mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 23:00:51 +08:00
272 lines
8.3 KiB
Python
272 lines
8.3 KiB
Python
import math
|
|
import torch
|
|
|
|
|
|
def attention_backward_core_ref_impl(
|
|
do, q, k, v, o, softmax_lse, sm_scale, causal, use_exp2
|
|
):
|
|
# cast to float32
|
|
do = do.to(torch.float32)
|
|
q = q.to(torch.float32)
|
|
k = k.to(torch.float32)
|
|
v = v.to(torch.float32)
|
|
o = o.to(torch.float32)
|
|
softmax_lse = softmax_lse.to(torch.float32)
|
|
|
|
# recompute attention_scores. Make sure it matches the forward impl. i.e. It use float32
|
|
attention_scores = torch.matmul(q.to(torch.float32), k.transpose(-2, -1).to(torch.float32))
|
|
|
|
# scale scores
|
|
attention_scaled_scores = sm_scale * attention_scores
|
|
|
|
# Apply causal mask if necessary
|
|
if causal:
|
|
L_q, L_k = q.shape[1], k.shape[1]
|
|
row_idx = torch.arange(L_q, device=q.device).unsqueeze(1)
|
|
col_idx = torch.arange(L_k, device=q.device).unsqueeze(0)
|
|
col_offset = L_q-L_k
|
|
causal_mask = row_idx >= (col_offset + col_idx)
|
|
# set -inf to places the causal mask is false
|
|
attention_scaled_scores = attention_scaled_scores.masked_fill(
|
|
torch.logical_not(causal_mask.unsqueeze(0)), float('-inf')
|
|
)
|
|
|
|
# compute probabilities using softmax_lse
|
|
if use_exp2:
|
|
RCP_LN = 1 / math.log(2)
|
|
attention_scaled_scores_base2 = attention_scaled_scores * RCP_LN
|
|
softmax_lse_base2 = softmax_lse * RCP_LN
|
|
softmax_lse_3d = softmax_lse_base2.unsqueeze(-1)
|
|
p = torch.exp2(attention_scaled_scores_base2 - softmax_lse_3d)
|
|
else:
|
|
softmax_lse_3d = softmax_lse.unsqueeze(-1)
|
|
p = torch.exp(attention_scaled_scores - softmax_lse_3d)
|
|
|
|
# compute gradient wrt v
|
|
dv = torch.matmul(p.transpose(-2, -1), do.to(torch.float32))
|
|
|
|
# compute dp
|
|
dp = torch.matmul(do, v.transpose(-2, -1))
|
|
|
|
# calculate ds using dp
|
|
delta = torch.sum(o * do, axis=-1).to(torch.float32) # what OAI kernel uses
|
|
delta_3d = delta.unsqueeze(-1)
|
|
ds = (p * (dp - delta_3d)) * sm_scale
|
|
|
|
# compute gradient wrt k
|
|
dk = torch.matmul(ds.transpose(-2, -1), q.to(torch.float32))
|
|
|
|
# compute gradient wrt q
|
|
dq = torch.matmul(ds, k.to(torch.float32))
|
|
|
|
# cast back to original dtype
|
|
dq = dq.to(torch.float16)
|
|
dk = dk.to(torch.float16)
|
|
dv = dv.to(torch.float16)
|
|
|
|
# remove d dim with size 1
|
|
delta = delta_3d.squeeze(-1)
|
|
|
|
return dq, dk, dv, delta
|
|
|
|
def attention_varlen_backward_pytorch_ref_impl(
|
|
do,
|
|
q,
|
|
k,
|
|
v,
|
|
o,
|
|
softmax_lse,
|
|
sm_scale,
|
|
causal,
|
|
layout,
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
max_seqlen_q, max_seqlen_k, # pylint: disable=unused-argument
|
|
use_exp2,
|
|
):
|
|
# Ensure the layout is 'thd'
|
|
if layout != 'thd':
|
|
raise ValueError(f"Unsupported layout {layout}. Expected 'thd'.")
|
|
|
|
batch_size = cu_seqlens_q.shape[0] - 1
|
|
num_heads = q.shape[1]
|
|
head_dim = q.shape[2] # pylint: disable=unused-variable
|
|
|
|
# Pre-allocate outputs
|
|
total_L_q = q.shape[0]
|
|
total_L_k = k.shape[0] # pylint: disable=unused-variable
|
|
|
|
dq = torch.zeros_like(q)
|
|
dk = torch.zeros_like(k)
|
|
dv = torch.zeros_like(v)
|
|
# delta has the same shape as softmax_lse: [total_L_q, num_heads]
|
|
delta = torch.zeros((total_L_q, num_heads), dtype=torch.float32, device=o.device)
|
|
|
|
for i in range(batch_size):
|
|
# Get the start and end indices for the current sequence
|
|
start_q = cu_seqlens_q[i].item()
|
|
end_q = cu_seqlens_q[i + 1].item()
|
|
start_k = cu_seqlens_k[i].item()
|
|
end_k = cu_seqlens_k[i + 1].item()
|
|
|
|
# Extract q_i, k_i, v_i, do_i, o_i, softmax_lse_i
|
|
q_i = q[start_q:end_q, :, :] # [L_q_i, num_heads, head_dim]
|
|
k_i = k[start_k:end_k, :, :] # [L_k_i, num_heads, head_dim]
|
|
v_i = v[start_k:end_k, :, :] # [L_k_i, num_heads, head_dim]
|
|
do_i = do[start_q:end_q, :, :] # [L_q_i, num_heads, head_dim]
|
|
o_i = o[start_q:end_q, :, :] # [L_q_i, num_heads, head_dim]
|
|
# softmax_lse has shape [total_L_q, num_heads]
|
|
softmax_lse_i = softmax_lse[start_q:end_q, :] # [L_q_i, num_heads]
|
|
softmax_lse_i = softmax_lse_i.transpose(0, 1) # [num_heads, L_q_i]
|
|
|
|
# Permute to [num_heads, L_q_i, head_dim]
|
|
q_i = q_i.permute(1, 0, 2)
|
|
k_i = k_i.permute(1, 0, 2)
|
|
v_i = v_i.permute(1, 0, 2)
|
|
do_i = do_i.permute(1, 0, 2)
|
|
o_i = o_i.permute(1, 0, 2)
|
|
# softmax_lse_i is already in [num_heads, L_q_i]
|
|
|
|
# Call the core backward function for this sequence
|
|
dq_i, dk_i, dv_i, delta_i = attention_backward_core_ref_impl(
|
|
do_i,
|
|
q_i,
|
|
k_i,
|
|
v_i,
|
|
o_i,
|
|
softmax_lse_i,
|
|
sm_scale,
|
|
causal,
|
|
use_exp2
|
|
)
|
|
|
|
# Convert back to 'thd' layout
|
|
dq_i = dq_i.permute(1, 0, 2) # [L_q_i, num_heads, head_dim]
|
|
dk_i = dk_i.permute(1, 0, 2) # [L_k_i, num_heads, head_dim]
|
|
dv_i = dv_i.permute(1, 0, 2) # [L_k_i, num_heads, head_dim]
|
|
|
|
# Place outputs in pre-allocated tensors
|
|
dq[start_q:end_q, :, :] = dq_i
|
|
dk[start_k:end_k, :, :] += dk_i # Accumulate gradients for shared keys
|
|
dv[start_k:end_k, :, :] += dv_i # Accumulate gradients for shared values
|
|
# delta_i has shape [num_heads, L_q_i]
|
|
delta_i = delta_i.transpose(1, 0) # [L_q_i, num_heads]
|
|
delta[start_q:end_q, :] = delta_i
|
|
|
|
return dq, dk, dv, delta
|
|
|
|
def attention_vanilla_backward_pytorch_ref_impl(
|
|
do,
|
|
q,
|
|
k,
|
|
v,
|
|
o,
|
|
softmax_lse,
|
|
sm_scale,
|
|
causal,
|
|
layout,
|
|
use_exp2,
|
|
):
|
|
if layout == "bshd":
|
|
do = do.transpose(1, 2).contiguous()
|
|
q = q.transpose(1, 2).contiguous()
|
|
k = k.transpose(1, 2).contiguous()
|
|
v = v.transpose(1, 2).contiguous()
|
|
o = o.transpose(1, 2).contiguous()
|
|
elif layout == "bhsd":
|
|
pass
|
|
else:
|
|
raise ValueError(f"Unknown layout {layout}")
|
|
|
|
# Prepare tensors in [batch_size * num_heads, seq_len, head_dim] format
|
|
batch_size, num_heads, seq_len_q, head_dim = q.shape
|
|
seq_len_k = k.shape[2]
|
|
|
|
# Merge batch and heads dimensions
|
|
do = do.reshape(batch_size * num_heads, seq_len_q, head_dim)
|
|
q = q.reshape(batch_size * num_heads, seq_len_q, head_dim)
|
|
k = k.reshape(batch_size * num_heads, seq_len_k, head_dim)
|
|
v = v.reshape(batch_size * num_heads, seq_len_k, head_dim)
|
|
softmax_lse = softmax_lse.reshape(batch_size * num_heads, seq_len_q)
|
|
o = o.reshape(batch_size * num_heads, seq_len_q, head_dim)
|
|
|
|
dq, dk, dv, delta = attention_backward_core_ref_impl(
|
|
do,
|
|
q,
|
|
k,
|
|
v,
|
|
o,
|
|
softmax_lse,
|
|
sm_scale,
|
|
causal,
|
|
use_exp2
|
|
)
|
|
|
|
# Reshape outputs back to [batch_size, num_heads, seq_len, head_dim]
|
|
dq = dq.reshape(batch_size, num_heads, seq_len_q, head_dim)
|
|
dk = dk.reshape(batch_size, num_heads, seq_len_k, head_dim)
|
|
dv = dv.reshape(batch_size, num_heads, seq_len_k, head_dim)
|
|
delta = delta.reshape(batch_size, num_heads, seq_len_q)
|
|
|
|
# Go back to original layout
|
|
if layout == "bshd":
|
|
dq = dq.transpose(1, 2)
|
|
dk = dk.transpose(1, 2)
|
|
dv = dv.transpose(1, 2)
|
|
elif layout == "bhsd":
|
|
pass
|
|
else:
|
|
raise ValueError(f"Unknown layout {layout}")
|
|
|
|
return dq, dk, dv, delta
|
|
|
|
|
|
def attention_backward_pytorch_ref_impl(
|
|
do,
|
|
q,
|
|
k,
|
|
v,
|
|
o,
|
|
softmax_lse,
|
|
sm_scale,
|
|
causal,
|
|
layout,
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
max_seqlen_q,
|
|
max_seqlen_k,
|
|
use_exp2
|
|
):
|
|
if layout == "thd":
|
|
dq, dk, dv, delta = attention_varlen_backward_pytorch_ref_impl(
|
|
do,
|
|
q,
|
|
k,
|
|
v,
|
|
o,
|
|
softmax_lse,
|
|
sm_scale,
|
|
causal,
|
|
layout,
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
max_seqlen_q,
|
|
max_seqlen_k,
|
|
use_exp2,
|
|
)
|
|
else:
|
|
dq, dk, dv, delta = attention_vanilla_backward_pytorch_ref_impl(
|
|
do,
|
|
q,
|
|
k,
|
|
v,
|
|
o,
|
|
softmax_lse,
|
|
sm_scale,
|
|
causal,
|
|
layout,
|
|
use_exp2,
|
|
)
|
|
|
|
return dq, dk, dv, delta
|