ComfyUI/comfy/api/schemas/schemas.py
doctorpangloss 1b2ea61345 Improved API support
- Run comfyui workflows directly inside other python applications using
   EmbeddedComfyClient.
 - Optional telemetry in prompts and models using anonymity preserving
   Plausible self-hosted or hosted.
 - Better OpenAPI schema
 - Basic support for distributed ComfyUI backends. Limitations: no
   progress reporting, no easy way to start your own distributed
   backend, requires RabbitMQ as a message broker.
2024-02-07 14:20:21 -08:00

376 lines
11 KiB
Python

# coding: utf-8
"""
comfyui
No description provided (generated by Openapi JSON Schema Generator https://github.com/openapi-json-schema-tools/openapi-json-schema-generator) # noqa: E501
The version of the OpenAPI document: 0.0.1
Generated by: https://github.com/openapi-json-schema-tools/openapi-json-schema-generator
"""
from __future__ import annotations
import datetime
import dataclasses
import io
import typing
import uuid
import typing_extensions
from comfy.api.configurations import schema_configuration
from . import schema, validation
@dataclasses.dataclass(frozen=True)
class ListSchema(schema.Schema[validation.immutabledict, tuple]):
types: typing.FrozenSet[typing.Type] = frozenset({tuple})
@typing.overload
@classmethod
def validate(
cls,
arg: typing.Union[
typing.List[schema.INPUT_TYPES_ALL],
schema.U
],
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> schema.U: ...
@typing.overload
@classmethod
def validate(
cls,
arg: typing.Union[
typing.Tuple[schema.INPUT_TYPES_ALL, ...],
schema.U
],
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> schema.U: ...
@classmethod
def validate(
cls,
arg,
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
):
return super().validate_base(arg, configuration=configuration)
@dataclasses.dataclass(frozen=True)
class NoneSchema(schema.Schema):
types: typing.FrozenSet[typing.Type] = frozenset({type(None)})
@classmethod
def validate(
cls,
arg: None,
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> None:
return super().validate_base(arg, configuration=configuration)
@dataclasses.dataclass(frozen=True)
class NumberSchema(schema.Schema):
"""
This is used for type: number with no format
Both integers AND floats are accepted
"""
types: typing.FrozenSet[typing.Type] = frozenset({float, int})
@typing.overload
@classmethod
def validate(
cls,
arg: int,
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> int: ...
@typing.overload
@classmethod
def validate(
cls,
arg: float,
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> float: ...
@classmethod
def validate(
cls,
arg,
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
):
return super().validate_base(arg, configuration=configuration)
@dataclasses.dataclass(frozen=True)
class IntSchema(NumberSchema):
types: typing.FrozenSet[typing.Type] = frozenset({int, float})
format: str = 'int'
@dataclasses.dataclass(frozen=True)
class Int32Schema(IntSchema):
types: typing.FrozenSet[typing.Type] = frozenset({int, float})
format: str = 'int32'
@dataclasses.dataclass(frozen=True)
class Int64Schema(IntSchema):
types: typing.FrozenSet[typing.Type] = frozenset({int, float})
format: str = 'int64'
@dataclasses.dataclass(frozen=True)
class Float32Schema(NumberSchema):
types: typing.FrozenSet[typing.Type] = frozenset({float})
format: str = 'float'
@dataclasses.dataclass(frozen=True)
class Float64Schema(NumberSchema):
types: typing.FrozenSet[typing.Type] = frozenset({float})
format: str = 'double'
@dataclasses.dataclass(frozen=True)
class StrSchema(schema.Schema):
"""
date + datetime string types must inherit from this class
That is because one can validate a str payload as both:
- type: string (format unset)
- type: string, format: date
"""
types: typing.FrozenSet[typing.Type] = frozenset({str})
@classmethod
def validate(
cls,
arg: str,
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> str:
return super().validate_base(arg, configuration=configuration)
@dataclasses.dataclass(frozen=True)
class UUIDSchema(schema.Schema):
types: typing.FrozenSet[typing.Type] = frozenset({str})
format: str = 'uuid'
@classmethod
def validate(
cls,
arg: typing.Union[str, uuid.UUID],
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> str:
return super().validate_base(arg, configuration=configuration)
@dataclasses.dataclass(frozen=True)
class DateSchema(schema.Schema):
types: typing.FrozenSet[typing.Type] = frozenset({str})
format: str = 'date'
@classmethod
def validate(
cls,
arg: typing.Union[str, datetime.date],
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> str:
return super().validate_base(arg, configuration=configuration)
@dataclasses.dataclass(frozen=True)
class DateTimeSchema(schema.Schema):
types: typing.FrozenSet[typing.Type] = frozenset({str})
format: str = 'date-time'
@classmethod
def validate(
cls,
arg: typing.Union[str, datetime.datetime],
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> str:
return super().validate_base(arg, configuration=configuration)
@dataclasses.dataclass(frozen=True)
class DecimalSchema(schema.Schema):
types: typing.FrozenSet[typing.Type] = frozenset({str})
format: str = 'number'
@classmethod
def validate(
cls,
arg: str,
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> str:
"""
Note: Decimals may not be passed in because cast_to_allowed_types is only invoked once for payloads
which can be simple (str) or complex (dicts or lists with nested values)
Because casting is only done once and recursively casts all values prior to validation then for a potential
client side Decimal input if Decimal was accepted as an input in DecimalSchema then one would not know
if one was using it for a StrSchema (where it should be cast to str) or one is using it for NumberSchema
where it should stay as Decimal.
"""
return super().validate_base(arg, configuration=configuration)
@dataclasses.dataclass(frozen=True)
class BytesSchema(schema.Schema):
"""
this class will subclass bytes and is immutable
"""
types: typing.FrozenSet[typing.Type] = frozenset({bytes})
@classmethod
def validate(
cls,
arg: bytes,
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> bytes:
return cls.validate_base(arg)
@dataclasses.dataclass(frozen=True)
class FileSchema(schema.Schema):
"""
This class is NOT immutable
Dynamic classes are built using it for example when AnyType allows in binary data
Al other schema classes ARE immutable
If one wanted to make this immutable one could make this a DictSchema with required properties:
- data = BytesSchema (which would be an immutable bytes based schema)
- file_name = StrSchema
and cast_to_allowed_types would convert bytes and file instances into dicts containing data + file_name
The downside would be that data would be stored in memory which one may not want to do for very large files
The developer is responsible for closing this file and deleting it
This class was kept as mutable:
- to allow file reading and writing to disk
- to be able to preserve file name info
"""
types: typing.FrozenSet[typing.Type] = frozenset({schema.FileIO})
@classmethod
def validate(
cls,
arg: typing.Union[io.FileIO, io.BufferedReader],
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> schema.FileIO:
return cls.validate_base(arg)
@dataclasses.dataclass(frozen=True)
class BinarySchema(schema.Schema):
types: typing.FrozenSet[typing.Type] = frozenset({schema.FileIO, bytes})
format: str = 'binary'
one_of: typing.Tuple[typing.Type[schema.Schema], ...] = (
BytesSchema,
FileSchema,
)
@classmethod
def validate(
cls,
arg: typing.Union[io.FileIO, io.BufferedReader, bytes],
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> typing.Union[schema.FileIO, bytes]:
return cls.validate_base(arg)
@dataclasses.dataclass(frozen=True)
class BoolSchema(schema.Schema):
types: typing.FrozenSet[typing.Type] = frozenset({schema.Bool})
@typing.overload
@classmethod
def validate(
cls,
arg: typing.Literal[True],
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> typing.Literal[True]: ...
@typing.overload
@classmethod
def validate(
cls,
arg: typing.Literal[False],
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> typing.Literal[False]: ...
@typing.overload
@classmethod
def validate(
cls,
arg: bool,
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> bool: ...
@classmethod
def validate(
cls,
arg,
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
):
return super().validate_base(arg, configuration=configuration)
@dataclasses.dataclass(frozen=True)
class NotAnyTypeSchema(schema.AnyTypeSchema):
"""
Python representation of a schema defined as false or {'not': {}}
Does not allow inputs in of AnyType
Note: validations on this class are never run because the code knows that no inputs will ever validate
"""
not_: typing.Type[schema.Schema] = schema.AnyTypeSchema
@classmethod
def validate(
cls,
arg,
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None,
):
return super().validate_base(arg, configuration=configuration)
OUTPUT_BASE_TYPES = typing.Union[
validation.immutabledict[str, 'OUTPUT_BASE_TYPES'],
str,
int,
float,
bool,
schema.none_type_,
typing.Tuple['OUTPUT_BASE_TYPES', ...],
bytes,
schema.FileIO
]
@dataclasses.dataclass(frozen=True)
class DictSchema(schema.Schema[schema.validation.immutabledict[str, OUTPUT_BASE_TYPES], tuple]):
types: typing.FrozenSet[typing.Type] = frozenset({validation.immutabledict})
@typing.overload
@classmethod
def validate(
cls,
arg: schema.validation.immutabledict[str, OUTPUT_BASE_TYPES],
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> schema.validation.immutabledict[str, OUTPUT_BASE_TYPES]: ...
@typing.overload
@classmethod
def validate(
cls,
arg: typing.Mapping[str, schema.INPUT_TYPES_ALL],
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None
) -> schema.validation.immutabledict[str, OUTPUT_BASE_TYPES]: ...
@classmethod
def validate(
cls,
arg,
configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None,
) -> schema.validation.immutabledict[str, OUTPUT_BASE_TYPES]:
return super().validate_base(arg, configuration=configuration)