mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-10 14:20:49 +08:00
- Wan and Cosmos prompt upsamplers - Fixed torch.compile issues - Known models added - Cosmos, Wan and Hunyuan Video resolutions now supported by Fit Image to Diffusion Size. - Better error messages for Ampere and Triton interactions
448 lines
18 KiB
Python
448 lines
18 KiB
Python
import json
|
|
import os
|
|
from typing import Literal, Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from PIL.PngImagePlugin import PngInfo
|
|
|
|
from comfy import utils
|
|
from comfy.cli_args import args
|
|
from comfy.cmd import folder_paths
|
|
from comfy.component_model.tensor_types import ImageBatch, RGBImageBatch
|
|
from comfy.nodes.base_nodes import ImageScale
|
|
from comfy.nodes.common import MAX_RESOLUTION
|
|
from comfy.nodes.package_typing import CustomNode
|
|
from comfy_extras.constants.resolutions import SDXL_SD3_FLUX_RESOLUTIONS, LTVX_RESOLUTIONS, SD_RESOLUTIONS, \
|
|
IDEOGRAM_RESOLUTIONS, COSMOS_RESOLUTIONS, HUNYUAN_VIDEO_RESOLUTIONS, WAN_VIDEO_14B_RESOLUTIONS, \
|
|
WAN_VIDEO_1_3B_RESOLUTIONS, WAN_VIDEO_14B_EXTENDED_RESOLUTIONS
|
|
|
|
|
|
def levels_adjustment(image: ImageBatch, black_level: float = 0.0, mid_level: float = 0.5, white_level: float = 1.0, clip: bool = True) -> ImageBatch:
|
|
"""
|
|
Apply a levels adjustment to an sRGB image.
|
|
|
|
Args:
|
|
image (torch.Tensor): Input image tensor of shape (B, H, W, C) with values in range [0, 1]
|
|
black_level (float): Black point (default: 0.0)
|
|
mid_level (float): Midtone point (default: 0.5)
|
|
white_level (float): White point (default: 1.0)
|
|
clip (bool): Whether to clip the output values to [0, 1] range (default: True)
|
|
|
|
Returns:
|
|
torch.Tensor: Adjusted image tensor of shape (B, H, W, C)
|
|
"""
|
|
# Ensure input is in correct shape and range
|
|
assert image.dim() == 4 and image.shape[-1] == 3, "Input should be of shape (B, H, W, 3)"
|
|
assert 0 <= black_level < mid_level < white_level <= 1, "Levels should be in ascending order in range [0, 1]"
|
|
|
|
def srgb_to_linear(x):
|
|
return torch.where(x <= 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4)
|
|
|
|
def linear_to_srgb(x):
|
|
return torch.where(x <= 0.0031308, x * 12.92, 1.055 * x ** (1 / 2.4) - 0.055)
|
|
|
|
linear = srgb_to_linear(image)
|
|
|
|
adjusted = (linear - black_level) / (white_level - black_level)
|
|
|
|
power_factor = torch.log2(torch.tensor(0.5, device=image.device)) / torch.log2(torch.tensor(mid_level, device=image.device))
|
|
|
|
# apply power function to avoid nans
|
|
adjusted = torch.where(adjusted > 0, torch.pow(adjusted.clamp(min=1e-8), power_factor), adjusted)
|
|
|
|
result = linear_to_srgb(adjusted)
|
|
|
|
if clip:
|
|
result = torch.clamp(result, 0.0, 1.0)
|
|
|
|
return result
|
|
|
|
|
|
class ImageCrop:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"image": ("IMAGE",),
|
|
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
|
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
|
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
|
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "crop"
|
|
|
|
CATEGORY = "image/transform"
|
|
|
|
def crop(self, image, width, height, x, y):
|
|
x = min(x, image.shape[2] - 1)
|
|
y = min(y, image.shape[1] - 1)
|
|
to_x = width + x
|
|
to_y = height + y
|
|
img = image[:, y:to_y, x:to_x, :]
|
|
return (img,)
|
|
|
|
|
|
class RepeatImageBatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"image": ("IMAGE",),
|
|
"amount": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "repeat"
|
|
|
|
CATEGORY = "image/batch"
|
|
|
|
def repeat(self, image, amount):
|
|
s = image.repeat((amount, 1, 1, 1))
|
|
return (s,)
|
|
|
|
|
|
class ImageFromBatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"image": ("IMAGE",),
|
|
"batch_index": ("INT", {"default": 0, "min": 0, "max": 4095}),
|
|
"length": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "frombatch"
|
|
|
|
CATEGORY = "image/batch"
|
|
|
|
def frombatch(self, image, batch_index, length):
|
|
s_in = image
|
|
batch_index = min(s_in.shape[0] - 1, batch_index)
|
|
length = min(s_in.shape[0] - batch_index, length)
|
|
s = s_in[batch_index:batch_index + length].clone()
|
|
return (s,)
|
|
|
|
|
|
class SaveAnimatedWEBP:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
self.type = "output"
|
|
self.prefix_append = ""
|
|
|
|
methods = {"default": 4, "fastest": 0, "slowest": 6}
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"images": ("IMAGE",),
|
|
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
|
|
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
|
|
"lossless": ("BOOLEAN", {"default": True}),
|
|
"quality": ("INT", {"default": 80, "min": 0, "max": 100}),
|
|
"method": (list(s.methods.keys()),),
|
|
# "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}),
|
|
},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
}
|
|
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save_images"
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "image/animation"
|
|
|
|
def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None):
|
|
method = self.methods.get(method)
|
|
filename_prefix += self.prefix_append
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
|
results = list()
|
|
pil_images = []
|
|
for image in images:
|
|
i = 255. * image.float().cpu().numpy()
|
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
|
pil_images.append(img)
|
|
|
|
metadata = pil_images[0].getexif()
|
|
if not args.disable_metadata:
|
|
if prompt is not None:
|
|
metadata[0x0110] = "prompt:{}".format(json.dumps(prompt))
|
|
if extra_pnginfo is not None:
|
|
inital_exif = 0x010f
|
|
for x in extra_pnginfo:
|
|
metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x]))
|
|
inital_exif -= 1
|
|
|
|
if num_frames == 0:
|
|
num_frames = len(pil_images)
|
|
|
|
c = len(pil_images)
|
|
for i in range(0, c, num_frames):
|
|
file = f"{filename}_{counter:05}_.webp"
|
|
pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0 / fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method)
|
|
results.append({
|
|
"filename": file,
|
|
"subfolder": subfolder,
|
|
"type": self.type
|
|
})
|
|
counter += 1
|
|
|
|
animated = num_frames != 1
|
|
return {"ui": {"images": results, "animated": (animated,)}}
|
|
|
|
|
|
class SaveAnimatedPNG:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
self.type = "output"
|
|
self.prefix_append = ""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"images": ("IMAGE",),
|
|
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
|
|
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
|
|
"compress_level": ("INT", {"default": 4, "min": 0, "max": 9})
|
|
},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
}
|
|
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save_images"
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "image/animation"
|
|
|
|
def save_images(self, images, fps, compress_level, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
|
filename_prefix += self.prefix_append
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
|
results = list()
|
|
pil_images = []
|
|
for image in images:
|
|
i = 255. * image.float().cpu().numpy()
|
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
|
pil_images.append(img)
|
|
|
|
metadata = None
|
|
if not args.disable_metadata:
|
|
metadata = PngInfo()
|
|
if prompt is not None:
|
|
metadata.add(b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(prompt).encode("latin-1", "strict"), after_idat=True)
|
|
if extra_pnginfo is not None:
|
|
for x in extra_pnginfo:
|
|
metadata.add(b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True)
|
|
|
|
file = f"{filename}_{counter:05}_.png"
|
|
pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0 / fps), append_images=pil_images[1:])
|
|
results.append({
|
|
"filename": file,
|
|
"subfolder": subfolder,
|
|
"type": self.type
|
|
})
|
|
|
|
return {"ui": {"images": results, "animated": (True,)}}
|
|
|
|
|
|
class ImageShape:
|
|
def __init__(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("INT", "INT")
|
|
RETURN_NAMES = ("width", "height")
|
|
FUNCTION = "image_width_height"
|
|
|
|
CATEGORY = "image/operations"
|
|
|
|
def image_width_height(self, image: ImageBatch):
|
|
shape = image.shape
|
|
return shape[2], shape[1]
|
|
|
|
|
|
class ImageResize:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"resize_mode": (["cover", "contain", "auto"], {"default": "cover"}),
|
|
"resolutions": (["SDXL/SD3/Flux", "SD1.5", "LTXV", "Ideogram", "Cosmos", "HunyuanVideo", "WAN 14b", "WAN 1.3b", "WAN 14b with extras"], {"default": "SDXL/SD3/Flux"}),
|
|
"interpolation": (ImageScale.upscale_methods, {"default": "lanczos"}),
|
|
},
|
|
"optional": {
|
|
"aspect_ratio_tolerance": ("FLOAT", {"min": 0, "max": 1.0, "default": 0.05, "step": 0.001})
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "resize_image"
|
|
CATEGORY = "image/transform"
|
|
|
|
def resize_image(self, image: RGBImageBatch, resize_mode: Literal["cover", "contain", "auto"], resolutions: Literal["SDXL/SD3/Flux", "SD1.5"], interpolation: str, aspect_ratio_tolerance=0.05) -> tuple[RGBImageBatch]:
|
|
if resolutions == "SDXL/SD3/Flux":
|
|
supported_resolutions = SDXL_SD3_FLUX_RESOLUTIONS
|
|
elif resolutions == "LTXV":
|
|
supported_resolutions = LTVX_RESOLUTIONS
|
|
elif resolutions == "Ideogram":
|
|
supported_resolutions = IDEOGRAM_RESOLUTIONS
|
|
elif resolutions == "Cosmos":
|
|
supported_resolutions = COSMOS_RESOLUTIONS
|
|
elif resolutions == "HunyuanVideo":
|
|
supported_resolutions = HUNYUAN_VIDEO_RESOLUTIONS
|
|
elif resolutions == "WAN 14b":
|
|
supported_resolutions = WAN_VIDEO_14B_RESOLUTIONS
|
|
elif resolutions == "WAN 1.3b":
|
|
supported_resolutions = WAN_VIDEO_1_3B_RESOLUTIONS
|
|
elif resolutions == "WAN 14b with extras":
|
|
supported_resolutions = WAN_VIDEO_14B_EXTENDED_RESOLUTIONS
|
|
else:
|
|
supported_resolutions = SD_RESOLUTIONS
|
|
return self.resize_image_with_supported_resolutions(image, resize_mode, supported_resolutions, interpolation, aspect_ratio_tolerance=aspect_ratio_tolerance)
|
|
|
|
def resize_image_with_supported_resolutions(self, image: RGBImageBatch, resize_mode: Literal["cover", "contain", "auto"], supported_resolutions: list[tuple[int, int]], interpolation: str, aspect_ratio_tolerance=0.05) -> tuple[RGBImageBatch]:
|
|
resized_images = []
|
|
for img in image:
|
|
h, w = img.shape[:2]
|
|
current_aspect_ratio = w / h
|
|
|
|
|
|
aspect_ratio_diffs = [(abs(res[0] / res[1] - current_aspect_ratio), res) for res in supported_resolutions]
|
|
min_diff = min(aspect_ratio_diffs, key=lambda x: x[0])[0]
|
|
close_enough_resolutions = [res for diff, res in aspect_ratio_diffs if diff <= min_diff + aspect_ratio_tolerance]
|
|
|
|
# pick the highest resolution from the filtered set
|
|
target_resolution = max(close_enough_resolutions, key=lambda res: res[0] * res[1])
|
|
|
|
if resize_mode == "cover":
|
|
scale = max(target_resolution[0] / w, target_resolution[1] / h)
|
|
new_w, new_h = int(w * scale), int(h * scale)
|
|
elif resize_mode == "contain":
|
|
scale = min(target_resolution[0] / w, target_resolution[1] / h)
|
|
new_w, new_h = int(w * scale), int(h * scale)
|
|
else: # auto
|
|
if current_aspect_ratio > target_resolution[0] / target_resolution[1]:
|
|
new_w, new_h = target_resolution[0], int(h * target_resolution[0] / w)
|
|
else:
|
|
new_w, new_h = int(w * target_resolution[1] / h), target_resolution[1]
|
|
|
|
# convert to b, c, h, w
|
|
img_tensor = img.permute(2, 0, 1).unsqueeze(0)
|
|
resized = utils.common_upscale(img_tensor, new_w, new_h, interpolation, "disabled")
|
|
|
|
# handle padding or cropping
|
|
if resize_mode == "contain":
|
|
canvas = torch.zeros((1, 3, target_resolution[1], target_resolution[0]), device=resized.device, dtype=resized.dtype)
|
|
y1 = (target_resolution[1] - new_h) // 2
|
|
x1 = (target_resolution[0] - new_w) // 2
|
|
canvas[:, :, y1:y1 + new_h, x1:x1 + new_w] = resized
|
|
resized = canvas
|
|
elif resize_mode == "cover":
|
|
y1 = (new_h - target_resolution[1]) // 2
|
|
x1 = (new_w - target_resolution[0]) // 2
|
|
resized = resized[:, :, y1:y1 + target_resolution[1], x1:x1 + target_resolution[0]]
|
|
else: # auto
|
|
if new_w != target_resolution[0] or new_h != target_resolution[1]:
|
|
canvas = torch.zeros((1, 3, target_resolution[1], target_resolution[0]), device=resized.device, dtype=resized.dtype)
|
|
y1 = (target_resolution[1] - new_h) // 2
|
|
x1 = (target_resolution[0] - new_w) // 2
|
|
canvas[:, :, y1:y1 + new_h, x1:x1 + new_w] = resized
|
|
resized = canvas
|
|
|
|
resized_images.append(resized.squeeze(0).permute(1, 2, 0).clamp(0.0, 1.0))
|
|
|
|
return (torch.stack(resized_images),)
|
|
|
|
|
|
class ImageResize1(ImageResize):
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"resize_mode": (["cover", "contain", "auto"], {"default": "cover"}),
|
|
"width": ("INT", {"min": 1}),
|
|
"height": ("INT", {"min": 1}),
|
|
"interpolation": (ImageScale.upscale_methods, {"default": "lanczos"}),
|
|
}
|
|
}
|
|
|
|
FUNCTION = "execute"
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
|
def execute(self, image: RGBImageBatch, resize_mode: Literal["cover", "contain", "auto"], width: int, height: int, interpolation: str) -> tuple[RGBImageBatch]:
|
|
return self.resize_image_with_supported_resolutions(image, resize_mode, [(width, height)], interpolation)
|
|
|
|
|
|
class ImageLevels(CustomNode):
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"black_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"mid_level": ("FLOAT", {"default": 0.5, "min": 0.01, "max": 0.99, "step": 0.01}),
|
|
"white_level": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"clip": ("BOOLEAN", {"default": True}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "apply_levels"
|
|
CATEGORY = "image/adjust"
|
|
|
|
def apply_levels(self, image: ImageBatch, black_level: float, mid_level: float, white_level: float, clip: bool) -> Tuple[ImageBatch]:
|
|
adjusted_image = levels_adjustment(image, black_level, mid_level, white_level, clip)
|
|
return (adjusted_image,)
|
|
|
|
|
|
class ImageLuminance:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "compute_luminance"
|
|
CATEGORY = "image/color"
|
|
|
|
def compute_luminance(self, image: ImageBatch) -> Tuple[ImageBatch]:
|
|
assert image.dim() == 4 and image.shape[-1] == 3, "Input should be of shape (B, H, W, 3)"
|
|
|
|
# define srgb luminance coefficients
|
|
coeffs = torch.tensor([0.2126, 0.7152, 0.0722], device=image.device, dtype=image.dtype)
|
|
|
|
luminance = torch.sum(image * coeffs, dim=-1, keepdim=True)
|
|
luminance = luminance.expand(-1, -1, -1, 3)
|
|
|
|
return (luminance,)
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"ImageResize": ImageResize,
|
|
"ImageResize1": ImageResize1,
|
|
"ImageShape": ImageShape,
|
|
"ImageCrop": ImageCrop,
|
|
"ImageLevels": ImageLevels,
|
|
"ImageLuminance": ImageLuminance,
|
|
"RepeatImageBatch": RepeatImageBatch,
|
|
"ImageFromBatch": ImageFromBatch,
|
|
"SaveAnimatedWEBP": SaveAnimatedWEBP,
|
|
"SaveAnimatedPNG": SaveAnimatedPNG,
|
|
}
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"ImageResize": "Fit Image to Diffusion Size",
|
|
"ImageResize1": "Fit Image to Width Height"
|
|
}
|