pros**: Complete isolation. Configuration changes (like `lowvram`) do not affect the main process.
|
|
- **Cons**: Higher overhead (process startup).
|
|
- **Use Case**: Required when `configuration` overrides arguments that affect global model management state.
|
|
These arguments include: `lowvram`, `highvram`, `cpu`, `gpu_only`, `deterministic`, `directml`,
|
|
various `fp8`/`fp16`/`bf16` settings, and attention optimizations (e.g., `use_flash_attention`).
|
|
|
|
The client automatically selects `ProcessPoolExecutor` if you provide a `configuration` that modifies any of these
|
|
global settings, unless you explicitly pass an `executor`.
|
|
|
|
### Parameters
|
|
|
|
- **configuration** (`Optional[Configuration]`): A dictionary of arguments to override defaults.
|
|
See `comfy.cli_args_types.Configuration`.
|
|
Example: `{"lowvram": True}` or `{"gpu_only": True}`.
|
|
- **progress_handler** (`Optional[ExecutorToClientProgress]`): callback handler for progress updates and previews.
|
|
- **max_workers** (`int`): Maximum number of concurrent workflows (default: 1).
|
|
- **executor** (`Optional[Union[Executor, str]]`): Explicitly define the executor to use.
|
|
- Pass an instance of `ProcessPoolExecutor` or `ContextVarExecutor`.
|
|
- Pass the string `"ProcessPoolExecutor"` or `"ContextVarExecutor"` to force initialization of that type.
|
|
- If `None` (default), the best executor is chosen based on `configuration`.
|
|
|
|
### Examples
|
|
|
|
#### 1. Running a Workflow (Basic)
|
|
|
|
This example executes a simple workflow and prints the path of the saved image.
|
|
|
|
```python
|
|
import asyncio
|
|
from comfy.client.embedded_comfy_client import Comfy
|
|
|
|
# A simple API format workflow (simplified for brevity)
|
|
prompt_dict = {
|
|
"3": {
|
|
"class_type": "KSampler",
|
|
"inputs": {
|
|
"seed": 8566257, "steps": 20, "cfg": 8, "sampler_name": "euler",
|
|
"scheduler": "normal", "denoise": 1,
|
|
"model": ["4", 0], "positive": ["6", 0], "negative": ["7", 0],
|
|
"latent_image": ["5", 0]
|
|
}
|
|
},
|
|
"4": {"class_type": "CheckpointLoaderSimple", "inputs": {"ckpt_name": "v1-5-pruned-emaonly.safetensors"}},
|
|
"5": {"class_type": "EmptyLatentImage", "inputs": {"width": 512, "height": 512, "batch_size": 1}},
|
|
"6": {"class_type": "CLIPTextEncode", "inputs": {"text": "masterpiece best quality girl", "clip": ["4", 1]}},
|
|
"7": {"class_type": "CLIPTextEncode", "inputs": {"text": "bad hands", "clip": ["4", 1]}},
|
|
"8": {"class_type": "VAEDecode", "inputs": {"samples": ["3", 0], "vae": ["4", 2]}},
|
|
"9": {"class_type": "SaveImage", "inputs": {"filename_prefix": "ComfyUI_API", "images": ["8", 0]}}
|
|
}
|
|
|
|
async def main():
|
|
# Using default configuration (runs in-process)
|
|
async with Comfy() as client:
|
|
# Queue the prompt and await the result
|
|
outputs = await client.queue_prompt(prompt_dict)
|
|
|
|
# Retrieve the output path from the SaveImage node (Node ID "9")
|
|
image_path = outputs["9"]["images"][0]["abs_path"]
|
|
print(f"Image saved to: {image_path}")
|
|
|
|
# asyncio.run(main())
|
|
```
|
|
|
|
#### 2. Using Custom Configuration (Isolated Process)
|
|
|
|
To run with specific settings like `lowvram`, pass the configuration. This implies `ProcessPoolExecutor`.
|
|
|
|
```python
|
|
async def run_lowvram():
|
|
# This will spawn a new process with lowvram enabled
|
|
async with Comfy(configuration={"lowvram": True}) as client:
|
|
outputs = await client.queue_prompt(prompt_dict)
|
|
print("Finished lowvram generation")
|
|
```
|
|
|
|
#### 3. Programmatically Building Workflows
|
|
|
|
You can use `GraphBuilder` constructing workflows with a more pythonic API.
|
|
|
|
```python
|
|
from comfy_execution.graph_utils import GraphBuilder
|
|
|
|
def build_graph():
|
|
builder = GraphBuilder()
|
|
checkpoint = builder.node("CheckpointLoaderSimple", ckpt_name="v1-5-pruned-emaonly.safetensors")
|
|
latent = builder.node("EmptyLatentImage", width=512, height=512, batch_size=1)
|
|
pos = builder.node("CLIPTextEncode", text="masterpiece", clip=checkpoint.out(1))
|
|
neg = builder.node("CLIPTextEncode", text="bad quality", clip=checkpoint.out(1))
|
|
|
|
sampler = builder.node("KSampler",
|
|
seed=42, steps=20, cfg=8, sampler_name="euler", scheduler="normal", denoise=1,
|
|
model=checkpoint.out(0), positive=pos.out(0), negative=neg.out(0), latent_image=latent.out(0)
|
|
)
|
|
vae = builder.node("VAEDecode", samples=sampler.out(0), vae=checkpoint.out(2))
|
|
builder.node("SaveImage", filename_prefix="Generated", images=vae.out(0))
|
|
return builder.finalize()
|
|
|
|
async def run_builder():
|
|
prompt = build_graph()
|
|
async with Comfy() as client:
|
|
await client.queue_prompt(prompt)
|
|
```
|
|
|
|
#### 4. Streaming Progress and Previews
|
|
|
|
To receive real-time progress updates and preview images (e.g., step-by-step decoding).
|
|
|
|
```python
|
|
from comfy.component_model.queue_types import BinaryEventTypes
|
|
|
|
async def run_streaming():
|
|
async with Comfy() as client:
|
|
# Get a task that supports progress iteration
|
|
task = client.queue_with_progress(prompt_dict)
|
|
|
|
async for notification in task.progress():
|
|
if notification.event == BinaryEventTypes.PREVIEW_IMAGE_WITH_METADATA:
|
|
# 'data' contains the PIL Image and metadata
|
|
image, metadata = notification.data
|
|
print(f"Received preview: {image.size}")
|
|
elif notification.event == "progress":
|
|
print(f"Step: {notification.data['value']}/{notification.data['max']}")
|
|
|
|
# Await final result
|
|
result = await task.get()
|
|
```
|
|
"""
|
|
|
|
def __init__(self, configuration: Optional[Configuration] = None, progress_handler: Optional[ExecutorToClientProgress] = None, max_workers: int = 1, executor: ProcessPoolExecutor | ContextVarExecutor | Literal["ProcessPoolExecutor", "ContextVarExecutor"] = None):
|
|
self._progress_handler = progress_handler or ServerStub()
|
|
self._default_configuration = default_configuration()
|
|
self._configuration = configuration
|
|
|
|
need_process_pool = requires_process_pool_executor(configuration)
|
|
|
|
if executor is None:
|
|
if need_process_pool:
|
|
self._executor = ProcessPoolExecutor(max_workers=max_workers)
|
|
self._owns_executor = True
|
|
else:
|
|
self._executor = ContextVarExecutor(max_workers=max_workers)
|
|
self._owns_executor = True
|
|
elif isinstance(executor, str):
|
|
self._owns_executor = True
|
|
if executor == "ProcessPoolExecutor":
|
|
self._executor = ProcessPoolExecutor(max_workers=max_workers)
|
|
elif executor == "ContextVarExecutor":
|
|
if need_process_pool:
|
|
raise ValueError(f"Configuration requires ProcessPoolExecutor but ContextVarExecutor was requested. Configuration keys causing this: {[k for k in MODEL_MANAGEMENT_ARGS if configuration.get(k) != self._default_configuration.get(k)]}")
|
|
self._executor = ContextVarExecutor(max_workers=max_workers)
|
|
else:
|
|
raise ValueError(f"Unknown executor type string: {executor}")
|
|
else:
|
|
# Executor instance passed
|
|
self._owns_executor = False
|
|
self._executor = executor
|
|
if need_process_pool and not isinstance(executor, ProcessPoolExecutor):
|
|
raise ValueError(f"Configuration requires ProcessPoolExecutor but {type(executor).__name__} was passed. Configuration keys causing this: {[k for k in MODEL_MANAGEMENT_ARGS if configuration.get(k) != self._default_configuration.get(k)]}")
|
|
|
|
self._is_running = False
|
|
self._task_count_lock = RLock()
|
|
self._task_count = 0
|
|
self._history = History()
|
|
self._exit_stack = None
|
|
self._async_exit_stack = None
|
|
|
|
@property
|
|
def is_running(self) -> bool:
|
|
return self._is_running
|
|
|
|
@property
|
|
def task_count(self) -> int:
|
|
return self._task_count
|
|
|
|
def __enter__(self):
|
|
self._exit_stack = contextlib.ExitStack()
|
|
self._is_running = True
|
|
from ..execution_context import context_configuration
|
|
cm = context_configuration(self._configuration)
|
|
self._exit_stack.enter_context(cm)
|
|
if self._owns_executor:
|
|
self._exit_stack.enter_context(self._executor)
|
|
return self
|
|
|
|
@property
|
|
def history(self) -> History:
|
|
return self._history
|
|
|
|
async def clear_cache(self):
|
|
await get_event_loop().run_in_executor(self._executor, _cleanup, False)
|
|
|
|
def __exit__(self, *args):
|
|
get_event_loop().run_in_executor(self._executor, _cleanup)
|
|
self._is_running = False
|
|
self._exit_stack.__exit__(*args)
|
|
|
|
async def __aenter__(self):
|
|
self._async_exit_stack = contextlib.AsyncExitStack()
|
|
self._is_running = True
|
|
from ..execution_context import context_configuration
|
|
cm = context_configuration(self._configuration)
|
|
self._async_exit_stack.enter_context(cm)
|
|
if self._owns_executor:
|
|
self._async_exit_stack.enter_context(self._executor)
|
|
return self
|
|
|
|
async def __aexit__(self, *args):
|
|
|
|
while self.task_count > 0:
|
|
await asyncio.sleep(0.1)
|
|
|
|
await get_event_loop().run_in_executor(self._executor, _cleanup)
|
|
|
|
self._is_running = False
|
|
await self._async_exit_stack.__aexit__(*args)
|
|
|
|
async def queue_prompt_api(self,
|
|
prompt: PromptDict | str | dict,
|
|
progress_handler: Optional[ExecutorToClientProgress] = None) -> V1QueuePromptResponse:
|
|
"""
|
|
Queues a prompt for execution, returning the output when it is complete.
|
|
:param prompt: a PromptDict, string or dictionary containing a so-called Workflow API prompt
|
|
:return: a response of URLs for Save-related nodes and the node outputs
|
|
"""
|
|
if isinstance(prompt, str):
|
|
prompt = json.loads(prompt)
|
|
if isinstance(prompt, dict):
|
|
from ..api.components.schema.prompt import Prompt
|
|
prompt = Prompt.validate(prompt)
|
|
outputs = await self.queue_prompt(prompt, progress_handler=progress_handler)
|
|
return V1QueuePromptResponse(urls=[], outputs=outputs)
|
|
|
|
def queue_with_progress(self, prompt: PromptDict | str | dict) -> QueuePromptWithProgress:
|
|
"""
|
|
Queues a prompt with progress notifications.
|
|
|
|
>>> from comfy.client.embedded_comfy_client import Comfy
|
|
>>> from comfy.client.client_types import ProgressNotification
|
|
>>> async with Comfy() as comfy:
|
|
>>> task = comfy.queue_with_progress({ ... })
|
|
>>> # Raises an exception while iterating
|
|
>>> notification: ProgressNotification
|
|
>>> async for notification in task.progress():
|
|
>>> print(notification.data)
|
|
>>> # If you get this far, no errors occurred.
|
|
>>> result = await task.get()
|
|
:param prompt:
|
|
:return:
|
|
"""
|
|
handler = QueuePromptWithProgress()
|
|
task = asyncio.create_task(self.queue_prompt_api(prompt, progress_handler=handler.progress_handler))
|
|
task.add_done_callback(handler.complete)
|
|
return handler
|
|
|
|
@tracer.start_as_current_span("Queue Prompt")
|
|
async def queue_prompt(self,
|
|
prompt: PromptDict | dict,
|
|
prompt_id: Optional[str] = None,
|
|
client_id: Optional[str] = None,
|
|
partial_execution_targets: Optional[list[str]] = None,
|
|
progress_handler: Optional[ExecutorToClientProgress] = None) -> dict:
|
|
if isinstance(self._executor, ProcessPoolExecutor) and progress_handler is not None:
|
|
logger.debug(f"a progress_handler={progress_handler} was passed, it must be pickleable to support ProcessPoolExecutor")
|
|
progress_handler = progress_handler or self._progress_handler
|
|
with self._task_count_lock:
|
|
self._task_count += 1
|
|
prompt_id = prompt_id or str(uuid.uuid4())
|
|
assert prompt_id is not None
|
|
client_id = client_id or self._progress_handler.client_id or None
|
|
span_context = context.get_current()
|
|
carrier = {}
|
|
propagate.inject(carrier, span_context)
|
|
# setup history
|
|
prompt = make_mutable(prompt)
|
|
|
|
try:
|
|
outputs = await get_event_loop().run_in_executor(
|
|
self._executor,
|
|
_execute_prompt,
|
|
prompt,
|
|
prompt_id,
|
|
client_id,
|
|
carrier,
|
|
# todo: a proxy object or something more sophisticated will have to be done here to restore progress notifications for ProcessPoolExecutors
|
|
None if isinstance(self._executor, ProcessPoolExecutor) else progress_handler,
|
|
self._configuration,
|
|
partial_execution_targets,
|
|
)
|
|
|
|
fut = concurrent.futures.Future()
|
|
fut.set_result(TaskInvocation(prompt_id, copy.deepcopy(outputs), ExecutionStatus('success', True, [])))
|
|
self._history.put(QueueItem(queue_tuple=QueueTuple(float(self._task_count), prompt_id, prompt, ExtraData(), [], {}), completed=fut), outputs, ExecutionStatus('success', True, []))
|
|
return outputs
|
|
except Exception as exc_info:
|
|
fut = concurrent.futures.Future()
|
|
fut.set_exception(exc_info)
|
|
self._history.put(QueueItem(queue_tuple=QueueTuple(float(self._task_count), prompt_id, prompt, ExtraData(), [], {}), completed=fut), {}, ExecutionStatus('error', False, [str(exc_info)]))
|
|
raise exc_info
|
|
finally:
|
|
with self._task_count_lock:
|
|
self._task_count -= 1
|
|
|
|
def __str__(self):
|
|
diff = {k: v for k, v in (self._configuration or {}).items() if v != self._default_configuration.get(k)}
|
|
return f"<Comfy task_count={self.task_count} configuration={diff} executor={self._executor}>"
|
|
|
|
|
|
EmbeddedComfyClient = Comfy
|