ComfyUI/tests/unit/test_openapi_nodes.py
doctorpangloss 96b4e04315 packaging fixes
- enable user db
 - fix main_pre order everywhere
 - fix absolute to relative imports everywhere
 - async better supported
2025-07-15 10:19:33 -07:00

635 lines
24 KiB
Python

from __future__ import annotations
# noqa: E402
from comfy.cmd.main_pre import args
import os
import re
import uuid
from datetime import datetime
import cv2
import numpy as np
import pytest
import torch
from PIL import Image, ExifTags
from freezegun import freeze_time
from comfy.cmd import folder_paths
from comfy.component_model.executor_types import ValidateInputsTuple
from comfy_extras.nodes.nodes_open_api import SaveImagesResponse, IntRequestParameter, FloatRequestParameter, \
StringRequestParameter, HashImage, StringPosixPathJoin, LegacyOutputURIs, DevNullUris, StringJoin, StringToUri, \
UriFormat, ImageExifMerge, ImageExifCreationDateAndBatchNumber, ImageExif, ImageExifUncommon, \
StringEnumRequestParameter, ExifContainer, BooleanRequestParameter, ImageRequestParameter
_image_1x1 = torch.zeros((1, 1, 1, 3), dtype=torch.float32, device="cpu")
def test_save_image_response(use_temporary_output_directory):
assert SaveImagesResponse.INPUT_TYPES() is not None
n = SaveImagesResponse()
ui_node_ret_dict = n.execute(images=_image_1x1, uris=["with_prefix/1.png"], name="test")
assert os.path.isfile(os.path.join(folder_paths.get_output_directory(), "with_prefix/1.png"))
assert len(ui_node_ret_dict["result"]) == 1
assert len(ui_node_ret_dict["ui"]["images"]) == 1
image_result, = ui_node_ret_dict["result"]
assert image_result[0]["filename"] == "1.png"
assert image_result[0]["subfolder"] == "with_prefix"
assert image_result[0]["name"] == "test"
def test_save_image_response_abs_local_uris(use_temporary_output_directory):
assert SaveImagesResponse.INPUT_TYPES() is not None
n = SaveImagesResponse()
ui_node_ret_dict = n.execute(images=_image_1x1, uris=[os.path.join(folder_paths.get_output_directory(), "with_prefix/1.png")], name="test")
assert os.path.isfile(os.path.join(folder_paths.get_output_directory(), "with_prefix/1.png"))
assert len(ui_node_ret_dict["result"]) == 1
assert len(ui_node_ret_dict["ui"]["images"]) == 1
image_result, = ui_node_ret_dict["result"]
assert image_result[0]["filename"] == "1.png"
assert image_result[0]["subfolder"] == "with_prefix"
assert image_result[0]["name"] == "test"
def test_save_image_response_remote_uris(use_temporary_output_directory):
n = SaveImagesResponse()
uri = "memory://some_folder/1.png"
ui_node_ret_dict = n.execute(images=_image_1x1, uris=[uri])
assert len(ui_node_ret_dict["result"]) == 1
assert len(ui_node_ret_dict["ui"]["images"]) == 1
image_result, = ui_node_ret_dict["result"]
filename_ = image_result[0]["filename"]
assert filename_ != "1.png"
assert filename_ != ""
assert uuid.UUID(filename_.replace(".png", "")) is not None
assert os.path.isfile(os.path.join(folder_paths.get_output_directory(), filename_))
assert image_result[0]["abs_path"] == uri
assert image_result[0]["subfolder"] == ""
def test_save_exif(use_temporary_output_directory):
n = SaveImagesResponse()
filename = "with_prefix/2.png"
n.execute(images=_image_1x1, uris=[filename], name="test", exif=[ExifContainer({
"Title": "test title"
})])
filepath = os.path.join(folder_paths.get_output_directory(), filename)
assert os.path.isfile(filepath)
with Image.open(filepath) as img:
assert img.info['Title'] == "test title"
def test_no_local_file():
n = SaveImagesResponse()
uri = "memory://some_folder/2.png"
ui_node_ret_dict = n.execute(images=_image_1x1, uris=[uri], local_uris=["/dev/null"])
assert len(ui_node_ret_dict["result"]) == 1
assert len(ui_node_ret_dict["ui"]["images"]) == 1
image_result, = ui_node_ret_dict["result"]
assert image_result[0]["filename"] == ""
assert not os.path.isfile(os.path.join(folder_paths.get_output_directory(), image_result[0]["filename"]))
assert image_result[0]["abs_path"] == uri
assert image_result[0]["subfolder"] == ""
def test_int_request_parameter():
nt = IntRequestParameter.INPUT_TYPES()
assert nt is not None
n = IntRequestParameter()
v, = n.execute(value=1, name="test")
assert v == 1
def test_float_request_parameter():
nt = FloatRequestParameter.INPUT_TYPES()
assert nt is not None
n = FloatRequestParameter()
v, = n.execute(value=3.5, name="test", description="")
assert v == 3.5
def test_string_request_parameter():
nt = StringRequestParameter.INPUT_TYPES()
assert nt is not None
n = StringRequestParameter()
v, = n.execute(value="test", name="test")
assert v == "test"
def test_bool_request_parameter():
nt = BooleanRequestParameter.INPUT_TYPES()
assert nt is not None
n = BooleanRequestParameter()
v, = n.execute(value=True, name="test")
assert v == True
async def test_string_enum_request_parameter():
nt = StringEnumRequestParameter.INPUT_TYPES()
assert nt is not None
n = StringEnumRequestParameter()
v, = n.execute(value="test", name="test")
assert v == "test"
prompt = {
"1": {
"inputs": {
"value": "euler",
"name": "sampler_name",
"title": "KSampler Node Sampler",
"description":
"This allows users to select a sampler for generating images with Latent Diffusion Models, including Stable Diffusion, ComfyUI, and SDXL. \n\nChange this only if explicitly requested by the user.\n\nList of sampler choice (this parameter): valid choices for scheduler (value for scheduler parameter).\n\n- euler: normal, karras, exponential, sgm_uniform, simple, ddim_uniform\n- euler_ancestral: normal, karras\n- heun: normal, karras\n- heunpp2: normal, karras\n- dpm_2: normal, karras\n- dpm_2_ancestral: normal, karras\n- lms: normal, karras\n- dpm_fast: normal, exponential\n- dpm_adaptive: normal, exponential\n- dpmpp_2s_ancestral: karras, exponential\n- dpmpp_sde: karras, exponential\n- dpmpp_sde_gpu: karras, exponential\n- dpmpp_2m: karras, sgm_uniform\n- dpmpp_2m_sde: karras, sgm_uniform\n- dpmpp_2m_sde_gpu: karras, sgm_uniform\n- dpmpp_3m_sde: karras, sgm_uniform\n- dpmpp_3m_sde_gpu: karras, sgm_uniform\n- ddpm: normal, simple\n- lcm: normal, exponential\n- ddim: normal, ddim_uniform\n- uni_pc: normal, karras, exponential\n- uni_pc_bh2: normal, karras, exponential",
"__required": True,
},
"class_type": "StringEnumRequestParameter",
"_meta": {
"title": "StringEnumRequestParameter",
},
},
"2": {
"inputs": {
"sampler_name": ["1", 0],
},
"class_type": "KSamplerSelect",
"_meta": {
"title": "KSamplerSelect",
},
},
}
from comfy.cmd.execution import validate_inputs
validated: dict[str, ValidateInputsTuple] = {}
prompt_id = str(uuid.uuid4())
validated["1"] = await validate_inputs(prompt_id, prompt, "1", validated)
validated["2"] = await validate_inputs(prompt_id, prompt, "2", validated)
assert validated["2"].valid
@pytest.mark.skip("issues")
def test_hash_images():
nt = HashImage.INPUT_TYPES()
assert nt is not None
n = HashImage()
hashes, = n.execute(images=torch.cat([_image_1x1.clone(), _image_1x1.clone()]))
# same image, same hash
assert hashes[0] == hashes[1]
# hash should be a valid sha256 hash
p = re.compile(r'^[0-9a-fA-F]{64}$')
for hash in hashes:
assert p.match(hash)
def test_string_posix_path_join():
nt = StringPosixPathJoin.INPUT_TYPES()
assert nt is not None
n = StringPosixPathJoin()
joined_path, = n.execute(value2="c", value0="a", value1="b")
assert joined_path == "a/b/c"
def test_legacy_output_uris(use_temporary_output_directory):
nt = LegacyOutputURIs.INPUT_TYPES()
assert nt is not None
n = LegacyOutputURIs()
images_ = torch.cat([_image_1x1.clone(), _image_1x1.clone()])
output_paths, = n.execute(images=images_)
# from SaveImage node
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path("ComfyUI", str(use_temporary_output_directory), images_[0].shape[1], images_[0].shape[0])
file1 = f"{filename}_{counter:05}_.png"
file2 = f"{filename}_{counter + 1:05}_.png"
files = [file1, file2]
assert os.path.basename(output_paths[0]) == files[0]
assert os.path.basename(output_paths[1]) == files[1]
def test_null_uris():
nt = DevNullUris.INPUT_TYPES()
assert nt is not None
n = DevNullUris()
res, = n.execute(torch.cat([_image_1x1.clone(), _image_1x1.clone()]))
assert all(x == "/dev/null" for x in res)
def test_string_join():
assert StringJoin.INPUT_TYPES() is not None
n = StringJoin()
res, = n.execute(separator="*", value1="b", value3="c", value0="a")
assert res == "a*b*c"
def test_string_to_uri():
assert StringToUri.INPUT_TYPES() is not None
n = StringToUri()
res, = n.execute("x", batch=3)
assert res == ["x"] * 3
def test_uri_format(use_temporary_output_directory):
assert UriFormat.INPUT_TYPES() is not None
n = UriFormat()
images = torch.cat([_image_1x1.clone(), _image_1x1.clone()])
# with defaults
uris, metadata_uris = n.execute(images=images, uri_template="{output}/{uuid}_{batch_index:05d}.png")
for uri in uris:
assert os.path.isabs(uri), "uri format returns absolute URIs when output appears"
assert os.path.commonpath([uri, use_temporary_output_directory]) == str(use_temporary_output_directory), "should be under output dir"
uris, metadata_uris = n.execute(images=images, uri_template="{output}/{uuid}.png")
for uri in uris:
assert os.path.isabs(uri)
assert os.path.commonpath([uri, use_temporary_output_directory]) == str(use_temporary_output_directory), "should be under output dir"
with pytest.raises(KeyError):
n.execute(images=images, uri_template="{xyz}.png")
def test_image_exif_merge():
assert ImageExifMerge.INPUT_TYPES() is not None
n = ImageExifMerge()
res, = n.execute(value0=[ExifContainer({"a": "1"}), ExifContainer({"a": "1"})], value1=[ExifContainer({"b": "2"}), ExifContainer({"a": "1"})], value2=[ExifContainer({"a": 3}), ExifContainer({})], value4=[ExifContainer({"a": ""}), ExifContainer({})])
assert res[0].exif["a"] == 3
assert res[0].exif["b"] == "2"
assert res[1].exif["a"] == "1"
@freeze_time("2024-01-14 03:21:34", tz_offset=-4)
@pytest.mark.skipif(True, reason="Time freezing not reliable on many platforms and interacts incorrectly with transformers")
def test_image_exif_creation_date_and_batch_number():
assert ImageExifCreationDateAndBatchNumber.INPUT_TYPES() is not None
n = ImageExifCreationDateAndBatchNumber()
res, = n.execute(images=torch.cat([_image_1x1.clone(), _image_1x1.clone()]))
mock_now = datetime(2024, 1, 13, 23, 21, 34)
now_formatted = mock_now.strftime("%Y:%m:%d %H:%M:%S%z")
assert res[0].exif["ImageNumber"] == "0"
assert res[1].exif["ImageNumber"] == "1"
assert res[0].exif["CreationDate"] == res[1].exif["CreationDate"] == now_formatted
def test_image_exif():
assert ImageExif.INPUT_TYPES() is not None
n = ImageExif()
res, = n.execute(images=_image_1x1, Title="test", Artist="test2")
assert res[0].exif["Title"] == "test"
assert res[0].exif["Artist"] == "test2"
def test_image_exif_uncommon():
assert "DigitalZoomRatio" in ImageExifUncommon.INPUT_TYPES()["optional"]
ImageExifUncommon().execute(images=_image_1x1)
def test_posix_join_curly_brackets():
n = StringPosixPathJoin()
joined_path, = n.execute(value2="c", value0="a_{test}", value1="b")
assert joined_path == "a_{test}/b/c"
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is not available")
def test_file_request_parameter(use_temporary_input_directory):
_image_1x1_px = np.array([[[255, 0, 0]]], dtype=np.uint8)
image_path = os.path.join(use_temporary_input_directory, "test_image.png")
image = Image.fromarray(_image_1x1_px)
image.save(image_path)
n = ImageRequestParameter()
loaded_image, = n.execute(value=image_path)
assert loaded_image.shape == (1, 1, 1, 3)
from comfy.nodes.base_nodes import LoadImage
load_image_node = LoadImage()
load_image_node_rgb, _ = load_image_node.load_image(image=os.path.basename(image_path))
assert loaded_image.shape == load_image_node_rgb.shape
assert torch.allclose(loaded_image, load_image_node_rgb)
def test_file_request_to_http_url_no_exceptions():
n = ImageRequestParameter()
loaded_image, = n.execute(value="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a6/A_rainbow_at_sunset_after_rain_in_Gaziantep%2C_Turkey.IMG_2448.jpg/484px-A_rainbow_at_sunset_after_rain_in_Gaziantep%2C_Turkey.IMG_2448.jpg")
_, height, width, channels = loaded_image.shape
assert width == 484
assert height == 480
assert channels == 3
@pytest.mark.parametrize("format,bits,supports_16bit", [
("png", 8, True),
("png", 16, True),
("tiff", 8, True),
("tiff", 16, True),
("exr", 16, True),
("jpeg", 8, False), # JPEG doesn't support 16-bit
("webp", 8, False), # WebP doesn't support 16-bit
])
def test_save_image_bit_depth(format, bits, supports_16bit, use_temporary_output_directory):
# Create a test image with known values
test_tensor = torch.full((1, 8, 8, 3), 0.5, dtype=torch.float32)
# Save the image
node = SaveImagesResponse()
filename = f"test_image.{format}"
result = node.execute(
images=test_tensor,
uris=[filename],
bits=bits,
pil_save_format=format
)
# Construct full filepath
filepath = os.path.join(folder_paths.get_output_directory(), filename)
# Read image with OpenCV (supports 16-bit by default)
if bits == 16 and supports_16bit:
# Force 16-bit color depth for formats that support it
read_flag = cv2.IMREAD_UNCHANGED
else:
# Use default 8-bit reading for 8-bit images or unsupported formats
read_flag = cv2.IMREAD_COLOR
saved_data = cv2.imread(filepath, read_flag)
assert saved_data is not None, f"Failed to read image at {filepath}"
# Special handling for EXR files (floating-point)
if format == 'exr':
# For EXR, expect direct comparison with original 0.2140 value, which is srgb to linear
np.testing.assert_allclose(saved_data, 0.2140, rtol=1e-5, atol=1e-5)
return
# Calculate expected value based on bit depth
if bits == 8 or not supports_16bit:
expected_value = int(0.5 * 255)
# Convert saved data to 8-bit if needed
if saved_data.dtype == np.uint16:
saved_data = (saved_data / 256).astype(np.uint8)
else: # 16-bit
expected_value = int(0.5 * 65535)
# Convert 8-bit data to 16-bit if needed
if saved_data.dtype == np.uint8:
saved_data = (saved_data.astype(np.uint16) * 256)
# Check that all pixels are close to expected value
# Allow small deviation due to compression
if format in ['jpeg', 'webp']:
# These formats use lossy compression, so be more lenient
mean_diff = abs(float(saved_data.mean()) - float(expected_value))
assert mean_diff < 5
else:
# For lossless formats, expect exact values
pixel_diffs = np.abs(saved_data.astype(np.int32) - expected_value)
assert np.all(pixel_diffs <= 1), f"Max difference was {pixel_diffs.max()}, expected at most 1"
# Verify bit depth
if supports_16bit and bits == 16:
assert saved_data.dtype == np.uint16
else:
assert saved_data.dtype == np.uint8
@pytest.mark.parametrize("value", [0.0, 0.25, 0.5, 0.75, 1.0])
def test_color_value_preservation(value, use_temporary_output_directory):
"""Test that floating point values are correctly scaled to integer color values"""
test_tensor = torch.full((1, 64, 64, 3), value, dtype=torch.float32)
node = SaveImagesResponse()
# Test with PNG format (lossless)
filename = "test_color.png"
node.execute(
images=test_tensor,
uris=[filename],
bits=8,
pil_save_format="png"
)
# Load and verify
filepath = f"{folder_paths.get_output_directory()}/{filename}"
with Image.open(filepath) as img:
saved_data = np.array(img)
expected_value = int(value * 255)
assert np.all(np.abs(saved_data - expected_value) <= 1)
def test_high_precision_tiff(use_temporary_output_directory):
"""Test that TIFF format preserves high precision values"""
# Create a gradient image to test precision
x = torch.linspace(0, 1, 256)
y = torch.linspace(0, 1, 256)
X, Y = torch.meshgrid(x, y, indexing='xy')
test_tensor = X.unsqueeze(0).unsqueeze(-1).repeat(1, 1, 1, 3)
node = SaveImagesResponse()
filename = "test_gradient.tiff"
node.execute(
images=test_tensor,
uris=[filename],
bits=16,
pil_save_format="tiff"
)
# Load and verify
filepath = os.path.join(folder_paths.get_output_directory(), filename)
saved_data = cv2.imread(filepath, cv2.IMREAD_UNCHANGED).astype(np.float32) / 65535.0
original_data = test_tensor[0].numpy()
# Check that the gradient is preserved with high precision
assert np.allclose(saved_data, original_data, atol=1.0 / 65535.0)
def test_alpha_channel_preservation(use_temporary_output_directory):
"""Test that alpha channel is preserved in formats that support it"""
# Create RGBA test image
test_tensor = torch.ones((1, 64, 64, 4), dtype=torch.float32) * 0.5
node = SaveImagesResponse()
# Test PNG with alpha
filename = "test_alpha.png"
node.execute(
images=test_tensor,
uris=[filename],
bits=16,
pil_save_format="png"
)
filepath = os.path.join(folder_paths.get_output_directory(), filename)
saved_data = cv2.imread(filepath, cv2.IMREAD_UNCHANGED)
# Check alpha channel preservation
assert saved_data.shape[-1] == 4 # Should have alpha channel
expected_value = int(0.5 * 65535)
assert np.all(np.abs(saved_data - expected_value) <= 1)
@pytest.mark.parametrize("format", ["png", "tiff", "jpeg", "webp"])
def test_basic_exif(format, use_temporary_output_directory):
"""Test basic EXIF tags are correctly saved and loaded"""
node = SaveImagesResponse()
filename = f"test_exif.{format}"
# Create EXIF data with common tags
exif = ExifContainer({
"Artist": "Test Artist",
"Copyright": "Test Copyright",
"ImageDescription": "Test Description",
"Make": "Test Camera",
"Model": "Test Model",
"Software": "Test Software",
})
# Save image with EXIF data
node.execute(
images=_image_1x1,
uris=[filename],
exif=[exif],
pil_save_format=format
)
# Load and verify EXIF data
filepath = os.path.join(folder_paths.get_output_directory(), filename)
with Image.open(filepath) as img:
if format == "png":
# PNG stores EXIF as text chunks
assert img.info["Artist"] == "Test Artist"
assert img.info["Copyright"] == "Test Copyright"
assert img.info["ImageDescription"] == "Test Description"
else:
# Other formats use proper EXIF
exif_data = img.getexif()
for tag_name, expected_value in [
("Artist", "Test Artist"),
("Copyright", "Test Copyright"),
("ImageDescription", "Test Description"),
("Make", "Test Camera"),
("Model", "Test Model"),
("Software", "Test Software"),
]:
tag_id = None
for key, name in ExifTags.TAGS.items():
if name == tag_name:
tag_id = key
break
assert tag_id is not None
if tag_id in exif_data:
assert exif_data[tag_id] == expected_value
@pytest.mark.parametrize("format", ["tiff", "jpeg", "webp"])
def test_gps_exif(format, use_temporary_output_directory):
"""Test GPS EXIF tags are correctly saved and loaded"""
node = SaveImagesResponse()
filename = f"test_gps.{format}"
# Create EXIF data with GPS tags
exif = ExifContainer({
"GPSLatitude": "35.628611",
"GPSLongitude": "139.738333",
"GPSAltitude": "43.2",
"GPSTimeStamp": "12:00:00",
})
# Save image with GPS EXIF data
node.execute(
images=_image_1x1,
uris=[filename],
exif=[exif],
pil_save_format=format
)
# Load and verify GPS EXIF data
filepath = os.path.join(folder_paths.get_output_directory(), filename)
with Image.open(filepath) as img:
exif_data = img.getexif()
# Get GPS IFD
if ExifTags.Base.GPSInfo in exif_data:
gps_info = exif_data.get_ifd(ExifTags.Base.GPSInfo)
# Verify GPS data
# Note: GPS data might be stored in different formats depending on the image format
assert gps_info.get(ExifTags.GPS.GPSLatitude) is not None
assert gps_info.get(ExifTags.GPS.GPSLongitude) is not None
if format == "tiff": # TIFF tends to preserve exact values
assert float(gps_info.get(ExifTags.GPS.GPSAltitude, "0")) == pytest.approx(43.2, rel=0.1)
@pytest.mark.parametrize("format", ["png", "tiff", "jpeg", "webp"])
def test_datetime_exif(format, use_temporary_output_directory):
"""Test DateTime EXIF tags are correctly saved and loaded"""
node = SaveImagesResponse()
filename = f"test_datetime.{format}"
# Fixed datetime string in EXIF format
now = "2024:01:14 12:34:56"
# Create EXIF data with datetime tags
exif = ExifContainer({
"DateTime": now,
"DateTimeOriginal": now,
"DateTimeDigitized": now,
})
# Save image with datetime EXIF data
node.execute(
images=_image_1x1,
uris=[filename],
exif=[exif],
pil_save_format=format
)
# Load and verify datetime EXIF data
filepath = os.path.join(folder_paths.get_output_directory(), filename)
with Image.open(filepath) as img:
if format == "png":
assert img.info["DateTime"] == now
else:
exif_data = img.getexif()
for tag_name in ["DateTime", "DateTimeOriginal", "DateTimeDigitized"]:
tag_id = None
for key, name in ExifTags.TAGS.items():
if name == tag_name:
tag_id = key
break
assert tag_id is not None
if tag_id in exif_data:
assert exif_data[tag_id] == now
@pytest.mark.parametrize("format", ["tiff", "jpeg", "webp"])
def test_numeric_exif(format, use_temporary_output_directory):
"""Test numeric EXIF tags are correctly saved and loaded"""
node = SaveImagesResponse()
filename = f"test_numeric.{format}"
# Create EXIF data with numeric tags
exif = ExifContainer({
"FNumber": "5.6",
"ExposureTime": "1/125",
"ISOSpeedRatings": "400",
"FocalLength": "50",
})
# Save image with numeric EXIF data
node.execute(
images=_image_1x1,
uris=[filename],
exif=[exif],
pil_save_format=format
)
# Load and verify numeric EXIF data
filepath = os.path.join(folder_paths.get_output_directory(), filename)
with Image.open(filepath) as img:
exif_data = img.getexif()
for tag_name, expected_value in [
("FNumber", "5.6"),
("ExposureTime", "1/125"),
("ISOSpeedRatings", "400"),
("FocalLength", "50"),
]:
tag_id = None
for key, name in ExifTags.TAGS.items():
if name == tag_name:
tag_id = key
break
assert tag_id is not None
if tag_id in exif_data:
# Convert both to strings for comparison since formats might store numbers differently
assert str(exif_data[tag_id]) == expected_value