ComfyUI/comfy_extras/nodes_clip_sdxl.py
bymyself ae20354b69 feat: mark 429 widgets as advanced for collapsible UI
Mark widgets as advanced across core, comfy_extras, and comfy_api_nodes
to support the new collapsible advanced inputs section in the frontend.

Changes:
- 267 advanced markers in comfy_extras/
- 162 advanced markers in comfy_api_nodes/
- All files pass python3 -m py_compile verification

Widgets marked advanced (hidden by default):
- Scheduler internals: sigma_max, sigma_min, rho, mu, beta, alpha
- Sampler internals: eta, s_noise, order, rtol, atol, h_init, pcoeff, etc.
- Memory optimization: tile_size, overlap, temporal_size, temporal_overlap
- Pipeline controls: add_noise, start_at_step, end_at_step
- Timing controls: start_percent, end_percent
- Layer selection: stop_at_clip_layer, layers, block_number
- Video encoding: codec, crf, format
- Device/dtype: device, noise_device, dtype, weight_dtype

Widgets kept basic (always visible):
- Core params: strength, steps, cfg, denoise, seed, width, height
- Model selectors: ckpt_name, lora_name, vae_name, sampler_name
- Common controls: upscale_method, crop, batch_size, fps, opacity

Related: frontend PR #11939
Amp-Thread-ID: https://ampcode.com/threads/T-019c1734-6b61-702e-b333-f02c399963fc
2026-01-31 19:29:03 -08:00

72 lines
3.1 KiB
Python

from typing_extensions import override
import nodes
from comfy_api.latest import ComfyExtension, io
class CLIPTextEncodeSDXLRefiner(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="CLIPTextEncodeSDXLRefiner",
category="advanced/conditioning",
inputs=[
io.Float.Input("ascore", default=6.0, min=0.0, max=1000.0, step=0.01),
io.Int.Input("width", default=1024, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("height", default=1024, min=0, max=nodes.MAX_RESOLUTION),
io.String.Input("text", multiline=True, dynamic_prompts=True),
io.Clip.Input("clip"),
],
outputs=[io.Conditioning.Output()],
)
@classmethod
def execute(cls, clip, ascore, width, height, text) -> io.NodeOutput:
tokens = clip.tokenize(text)
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens, add_dict={"aesthetic_score": ascore, "width": width, "height": height}))
class CLIPTextEncodeSDXL(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="CLIPTextEncodeSDXL",
category="advanced/conditioning",
inputs=[
io.Clip.Input("clip"),
io.Int.Input("width", default=1024, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("height", default=1024, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("crop_w", default=0, min=0, max=nodes.MAX_RESOLUTION, advanced=True),
io.Int.Input("crop_h", default=0, min=0, max=nodes.MAX_RESOLUTION, advanced=True),
io.Int.Input("target_width", default=1024, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("target_height", default=1024, min=0, max=nodes.MAX_RESOLUTION),
io.String.Input("text_g", multiline=True, dynamic_prompts=True),
io.String.Input("text_l", multiline=True, dynamic_prompts=True),
],
outputs=[io.Conditioning.Output()],
)
@classmethod
def execute(cls, clip, width, height, crop_w, crop_h, target_width, target_height, text_g, text_l) -> io.NodeOutput:
tokens = clip.tokenize(text_g)
tokens["l"] = clip.tokenize(text_l)["l"]
if len(tokens["l"]) != len(tokens["g"]):
empty = clip.tokenize("")
while len(tokens["l"]) < len(tokens["g"]):
tokens["l"] += empty["l"]
while len(tokens["l"]) > len(tokens["g"]):
tokens["g"] += empty["g"]
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens, add_dict={"width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}))
class ClipSdxlExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
CLIPTextEncodeSDXLRefiner,
CLIPTextEncodeSDXL,
]
async def comfy_entrypoint() -> ClipSdxlExtension:
return ClipSdxlExtension()