ComfyUI/comfy/weight_adapter/boft.py
Kohaku-Blueleaf a97c98068f
[Weight-adapter/Trainer] Bypass forward mode in Weight adapter system (#11958)
* Add API of bypass forward module

* bypass implementation

* add bypass fwd into nodes list/trainer
2026-01-24 22:56:22 -05:00

219 lines
6.8 KiB
Python

import logging
from typing import Optional
import torch
import comfy.model_management
from .base import WeightAdapterBase, weight_decompose
class BOFTAdapter(WeightAdapterBase):
name = "boft"
def __init__(self, loaded_keys, weights):
self.loaded_keys = loaded_keys
self.weights = weights
@classmethod
def load(
cls,
x: str,
lora: dict[str, torch.Tensor],
alpha: float,
dora_scale: torch.Tensor,
loaded_keys: set[str] = None,
) -> Optional["BOFTAdapter"]:
if loaded_keys is None:
loaded_keys = set()
blocks_name = "{}.oft_blocks".format(x)
rescale_name = "{}.rescale".format(x)
blocks = None
if blocks_name in lora.keys():
blocks = lora[blocks_name]
if blocks.ndim == 4:
loaded_keys.add(blocks_name)
else:
blocks = None
if blocks is None:
return None
rescale = None
if rescale_name in lora.keys():
rescale = lora[rescale_name]
loaded_keys.add(rescale_name)
weights = (blocks, rescale, alpha, dora_scale)
return cls(loaded_keys, weights)
def calculate_weight(
self,
weight,
key,
strength,
strength_model,
offset,
function,
intermediate_dtype=torch.float32,
original_weight=None,
):
v = self.weights
blocks = v[0]
rescale = v[1]
alpha = v[2]
dora_scale = v[3]
blocks = comfy.model_management.cast_to_device(
blocks, weight.device, intermediate_dtype
)
if rescale is not None:
rescale = comfy.model_management.cast_to_device(
rescale, weight.device, intermediate_dtype
)
boft_m, block_num, boft_b, *_ = blocks.shape
try:
# Get r
I = torch.eye(boft_b, device=blocks.device, dtype=blocks.dtype)
# for Q = -Q^T
q = blocks - blocks.transpose(-1, -2)
normed_q = q
if alpha > 0: # alpha in boft/bboft is for constraint
q_norm = torch.norm(q) + 1e-8
if q_norm > alpha:
normed_q = q * alpha / q_norm
# use float() to prevent unsupported type in .inverse()
r = (I + normed_q) @ (I - normed_q).float().inverse()
r = r.to(weight)
inp = org = weight
r_b = boft_b // 2
for i in range(boft_m):
bi = r[i]
g = 2
k = 2**i * r_b
if strength != 1:
bi = bi * strength + (1 - strength) * I
inp = (
inp.unflatten(0, (-1, g, k))
.transpose(1, 2)
.flatten(0, 2)
.unflatten(0, (-1, boft_b))
)
inp = torch.einsum("b i j, b j ...-> b i ...", bi, inp)
inp = (
inp.flatten(0, 1)
.unflatten(0, (-1, k, g))
.transpose(1, 2)
.flatten(0, 2)
)
if rescale is not None:
inp = inp * rescale
lora_diff = inp - org
lora_diff = comfy.model_management.cast_to_device(
lora_diff, weight.device, intermediate_dtype
)
if dora_scale is not None:
weight = weight_decompose(
dora_scale,
weight,
lora_diff,
alpha,
strength,
intermediate_dtype,
function,
)
else:
weight += function((strength * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight
def _get_orthogonal_matrices(self, device, dtype):
"""Compute the orthogonal rotation matrices R from BOFT blocks."""
v = self.weights
blocks = v[0].to(device=device, dtype=dtype)
alpha = v[2]
if alpha is None:
alpha = 0
boft_m, block_num, boft_b, _ = blocks.shape
I = torch.eye(boft_b, device=device, dtype=dtype)
# Q = blocks - blocks^T (skew-symmetric)
q = blocks - blocks.transpose(-1, -2)
normed_q = q
# Apply constraint if alpha > 0
if alpha > 0:
q_norm = torch.norm(q) + 1e-8
if q_norm > alpha:
normed_q = q * alpha / q_norm
# Cayley transform: R = (I + Q)(I - Q)^-1
r = (I + normed_q) @ (I - normed_q).float().inverse()
return r, boft_m, boft_b
def g(self, y: torch.Tensor) -> torch.Tensor:
"""
Output transformation for BOFT: applies butterfly orthogonal transform.
BOFT uses multiple stages of butterfly-structured orthogonal transforms.
Reference: LyCORIS ButterflyOFTModule._bypass_forward
"""
v = self.weights
rescale = v[1]
r, boft_m, boft_b = self._get_orthogonal_matrices(y.device, y.dtype)
r_b = boft_b // 2
# Apply multiplier
multiplier = getattr(self, "multiplier", 1.0)
I = torch.eye(boft_b, device=y.device, dtype=y.dtype)
# Use module info from bypass injection to determine conv vs linear
is_conv = getattr(self, "is_conv", y.dim() > 2)
if is_conv:
# Conv output: (N, C, H, W, ...) -> transpose to (N, H, W, ..., C)
y = y.transpose(1, -1)
# Apply butterfly transform stages
inp = y
for i in range(boft_m):
bi = r[i] # (block_num, boft_b, boft_b)
g = 2
k = 2**i * r_b
# Interpolate with identity based on multiplier
if multiplier != 1:
bi = bi * multiplier + (1 - multiplier) * I
# Reshape for butterfly: unflatten last dim, transpose, flatten, unflatten
inp = (
inp.unflatten(-1, (-1, g, k))
.transpose(-2, -1)
.flatten(-3)
.unflatten(-1, (-1, boft_b))
)
# Apply block-diagonal orthogonal transform
inp = torch.einsum("b i j, ... b j -> ... b i", bi, inp)
# Reshape back
inp = (
inp.flatten(-2).unflatten(-1, (-1, k, g)).transpose(-2, -1).flatten(-3)
)
# Apply rescale if present
if rescale is not None:
rescale = rescale.to(device=y.device, dtype=y.dtype)
inp = inp * rescale.transpose(0, -1)
if is_conv:
# Transpose back: (N, H, W, ..., C) -> (N, C, H, W, ...)
inp = inp.transpose(1, -1)
return inp