ComfyUI/custom_nodes/test_node.py
inflamously 98155446bf feat: add image cropping
feat: remove custom js stuff since it just doesnt work well
feat: add cond debugging

feat: impls PoC refresh of custom_nodes + custom_node extensions

feat: ignore workflows folder
feat: add batch file to start application under windows
feat: integrate reload custom node into refresh
feat: update custom node ui
feat: impl node change event handling

!WIP!

feat: add CustomNodeData class for reuse
feat: remove all reloaded nodes for test purposes and save graph afterwards
!WIP!

feat: remove unused registeredNodes
feat: comment out graph removal

feat: comment on some functions for proper understanding and bookmarking (for now)

feat: comment node execution location
feat: add exception for IS_CHANGED issues
feat: extend example_node README

!WIP!

feat: custom test nodes for now

!WIP!

feat: avoid refresh spam

feat: add debug_cond custom_node with WIP ui

feat: add hint for validating output_ui data

feat: pass refresh button into combo function

feat: impl output ui error

feat: auto refresh nodes
fix: various minor issues

!WIP!

feat: barebone JS scripting in BE for ui templating

!WIP!

feat: impl interrogation with clip
feat: impl more debug samplers
feat: change requirements.txt for transformers

fix: __init__.py issues when importing custom_nodes

feat: temp ignore 3rdparty code

feat: add custom_nodes debug_latent and image_fx
2023-09-15 00:16:44 +02:00

48 lines
1.7 KiB
Python

from transformers.models import clip
class TestNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"clip": ("CLIP", ),
"image": ("IMAGE",),
"int_field": ("INT", {
"default": 0,
"min": 0, #Minimum value
"max": 4096, #Maximum value
"step": 64, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
"float_field": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01, "display": "number"}),
"print_to_screen": (["enable", "disable"],),
"string_field": ("STRING", {
"multiline": False, #True if you want the field to look like the one on the ClipTextEncode node
"default": "dong!"
}),
},
}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "test"
CATEGORY = "inflamously"
def test(self, clip, image, string_field, int_field, float_field, print_to_screen):
if print_to_screen == "enable":
print(f"""Your input contains:
string_field aka input text: {string_field}
int_field: {int_field}
float_field: {float_field}
""")
#do some processing on the image, in this example I just invert it
image = 0.5 - image
tokens = clip.tokenize("test")
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return ([[cond, {"pooled_output": pooled}]], )
NODE_CLASS_MAPPINGS = {
"TestNode": TestNode,
"TestNode2": TestNode,
}