mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-13 07:40:50 +08:00
243 lines
8.0 KiB
Python
243 lines
8.0 KiB
Python
import datetime
|
|
|
|
import torch
|
|
|
|
import os
|
|
import sys
|
|
import json
|
|
import hashlib
|
|
import copy
|
|
import traceback
|
|
|
|
from PIL import Image
|
|
from PIL.PngImagePlugin import PngInfo
|
|
import numpy as np
|
|
import comfy.samplers
|
|
import comfy.sd
|
|
import comfy.utils
|
|
import comfy_extras.clip_vision
|
|
import model_management
|
|
import importlib
|
|
import folder_paths
|
|
|
|
|
|
class Note:
|
|
def __init__(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"text": ("STRING", {"multiline": True})}}
|
|
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "Note"
|
|
|
|
OUTPUT_NODE = False
|
|
|
|
CATEGORY = "silver_custom"
|
|
|
|
|
|
class SaveImageList:
|
|
def __init__(self):
|
|
current_dir = os.path.abspath(os.getcwd())
|
|
self.output_dir = os.path.join(current_dir, "output")
|
|
self.type = "output"
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"images": ("IMAGE",),
|
|
"filename_prefix": ("STRING", {"default": "ComfyUI"})},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
}
|
|
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save_images_list"
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "silver_custom"
|
|
|
|
def save_images_list(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
|
def map_filename(filename):
|
|
prefix_len = len(os.path.basename(filename_prefix))
|
|
prefix = filename[:prefix_len + 1]
|
|
try:
|
|
digits = int(filename[prefix_len + 1:].split('_')[0])
|
|
except:
|
|
digits = 0
|
|
return (digits, prefix)
|
|
|
|
subfolder = os.path.dirname(os.path.normpath(filename_prefix))
|
|
filename = os.path.basename(os.path.normpath(filename_prefix))
|
|
|
|
full_output_folder = os.path.join(self.output_dir, subfolder)
|
|
|
|
if os.path.commonpath((self.output_dir, os.path.realpath(full_output_folder))) != self.output_dir:
|
|
print("Saving image outside the output folder is not allowed.")
|
|
return {}
|
|
|
|
try:
|
|
counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_",
|
|
map(map_filename, os.listdir(full_output_folder))))[0] + 1
|
|
except ValueError:
|
|
counter = 1
|
|
except FileNotFoundError:
|
|
os.makedirs(full_output_folder, exist_ok=True)
|
|
counter = 1
|
|
|
|
if not os.path.exists(self.output_dir):
|
|
os.makedirs(self.output_dir)
|
|
|
|
results = list()
|
|
for image in images:
|
|
i = 255. * image.cpu().numpy()
|
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
|
metadata = PngInfo()
|
|
if prompt is not None:
|
|
metadata.add_text("prompt", json.dumps(prompt))
|
|
if extra_pnginfo is not None:
|
|
for x in extra_pnginfo:
|
|
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
|
|
|
|
now = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
|
file = f"{filename}-{now}_{counter:05}_.png"
|
|
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, optimize=True)
|
|
results.append({
|
|
"filename": file,
|
|
"subfolder": subfolder,
|
|
"type": self.type
|
|
})
|
|
counter += 1
|
|
|
|
return self.get_all_files()
|
|
|
|
def get_all_files(self):
|
|
results = []
|
|
for root, dirs, files in os.walk(self.output_dir):
|
|
for file in files:
|
|
subfolder = os.path.relpath(root, self.output_dir)
|
|
results.append({
|
|
"filename": file,
|
|
"subfolder": subfolder,
|
|
"type": self.type
|
|
})
|
|
sorted_results = sorted(results, key=lambda x: x["filename"])
|
|
return {"ui": {"images": sorted_results}}
|
|
|
|
|
|
def custom_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0,
|
|
disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, in_seed=None):
|
|
latent_image = latent["samples"]
|
|
noise_mask = None
|
|
device = model_management.get_torch_device()
|
|
if in_seed is not None:
|
|
seed = in_seed
|
|
print(seed)
|
|
if disable_noise:
|
|
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
|
else:
|
|
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout,
|
|
generator=torch.manual_seed(seed), device="cpu")
|
|
|
|
if "noise_mask" in latent:
|
|
noise_mask = latent['noise_mask']
|
|
noise_mask = torch.nn.functional.interpolate(noise_mask[None, None,], size=(noise.shape[2], noise.shape[3]),
|
|
mode="bilinear")
|
|
noise_mask = noise_mask.round()
|
|
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
|
|
noise_mask = torch.cat([noise_mask] * noise.shape[0])
|
|
noise_mask = noise_mask.to(device)
|
|
|
|
real_model = None
|
|
model_management.load_model_gpu(model)
|
|
real_model = model.model
|
|
|
|
noise = noise.to(device)
|
|
latent_image = latent_image.to(device)
|
|
|
|
positive_copy = []
|
|
negative_copy = []
|
|
|
|
control_nets = []
|
|
for p in positive:
|
|
t = p[0]
|
|
if t.shape[0] < noise.shape[0]:
|
|
t = torch.cat([t] * noise.shape[0])
|
|
t = t.to(device)
|
|
if 'control' in p[1]:
|
|
control_nets += [p[1]['control']]
|
|
positive_copy += [[t] + p[1:]]
|
|
for n in negative:
|
|
t = n[0]
|
|
if t.shape[0] < noise.shape[0]:
|
|
t = torch.cat([t] * noise.shape[0])
|
|
t = t.to(device)
|
|
if 'control' in n[1]:
|
|
control_nets += [n[1]['control']]
|
|
negative_copy += [[t] + n[1:]]
|
|
|
|
control_net_models = []
|
|
for x in control_nets:
|
|
control_net_models += x.get_control_models()
|
|
model_management.load_controlnet_gpu(control_net_models)
|
|
|
|
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
|
|
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name,
|
|
scheduler=scheduler, denoise=denoise)
|
|
else:
|
|
# other samplers
|
|
pass
|
|
|
|
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image,
|
|
start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise,
|
|
denoise_mask=noise_mask)
|
|
samples = samples.cpu()
|
|
for c in control_nets:
|
|
c.cleanup()
|
|
|
|
out = latent.copy()
|
|
out["samples"] = samples
|
|
return (out, seed,)
|
|
|
|
|
|
class CustomKSampler:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required":
|
|
{
|
|
"model": ("MODEL",),
|
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
|
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
|
|
"scheduler": (comfy.samplers.KSampler.SCHEDULERS,),
|
|
"positive": ("CONDITIONING",),
|
|
"negative": ("CONDITIONING",),
|
|
"latent_image": ("LATENT",),
|
|
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
},
|
|
"optional":
|
|
{
|
|
"in_seed": ()
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("LATENT", "seed",)
|
|
FUNCTION = "sample"
|
|
|
|
CATEGORY = "silver_custom"
|
|
|
|
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0,
|
|
in_seed=None):
|
|
return custom_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
|
|
denoise=denoise, in_seed=in_seed)
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"Note": Note,
|
|
"SaveImageList": SaveImageList,
|
|
"CustomKSampler": CustomKSampler,
|
|
}
|