mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-11 14:02:37 +08:00
feat: remove custom js stuff since it just doesnt work well feat: add cond debugging feat: impls PoC refresh of custom_nodes + custom_node extensions feat: ignore workflows folder feat: add batch file to start application under windows feat: integrate reload custom node into refresh feat: update custom node ui feat: impl node change event handling !WIP! feat: add CustomNodeData class for reuse feat: remove all reloaded nodes for test purposes and save graph afterwards !WIP! feat: remove unused registeredNodes feat: comment out graph removal feat: comment on some functions for proper understanding and bookmarking (for now) feat: comment node execution location feat: add exception for IS_CHANGED issues feat: extend example_node README !WIP! feat: custom test nodes for now !WIP! feat: avoid refresh spam feat: add debug_cond custom_node with WIP ui feat: add hint for validating output_ui data feat: pass refresh button into combo function feat: impl output ui error feat: auto refresh nodes fix: various minor issues !WIP! feat: barebone JS scripting in BE for ui templating !WIP! feat: impl interrogation with clip feat: impl more debug samplers feat: change requirements.txt for transformers fix: __init__.py issues when importing custom_nodes feat: temp ignore 3rdparty code feat: add custom_nodes debug_latent and image_fx
35 lines
783 B
Python
35 lines
783 B
Python
import math
|
|
|
|
import torch
|
|
import torchvision.transforms as T
|
|
from PIL.Image import Image
|
|
|
|
|
|
class DebugLatent:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"latent": ("LATENT",), }
|
|
}
|
|
|
|
RETURN_TYPES = ("LATENT", "LATENT",)
|
|
FUNCTION = "latent_space"
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "inflamously"
|
|
|
|
def latent_space(self, latent):
|
|
x = latent["samples"]
|
|
transformer = T.ToPILImage()
|
|
img: Image = transformer(x[0])
|
|
# img.show()
|
|
# y = x * 0.75 - x * 0.25 + torch.rand(x.shape) * 0.1
|
|
y = x * 0.5 + torch.rand(x.shape) * 0.5
|
|
modified_latent = {"samples": y}
|
|
return (latent, modified_latent)
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"DebugLatent": DebugLatent
|
|
}
|