mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 14:50:49 +08:00
- ComfyUI can now load EXR files. - There are new arithmetic nodes for floats and integers. - EXR nodes can load depth maps and be remapped with ImageApplyColormap. This allows end users to use ground truth depth data from video game engines or 3D graphics tools and recolor it to the format expected by depth ControlNets: grayscale inverse depth maps and "inferno" colored inverse depth maps. - Fixed license notes. - Added an additional known ControlNet model. - Because CV2 is now used to read OpenEXR files, an environment variable must be set early on in the application, before CV2 is imported. This file, main_pre, is now imported early on in more places.
199 lines
4.3 KiB
Python
199 lines
4.3 KiB
Python
import pytest
|
|
|
|
from comfy_extras.nodes.nodes_arithmetic import IntAdd, IntSubtract, IntMultiply, IntDivide, IntMod, IntPower, FloatAdd, FloatSubtract, FloatMultiply, FloatDivide, FloatPower, FloatMin, FloatMax, FloatAbs, FloatAverage, IntMin, IntMax, IntAbs, IntAverage, FloatLerp, IntLerp, IntClamp, IntInverseLerp, FloatClamp, FloatInverseLerp
|
|
|
|
|
|
def test_int_add():
|
|
n = IntAdd()
|
|
res, = n.execute(value0=1, value1=2, value2=3)
|
|
assert res == 6
|
|
|
|
|
|
def test_int_subtract():
|
|
n = IntSubtract()
|
|
res, = n.execute(value0=10, value1=3)
|
|
assert res == 7
|
|
|
|
|
|
def test_int_multiply():
|
|
n = IntMultiply()
|
|
res, = n.execute(value0=2, value1=3, value2=4)
|
|
assert res == 24
|
|
|
|
|
|
def test_int_divide():
|
|
n = IntDivide()
|
|
res, = n.execute(value0=10, value1=3)
|
|
assert res == 3
|
|
|
|
res, = n.execute(value0=10, value1=0)
|
|
assert res == 0
|
|
|
|
|
|
def test_int_mod():
|
|
n = IntMod()
|
|
res, = n.execute(value0=10, value1=3)
|
|
assert res == 1
|
|
|
|
res, = n.execute(value0=10, value1=0)
|
|
assert res == 0
|
|
|
|
|
|
def test_int_power():
|
|
n = IntPower()
|
|
res, = n.execute(base=2, exponent=3)
|
|
assert res == 8
|
|
|
|
|
|
def test_float_add():
|
|
n = FloatAdd()
|
|
res, = n.execute(value0=1.5, value1=2.3, value2=3.7)
|
|
assert pytest.approx(res) == 7.5
|
|
|
|
|
|
def test_float_subtract():
|
|
n = FloatSubtract()
|
|
res, = n.execute(value0=10.5, value1=3.2)
|
|
assert pytest.approx(res) == 7.3
|
|
|
|
|
|
def test_float_multiply():
|
|
n = FloatMultiply()
|
|
res, = n.execute(value0=2.5, value1=3.0, value2=4.0)
|
|
assert pytest.approx(res) == 30.0
|
|
|
|
|
|
def test_float_divide():
|
|
n = FloatDivide()
|
|
res, = n.execute(value0=10.0, value1=4.0)
|
|
assert pytest.approx(res) == 2.5
|
|
|
|
res, = n.execute(value0=10.0, value1=0.0)
|
|
assert res == float("inf")
|
|
|
|
|
|
def test_float_power():
|
|
n = FloatPower()
|
|
res, = n.execute(base=2.5, exponent=3.0)
|
|
assert pytest.approx(res) == 15.625
|
|
|
|
|
|
def test_float_min():
|
|
n = FloatMin()
|
|
res, = n.execute(value0=1.5, value1=2.3, value2=0.7)
|
|
assert res == 0.7
|
|
|
|
|
|
def test_float_max():
|
|
n = FloatMax()
|
|
res, = n.execute(value0=1.5, value1=2.3, value2=0.7)
|
|
assert res == 2.3
|
|
|
|
|
|
def test_float_abs():
|
|
n = FloatAbs()
|
|
res, = n.execute(value=-3.14)
|
|
assert res == 3.14
|
|
|
|
|
|
def test_float_average():
|
|
n = FloatAverage()
|
|
res, = n.execute(value0=1.5, value1=2.5, value2=3.5)
|
|
assert res == 2.5
|
|
|
|
|
|
def test_int_min():
|
|
n = IntMin()
|
|
res, = n.execute(value0=5, value1=2, value2=7)
|
|
assert res == 2
|
|
|
|
|
|
def test_int_max():
|
|
n = IntMax()
|
|
res, = n.execute(value0=5, value1=2, value2=7)
|
|
assert res == 7
|
|
|
|
|
|
def test_int_abs():
|
|
n = IntAbs()
|
|
res, = n.execute(value=-10)
|
|
assert res == 10
|
|
|
|
|
|
def test_int_average():
|
|
n = IntAverage()
|
|
res, = n.execute(value0=2, value1=4, value2=6)
|
|
assert res == 4
|
|
|
|
|
|
def test_float_lerp():
|
|
n = FloatLerp()
|
|
res, = n.execute(a=0.0, b=1.0, t=0.5, clamped=True)
|
|
assert res == 0.5
|
|
|
|
res, = n.execute(a=0.0, b=1.0, t=1.5, clamped=True)
|
|
assert res == 1.0
|
|
|
|
res, = n.execute(a=0.0, b=1.0, t=1.5, clamped=False)
|
|
assert res == 1.5
|
|
|
|
|
|
def test_int_lerp():
|
|
n = IntLerp()
|
|
res, = n.execute(a=0, b=10, t=0.5, clamped=True)
|
|
assert res == 5
|
|
|
|
res, = n.execute(a=0, b=10, t=1.5, clamped=True)
|
|
assert res == 10
|
|
|
|
res, = n.execute(a=0, b=10, t=1.5, clamped=False)
|
|
assert res == 15
|
|
|
|
|
|
def test_float_inverse_lerp():
|
|
n = FloatInverseLerp()
|
|
res, = n.execute(a=0.0, b=1.0, value=0.5, clamped=True)
|
|
assert res == 0.5
|
|
|
|
res, = n.execute(a=0.0, b=1.0, value=1.5, clamped=True)
|
|
assert res == 1.0
|
|
|
|
res, = n.execute(a=0.0, b=1.0, value=1.5, clamped=False)
|
|
assert res == 1.5
|
|
|
|
|
|
def test_float_clamp():
|
|
n = FloatClamp()
|
|
res, = n.execute(value=0.5, min=0.0, max=1.0)
|
|
assert res == 0.5
|
|
|
|
res, = n.execute(value=1.5, min=0.0, max=1.0)
|
|
assert res == 1.0
|
|
|
|
res, = n.execute(value=-0.5, min=0.0, max=1.0)
|
|
assert res == 0.0
|
|
|
|
|
|
def test_int_inverse_lerp():
|
|
n = IntInverseLerp()
|
|
res, = n.execute(a=0, b=10, value=5, clamped=True)
|
|
assert res == 0.5
|
|
|
|
res, = n.execute(a=0, b=10, value=15, clamped=True)
|
|
assert res == 1.0
|
|
|
|
res, = n.execute(a=0, b=10, value=15, clamped=False)
|
|
assert res == 1.5
|
|
|
|
|
|
def test_int_clamp():
|
|
n = IntClamp()
|
|
res, = n.execute(value=5, min=0, max=10)
|
|
assert res == 5
|
|
|
|
res, = n.execute(value=15, min=0, max=10)
|
|
assert res == 10
|
|
|
|
res, = n.execute(value=-5, min=0, max=10)
|
|
assert res == 0
|