mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-09 13:50:49 +08:00
Fix Openpose: Add code explicitly for openpose Segmentations (Uniformer): Fix path mismatch (config is not in models folder)
188 lines
7.4 KiB
Python
188 lines
7.4 KiB
Python
from . import canny, hed, midas, mlsd, openpose, uniformer
|
|
from .util import HWC3
|
|
import torch
|
|
import numpy as np
|
|
import cv2
|
|
|
|
def img_np_to_tensor(img_np):
|
|
return torch.from_numpy(img_np.astype(np.float32) / 255.0)[None,]
|
|
def img_tensor_to_np(img_tensor):
|
|
img_tensor = img_tensor.clone()
|
|
img_tensor = img_tensor * 255.0
|
|
return img_tensor.squeeze(0).numpy().astype(np.uint8)
|
|
#Thanks ChatGPT
|
|
|
|
def common_annotator_call(annotator_callback, tensor_image, *args):
|
|
call_result = annotator_callback(img_tensor_to_np(tensor_image), *args)
|
|
if type(annotator_callback) is openpose.OpenposeDetector:
|
|
return (HWC3(call_result[0]),call_result[1])
|
|
# if type(call_result) is tuple:
|
|
# for i in range(len(call_result)):
|
|
# call_result[i] = HWC3(call_result[i])
|
|
# else:
|
|
# call_result = HWC3(call_result)
|
|
return HWC3(call_result)
|
|
|
|
|
|
class CannyEdgePreprocesor:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "image": ("IMAGE", ) ,
|
|
"low_threshold": ("INT", {"default": 100, "min": 0, "max": 255, "step": 1}),
|
|
"high_threshold": ("INT", {"default": 100, "min": 0, "max": 255, "step": 1}),
|
|
"l2gradient": (["disable", "enable"], )
|
|
}}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "detect_edge"
|
|
|
|
CATEGORY = "preprocessors"
|
|
|
|
def detect_edge(self, image, low_threshold, high_threshold, l2gradient):
|
|
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_canny2image.py
|
|
np_detected_map = common_annotator_call(canny.CannyDetector(), image, low_threshold, high_threshold, l2gradient == "enable")
|
|
return (img_np_to_tensor(np_detected_map),)
|
|
|
|
class HEDPreprocesor:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "image": ("IMAGE",) }}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "detect_boundary"
|
|
|
|
CATEGORY = "preprocessors"
|
|
|
|
def detect_boundary(self, image):
|
|
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_hed2image.py
|
|
np_detected_map = common_annotator_call(hed.HEDdetector(), image)
|
|
return (img_np_to_tensor(np_detected_map),)
|
|
|
|
class ScribblePreprocessor:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "image": ("IMAGE",) }}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "transform_scribble"
|
|
|
|
CATEGORY = "preprocessors"
|
|
|
|
def transform_scribble(self, image):
|
|
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_scribble2image.py
|
|
np_img = img_tensor_to_np(image)
|
|
np_detected_map = np.zeros_like(np_img, dtype=np.uint8)
|
|
np_detected_map[np.min(np_img, axis=2) < 127] = 255
|
|
return (img_np_to_tensor(np_detected_map),)
|
|
|
|
class FakeScribblePreprocessor:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "image": ("IMAGE",) }}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "transform_scribble"
|
|
|
|
CATEGORY = "preprocessors"
|
|
|
|
def transform_scribble(self, image):
|
|
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_fake_scribble2image.py
|
|
np_detected_map = common_annotator_call(hed.HEDdetector(), image)
|
|
np_detected_map = hed.nms(np_detected_map, 127, 3.0)
|
|
np_detected_map = cv2.GaussianBlur(np_detected_map, (0, 0), 3.0)
|
|
np_detected_map[np_detected_map > 4] = 255
|
|
np_detected_map[np_detected_map < 255] = 0
|
|
return (img_np_to_tensor(np_detected_map),)
|
|
|
|
class MIDASDepthMapPreprocessor:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "image": ("IMAGE", ) ,
|
|
"a": ("FLOAT", {"default": np.pi * 2.0, "min": 0.0, "max": np.pi * 5.0, "step": 0.1}),
|
|
"bg_threshold": ("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step": 0.1})
|
|
}}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "estimate_depth"
|
|
|
|
CATEGORY = "preprocessors"
|
|
|
|
def estimate_depth(self, image, a, bg_threshold):
|
|
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_depth2image.py
|
|
depth_map_np, normal_map_np = common_annotator_call(midas.MidasDetector(), image, a, bg_threshold)
|
|
return (img_np_to_tensor(depth_map_np),)
|
|
|
|
class MIDASNormalMapPreprocessor:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "image": ("IMAGE", ) ,
|
|
"a": ("FLOAT", {"default": np.pi * 2.0, "min": 0.0, "max": np.pi * 5.0, "step": 0.1}),
|
|
"bg_threshold": ("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step": 0.1})
|
|
}}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "estimate_normal"
|
|
|
|
CATEGORY = "preprocessors"
|
|
|
|
def estimate_normal(self, image, a, bg_threshold):
|
|
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_depth2image.py
|
|
depth_map_np, normal_map_np = common_annotator_call(midas.MidasDetector(), image, a, bg_threshold)
|
|
return (img_np_to_tensor(normal_map_np),)
|
|
|
|
class MLSDPreprocessor:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "image": ("IMAGE",) ,
|
|
#Idk what should be the max value here since idk much about ML
|
|
"score_threshold": ("FLOAT", {"default": np.pi * 2.0, "min": 0.0, "max": np.pi * 2.0, "step": 0.1}),
|
|
"dist_threshold": ("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step": 0.1})
|
|
}}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "detect_edge"
|
|
|
|
CATEGORY = "preprocessors"
|
|
|
|
def detect_edge(self, image, score_threshold, dist_threshold):
|
|
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_hough2image.py
|
|
np_detected_map = common_annotator_call(mlsd.MLSDdetector(), image, score_threshold, dist_threshold)
|
|
return (img_np_to_tensor(np_detected_map),)
|
|
|
|
class OpenposePreprocessor:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "image": ("IMAGE", ),
|
|
"detect_hand": (["disable", "enable"],)
|
|
}}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "estimate_pose"
|
|
|
|
CATEGORY = "preprocessors"
|
|
|
|
def estimate_pose(self, image, detect_hand):
|
|
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_pose2image.py
|
|
np_detected_map, pose_info = common_annotator_call(openpose.OpenposeDetector(), image, detect_hand == "enable")
|
|
return (img_np_to_tensor(np_detected_map),)
|
|
|
|
class UniformerPreprocessor:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "image": ("IMAGE", )
|
|
}}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "semantic_segmentate"
|
|
|
|
CATEGORY = "preprocessors"
|
|
|
|
def semantic_segmentate(self, image):
|
|
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_seg2image.py
|
|
np_detected_map = common_annotator_call(uniformer.UniformerDetector(), image)
|
|
return (img_np_to_tensor(np_detected_map),)
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"CannyEdgePreprocesor": CannyEdgePreprocesor,
|
|
"M-LSDPreprocessor": MLSDPreprocessor,
|
|
"HEDPreprocesor": HEDPreprocesor,
|
|
"ScribblePreprocessor": ScribblePreprocessor,
|
|
"FakeScribblePreprocessor": FakeScribblePreprocessor,
|
|
"OpenposePreprocessor": OpenposePreprocessor,
|
|
"MiDaS-DepthMapPreprocessor": MIDASDepthMapPreprocessor,
|
|
"MiDaS-NormalMapPreprocessor": MIDASNormalMapPreprocessor,
|
|
"SemSegPreprocessor": UniformerPreprocessor
|
|
}
|
|
|