ComfyUI/comfy_extras/nodes/nodes_inpainting.py
2025-06-07 10:20:21 -07:00

154 lines
7.4 KiB
Python

import torch
import torch.nn.functional as F
from typing import NamedTuple, Optional
from comfy.component_model.tensor_types import MaskBatch, ImageBatch
from comfy.nodes.package_typing import CustomNode
from comfy_extras.constants.resolutions import (
RESOLUTION_NAMES, SDXL_SD3_FLUX_RESOLUTIONS, SD_RESOLUTIONS, LTVX_RESOLUTIONS,
IDEOGRAM_RESOLUTIONS, COSMOS_RESOLUTIONS, HUNYUAN_VIDEO_RESOLUTIONS,
WAN_VIDEO_14B_RESOLUTIONS, WAN_VIDEO_1_3B_RESOLUTIONS,
WAN_VIDEO_14B_EXTENDED_RESOLUTIONS
)
class CompositeContext(NamedTuple):
x: int
y: int
width: int
height: int
def composite(destination: ImageBatch, source: ImageBatch, x: int, y: int, mask: Optional[MaskBatch] = None):
"""A robust function to composite a source tensor onto a destination tensor."""
source = source.to(destination.device)
if source.shape[0] != destination.shape[0]:
source = source.repeat(destination.shape[0] // source.shape[0], 1, 1, 1)
x, y = int(x), int(y)
left, top = x, y
right, bottom = left + source.shape[3], top + source.shape[2]
if mask is None:
mask = torch.ones_like(source)
else:
mask = mask.to(destination.device, copy=True)
if mask.dim() == 2: mask = mask.unsqueeze(0)
if mask.dim() == 3: mask = mask.unsqueeze(1)
if mask.shape[0] != source.shape[0]:
mask = mask.repeat(source.shape[0] // mask.shape[0], 1, 1, 1)
dest_left, dest_top = max(0, left), max(0, top)
dest_right, dest_bottom = min(destination.shape[3], right), min(destination.shape[2], bottom)
if dest_right <= dest_left or dest_bottom <= dest_top: return destination
src_left, src_top = dest_left - left, dest_top - top
src_right, src_bottom = dest_right - left, dest_bottom
destination_portion = destination[:, :, dest_top:dest_bottom, dest_left:dest_right]
source_portion = source[:, :, src_top:src_bottom, src_left:src_right]
# The mask must be cropped to the region of interest on the destination.
mask_portion = mask[:, :, dest_top:dest_bottom, dest_left:dest_right]
blended_portion = (source_portion * mask_portion) + (destination_portion * (1.0 - mask_portion))
destination[:, :, dest_top:dest_bottom, dest_left:dest_right] = blended_portion
return destination
def parse_margin(margin_str: str) -> tuple[int, int, int, int]:
parts = [int(p) for p in margin_str.strip().split()]
if len(parts) == 1: return parts[0], parts[0], parts[0], parts[0]
if len(parts) == 2: return parts[0], parts[1], parts[0], parts[1]
if len(parts) == 3: return parts[0], parts[1], parts[2], parts[1]
if len(parts) == 4: return parts[0], parts[1], parts[2], parts[3]
raise ValueError("Invalid margin format.")
class CropAndFitInpaintToDiffusionSize(CustomNode):
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"image": ("IMAGE",), "mask": ("MASK",),
"resolutions": (RESOLUTION_NAMES, {"default": "SD1.5"}),
"margin": ("STRING", {"default": "64"}),
}}
RETURN_TYPES = ("IMAGE", "MASK", "COMPOSITE_CONTEXT")
RETURN_NAMES = ("image", "mask", "composite_context")
FUNCTION = "crop_and_fit"
CATEGORY = "inpaint"
def crop_and_fit(self, image: torch.Tensor, mask: MaskBatch, resolutions: str, margin: str, aspect_ratio_tolerance=0.05):
if mask.max() <= 0: raise ValueError("Mask is empty.")
mask_coords = torch.nonzero(mask)
if mask_coords.numel() == 0: raise ValueError("Mask is empty.")
y_coords, x_coords = mask_coords[:, 1], mask_coords[:, 2]
y_min, x_min = y_coords.min().item(), x_coords.min().item()
y_max, x_max = y_coords.max().item(), x_coords.max().item()
top_m, right_m, bottom_m, left_m = parse_margin(margin)
x_start_expanded, y_start_expanded = x_min - left_m, y_min - top_m
x_end_expanded, y_end_expanded = x_max + 1 + right_m, y_max + 1 + bottom_m
img_h, img_w = image.shape[1:3]
clamped_x_start, clamped_y_start = max(0, x_start_expanded), max(0, y_start_expanded)
clamped_x_end, clamped_y_end = min(img_w, x_end_expanded), min(img_h, y_end_expanded)
initial_w, initial_h = clamped_x_end - clamped_x_start, clamped_y_end - clamped_y_start
if initial_w <= 0 or initial_h <= 0: raise ValueError("Cropped area has zero dimension.")
res_map = { "SDXL/SD3/Flux": SDXL_SD3_FLUX_RESOLUTIONS, "SD1.5": SD_RESOLUTIONS, "LTXV": LTVX_RESOLUTIONS, "Ideogram": IDEOGRAM_RESOLUTIONS, "Cosmos": COSMOS_RESOLUTIONS, "HunyuanVideo": HUNYUAN_VIDEO_RESOLUTIONS, "WAN 14b": WAN_VIDEO_14B_RESOLUTIONS, "WAN 1.3b": WAN_VIDEO_1_3B_RESOLUTIONS, "WAN 14b with extras": WAN_VIDEO_14B_EXTENDED_RESOLUTIONS }
supported_resolutions = res_map.get(resolutions, SD_RESOLUTIONS)
diffs = [(abs(res[0] / res[1] - (initial_w / initial_h)), res) for res in supported_resolutions]
target_res = min(diffs, key=lambda x: x[0])[1]
target_ar = target_res[0] / target_res[1]
current_ar = initial_w / initial_h
final_x, final_y = float(clamped_x_start), float(clamped_y_start)
final_w, final_h = float(initial_w), float(initial_h)
if current_ar > target_ar:
final_w = initial_h * target_ar
final_x += (initial_w - final_w) / 2
else:
final_h = initial_w / target_ar
final_y += (initial_h - final_h) / 2
final_x, final_y, final_w, final_h = int(final_x), int(final_y), int(final_w), int(final_h)
cropped_image = image[:, final_y:final_y + final_h, final_x:final_x + final_w]
cropped_mask = mask[:, final_y:final_y + final_h, final_x:final_x + final_w]
resized_image = F.interpolate(cropped_image.permute(0,3,1,2), size=(target_res[1], target_res[0]), mode="bilinear", align_corners=False).permute(0,2,3,1)
resized_mask = F.interpolate(cropped_mask.unsqueeze(1), size=(target_res[1], target_res[0]), mode="nearest").squeeze(1)
composite_context = CompositeContext(x=final_x, y=final_y, width=final_w, height=final_h)
return (resized_image, resized_mask, composite_context)
class CompositeCroppedAndFittedInpaintResult(CustomNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"source_image": ("IMAGE",), "source_mask": ("MASK",), "inpainted_image": ("IMAGE",), "composite_context": ("COMPOSITE_CONTEXT",),}}
RETURN_TYPES, FUNCTION, CATEGORY = ("IMAGE",), "composite_result", "inpaint"
def composite_result(self, source_image: ImageBatch, source_mask: MaskBatch, inpainted_image: ImageBatch, composite_context: CompositeContext):
context_x, context_y, context_w, context_h = composite_context
resized_inpainted = F.interpolate(
inpainted_image.permute(0, 3, 1, 2),
size=(context_h, context_w),
mode="bilinear", align_corners=False
)
final_image = composite(
destination=source_image.clone().permute(0, 3, 1, 2),
source=resized_inpainted,
x=context_x,
y=context_y,
mask=source_mask
)
return (final_image.permute(0, 2, 3, 1),)
NODE_CLASS_MAPPINGS = {"CropAndFitInpaintToDiffusionSize": CropAndFitInpaintToDiffusionSize, "CompositeCroppedAndFittedInpaintResult": CompositeCroppedAndFittedInpaintResult}
NODE_DISPLAY_NAME_MAPPINGS = {"CropAndFitInpaintToDiffusionSize": "Crop & Fit Inpaint Region", "CompositeCroppedAndFittedInpaintResult": "Composite Inpaint Result"}