ComfyUI/comfy_extras/nodes/nodes_images.py
doctorpangloss e068c4c920 Improved support for Wan features
- Wan and Cosmos prompt upsamplers
 - Fixed torch.compile issues
 - Known models added
 - Cosmos, Wan and Hunyuan Video resolutions now supported by Fit Image
   to Diffusion Size.
 - Better error messages for Ampere and Triton interactions
2025-03-08 15:12:28 -08:00

448 lines
18 KiB
Python

import json
import os
from typing import Literal, Tuple
import numpy as np
import torch
from PIL import Image
from PIL.PngImagePlugin import PngInfo
from comfy import utils
from comfy.cli_args import args
from comfy.cmd import folder_paths
from comfy.component_model.tensor_types import ImageBatch, RGBImageBatch
from comfy.nodes.base_nodes import ImageScale
from comfy.nodes.common import MAX_RESOLUTION
from comfy.nodes.package_typing import CustomNode
from comfy_extras.constants.resolutions import SDXL_SD3_FLUX_RESOLUTIONS, LTVX_RESOLUTIONS, SD_RESOLUTIONS, \
IDEOGRAM_RESOLUTIONS, COSMOS_RESOLUTIONS, HUNYUAN_VIDEO_RESOLUTIONS, WAN_VIDEO_14B_RESOLUTIONS, \
WAN_VIDEO_1_3B_RESOLUTIONS, WAN_VIDEO_14B_EXTENDED_RESOLUTIONS
def levels_adjustment(image: ImageBatch, black_level: float = 0.0, mid_level: float = 0.5, white_level: float = 1.0, clip: bool = True) -> ImageBatch:
"""
Apply a levels adjustment to an sRGB image.
Args:
image (torch.Tensor): Input image tensor of shape (B, H, W, C) with values in range [0, 1]
black_level (float): Black point (default: 0.0)
mid_level (float): Midtone point (default: 0.5)
white_level (float): White point (default: 1.0)
clip (bool): Whether to clip the output values to [0, 1] range (default: True)
Returns:
torch.Tensor: Adjusted image tensor of shape (B, H, W, C)
"""
# Ensure input is in correct shape and range
assert image.dim() == 4 and image.shape[-1] == 3, "Input should be of shape (B, H, W, 3)"
assert 0 <= black_level < mid_level < white_level <= 1, "Levels should be in ascending order in range [0, 1]"
def srgb_to_linear(x):
return torch.where(x <= 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4)
def linear_to_srgb(x):
return torch.where(x <= 0.0031308, x * 12.92, 1.055 * x ** (1 / 2.4) - 0.055)
linear = srgb_to_linear(image)
adjusted = (linear - black_level) / (white_level - black_level)
power_factor = torch.log2(torch.tensor(0.5, device=image.device)) / torch.log2(torch.tensor(mid_level, device=image.device))
# apply power function to avoid nans
adjusted = torch.where(adjusted > 0, torch.pow(adjusted.clamp(min=1e-8), power_factor), adjusted)
result = linear_to_srgb(adjusted)
if clip:
result = torch.clamp(result, 0.0, 1.0)
return result
class ImageCrop:
@classmethod
def INPUT_TYPES(s):
return {"required": {"image": ("IMAGE",),
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "crop"
CATEGORY = "image/transform"
def crop(self, image, width, height, x, y):
x = min(x, image.shape[2] - 1)
y = min(y, image.shape[1] - 1)
to_x = width + x
to_y = height + y
img = image[:, y:to_y, x:to_x, :]
return (img,)
class RepeatImageBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": {"image": ("IMAGE",),
"amount": ("INT", {"default": 1, "min": 1, "max": 4096}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "repeat"
CATEGORY = "image/batch"
def repeat(self, image, amount):
s = image.repeat((amount, 1, 1, 1))
return (s,)
class ImageFromBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": {"image": ("IMAGE",),
"batch_index": ("INT", {"default": 0, "min": 0, "max": 4095}),
"length": ("INT", {"default": 1, "min": 1, "max": 4096}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "frombatch"
CATEGORY = "image/batch"
def frombatch(self, image, batch_index, length):
s_in = image
batch_index = min(s_in.shape[0] - 1, batch_index)
length = min(s_in.shape[0] - batch_index, length)
s = s_in[batch_index:batch_index + length].clone()
return (s,)
class SaveAnimatedWEBP:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
methods = {"default": 4, "fastest": 0, "slowest": 6}
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE",),
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
"lossless": ("BOOLEAN", {"default": True}),
"quality": ("INT", {"default": 80, "min": 0, "max": 100}),
"method": (list(s.methods.keys()),),
# "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
CATEGORY = "image/animation"
def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None):
method = self.methods.get(method)
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
results = list()
pil_images = []
for image in images:
i = 255. * image.float().cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
pil_images.append(img)
metadata = pil_images[0].getexif()
if not args.disable_metadata:
if prompt is not None:
metadata[0x0110] = "prompt:{}".format(json.dumps(prompt))
if extra_pnginfo is not None:
inital_exif = 0x010f
for x in extra_pnginfo:
metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x]))
inital_exif -= 1
if num_frames == 0:
num_frames = len(pil_images)
c = len(pil_images)
for i in range(0, c, num_frames):
file = f"{filename}_{counter:05}_.webp"
pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0 / fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method)
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
counter += 1
animated = num_frames != 1
return {"ui": {"images": results, "animated": (animated,)}}
class SaveAnimatedPNG:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE",),
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
"compress_level": ("INT", {"default": 4, "min": 0, "max": 9})
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
CATEGORY = "image/animation"
def save_images(self, images, fps, compress_level, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
results = list()
pil_images = []
for image in images:
i = 255. * image.float().cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
pil_images.append(img)
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if prompt is not None:
metadata.add(b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(prompt).encode("latin-1", "strict"), after_idat=True)
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add(b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True)
file = f"{filename}_{counter:05}_.png"
pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0 / fps), append_images=pil_images[1:])
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
return {"ui": {"images": results, "animated": (True,)}}
class ImageShape:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("INT", "INT")
RETURN_NAMES = ("width", "height")
FUNCTION = "image_width_height"
CATEGORY = "image/operations"
def image_width_height(self, image: ImageBatch):
shape = image.shape
return shape[2], shape[1]
class ImageResize:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"resize_mode": (["cover", "contain", "auto"], {"default": "cover"}),
"resolutions": (["SDXL/SD3/Flux", "SD1.5", "LTXV", "Ideogram", "Cosmos", "HunyuanVideo", "WAN 14b", "WAN 1.3b", "WAN 14b with extras"], {"default": "SDXL/SD3/Flux"}),
"interpolation": (ImageScale.upscale_methods, {"default": "lanczos"}),
},
"optional": {
"aspect_ratio_tolerance": ("FLOAT", {"min": 0, "max": 1.0, "default": 0.05, "step": 0.001})
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "resize_image"
CATEGORY = "image/transform"
def resize_image(self, image: RGBImageBatch, resize_mode: Literal["cover", "contain", "auto"], resolutions: Literal["SDXL/SD3/Flux", "SD1.5"], interpolation: str, aspect_ratio_tolerance=0.05) -> tuple[RGBImageBatch]:
if resolutions == "SDXL/SD3/Flux":
supported_resolutions = SDXL_SD3_FLUX_RESOLUTIONS
elif resolutions == "LTXV":
supported_resolutions = LTVX_RESOLUTIONS
elif resolutions == "Ideogram":
supported_resolutions = IDEOGRAM_RESOLUTIONS
elif resolutions == "Cosmos":
supported_resolutions = COSMOS_RESOLUTIONS
elif resolutions == "HunyuanVideo":
supported_resolutions = HUNYUAN_VIDEO_RESOLUTIONS
elif resolutions == "WAN 14b":
supported_resolutions = WAN_VIDEO_14B_RESOLUTIONS
elif resolutions == "WAN 1.3b":
supported_resolutions = WAN_VIDEO_1_3B_RESOLUTIONS
elif resolutions == "WAN 14b with extras":
supported_resolutions = WAN_VIDEO_14B_EXTENDED_RESOLUTIONS
else:
supported_resolutions = SD_RESOLUTIONS
return self.resize_image_with_supported_resolutions(image, resize_mode, supported_resolutions, interpolation, aspect_ratio_tolerance=aspect_ratio_tolerance)
def resize_image_with_supported_resolutions(self, image: RGBImageBatch, resize_mode: Literal["cover", "contain", "auto"], supported_resolutions: list[tuple[int, int]], interpolation: str, aspect_ratio_tolerance=0.05) -> tuple[RGBImageBatch]:
resized_images = []
for img in image:
h, w = img.shape[:2]
current_aspect_ratio = w / h
aspect_ratio_diffs = [(abs(res[0] / res[1] - current_aspect_ratio), res) for res in supported_resolutions]
min_diff = min(aspect_ratio_diffs, key=lambda x: x[0])[0]
close_enough_resolutions = [res for diff, res in aspect_ratio_diffs if diff <= min_diff + aspect_ratio_tolerance]
# pick the highest resolution from the filtered set
target_resolution = max(close_enough_resolutions, key=lambda res: res[0] * res[1])
if resize_mode == "cover":
scale = max(target_resolution[0] / w, target_resolution[1] / h)
new_w, new_h = int(w * scale), int(h * scale)
elif resize_mode == "contain":
scale = min(target_resolution[0] / w, target_resolution[1] / h)
new_w, new_h = int(w * scale), int(h * scale)
else: # auto
if current_aspect_ratio > target_resolution[0] / target_resolution[1]:
new_w, new_h = target_resolution[0], int(h * target_resolution[0] / w)
else:
new_w, new_h = int(w * target_resolution[1] / h), target_resolution[1]
# convert to b, c, h, w
img_tensor = img.permute(2, 0, 1).unsqueeze(0)
resized = utils.common_upscale(img_tensor, new_w, new_h, interpolation, "disabled")
# handle padding or cropping
if resize_mode == "contain":
canvas = torch.zeros((1, 3, target_resolution[1], target_resolution[0]), device=resized.device, dtype=resized.dtype)
y1 = (target_resolution[1] - new_h) // 2
x1 = (target_resolution[0] - new_w) // 2
canvas[:, :, y1:y1 + new_h, x1:x1 + new_w] = resized
resized = canvas
elif resize_mode == "cover":
y1 = (new_h - target_resolution[1]) // 2
x1 = (new_w - target_resolution[0]) // 2
resized = resized[:, :, y1:y1 + target_resolution[1], x1:x1 + target_resolution[0]]
else: # auto
if new_w != target_resolution[0] or new_h != target_resolution[1]:
canvas = torch.zeros((1, 3, target_resolution[1], target_resolution[0]), device=resized.device, dtype=resized.dtype)
y1 = (target_resolution[1] - new_h) // 2
x1 = (target_resolution[0] - new_w) // 2
canvas[:, :, y1:y1 + new_h, x1:x1 + new_w] = resized
resized = canvas
resized_images.append(resized.squeeze(0).permute(1, 2, 0).clamp(0.0, 1.0))
return (torch.stack(resized_images),)
class ImageResize1(ImageResize):
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"resize_mode": (["cover", "contain", "auto"], {"default": "cover"}),
"width": ("INT", {"min": 1}),
"height": ("INT", {"min": 1}),
"interpolation": (ImageScale.upscale_methods, {"default": "lanczos"}),
}
}
FUNCTION = "execute"
RETURN_TYPES = ("IMAGE",)
def execute(self, image: RGBImageBatch, resize_mode: Literal["cover", "contain", "auto"], width: int, height: int, interpolation: str) -> tuple[RGBImageBatch]:
return self.resize_image_with_supported_resolutions(image, resize_mode, [(width, height)], interpolation)
class ImageLevels(CustomNode):
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"black_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"mid_level": ("FLOAT", {"default": 0.5, "min": 0.01, "max": 0.99, "step": 0.01}),
"white_level": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"clip": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "apply_levels"
CATEGORY = "image/adjust"
def apply_levels(self, image: ImageBatch, black_level: float, mid_level: float, white_level: float, clip: bool) -> Tuple[ImageBatch]:
adjusted_image = levels_adjustment(image, black_level, mid_level, white_level, clip)
return (adjusted_image,)
class ImageLuminance:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "compute_luminance"
CATEGORY = "image/color"
def compute_luminance(self, image: ImageBatch) -> Tuple[ImageBatch]:
assert image.dim() == 4 and image.shape[-1] == 3, "Input should be of shape (B, H, W, 3)"
# define srgb luminance coefficients
coeffs = torch.tensor([0.2126, 0.7152, 0.0722], device=image.device, dtype=image.dtype)
luminance = torch.sum(image * coeffs, dim=-1, keepdim=True)
luminance = luminance.expand(-1, -1, -1, 3)
return (luminance,)
NODE_CLASS_MAPPINGS = {
"ImageResize": ImageResize,
"ImageResize1": ImageResize1,
"ImageShape": ImageShape,
"ImageCrop": ImageCrop,
"ImageLevels": ImageLevels,
"ImageLuminance": ImageLuminance,
"RepeatImageBatch": RepeatImageBatch,
"ImageFromBatch": ImageFromBatch,
"SaveAnimatedWEBP": SaveAnimatedWEBP,
"SaveAnimatedPNG": SaveAnimatedPNG,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"ImageResize": "Fit Image to Diffusion Size",
"ImageResize1": "Fit Image to Width Height"
}