ComfyUI/comfy_extras/nodes/nodes_language.py
doctorpangloss e068c4c920 Improved support for Wan features
- Wan and Cosmos prompt upsamplers
 - Fixed torch.compile issues
 - Known models added
 - Cosmos, Wan and Hunyuan Video resolutions now supported by Fit Image
   to Diffusion Size.
 - Better error messages for Ampere and Triton interactions
2025-03-08 15:12:28 -08:00

456 lines
14 KiB
Python

from __future__ import annotations
import operator
import os.path
from abc import ABC, abstractmethod
from functools import reduce
from typing import Optional, List
import torch
from transformers import AutoProcessor
from transformers.models.m2m_100.tokenization_m2m_100 import \
FAIRSEQ_LANGUAGE_CODES as tokenization_m2m_100_FAIRSEQ_LANGUAGE_CODES
from transformers.models.nllb.tokenization_nllb import \
FAIRSEQ_LANGUAGE_CODES as tokenization_nllb_FAIRSEQ_LANGUAGE_CODES
from comfy.cmd import folder_paths
from comfy.component_model.folder_path_types import SaveImagePathTuple
from comfy.language.chat_templates import KNOWN_CHAT_TEMPLATES
from comfy.language.language_types import GENERATION_KWARGS_TYPE, GENERATION_KWARGS_TYPE_NAME, TOKENS_TYPE, \
TOKENS_TYPE_NAME, LanguageModel, LanguagePrompt
from comfy.language.transformers_model_management import TransformersManagedModel
from comfy.model_downloader import get_huggingface_repo_list, get_or_download_huggingface_repo
from comfy.model_management import get_torch_device_name, unet_dtype, unet_offload_device
from comfy.node_helpers import export_custom_nodes, export_package_as_web_directory
from comfy.nodes.package_typing import CustomNode, InputTypes, ValidatedNodeResult, Seed
_AUTO_CHAT_TEMPLATE = "default"
class TransformerSamplerBase(CustomNode, ABC):
RETURN_TYPES = GENERATION_KWARGS_TYPE_NAME,
RETURN_NAMES = "GENERATION ARGS",
FUNCTION = "execute"
CATEGORY = "language/samplers"
@classmethod
@abstractmethod
def INPUT_TYPES(cls) -> InputTypes:
return ...
@property
def do_sample(self):
return True
def execute(self, **kwargs):
return {
"do_sample": self.do_sample,
**kwargs
},
class TransformerTopKSampler(TransformerSamplerBase):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"top_k": ("INT", {"default": 50, "min": 1})
}
}
class TransformerTopPSampler(TransformerSamplerBase):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"top_p": ("FLOAT", {"default": 0.9, "min": 0, "max": 1})
}
}
class TransformerTemperatureSampler(TransformerSamplerBase):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"temperature": ("FLOAT", {"default": 1.0, "min": 0, "step": 0.001})
}
}
class TransformerGreedySampler(TransformerSamplerBase):
@property
def do_sample(self):
return False
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
}
}
class TransformersGenerationConfig(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"model": ("MODEL", {})
}
}
RETURN_TYPES = GENERATION_KWARGS_TYPE_NAME,
RETURN_NAMES = "GENERATION ARGS",
FUNCTION = "execute"
CATEGORY = "language"
def execute(self, model: TransformersManagedModel):
if model.model.generation_config is not None:
return model.model.generation_config
return {}
class TransformerContrastiveSearchSampler(TransformerTopKSampler):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
top_k = TransformerTopKSampler.INPUT_TYPES()
top_k["required"] |= {
"penalty_alpha": ("FLOAT", {"default": 0.6, "min": 0})
}
return top_k
class TransformerBeamSearchSampler(TransformerSamplerBase):
@property
def do_sample(self):
return False
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"num_beams": ("INT", {"default": 1, "min": 0}),
"early_stopping": ("BOOLEAN", {"default": True})
}
}
class TransformerMergeSamplers(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
range_ = {"value0": (GENERATION_KWARGS_TYPE_NAME, {"forceInput": True})}
range_.update({f"value{i}": (GENERATION_KWARGS_TYPE_NAME, {"forceInput": True}) for i in range(1, 5)})
return {
"required": range_
}
CATEGORY = "language"
RETURN_TYPES = GENERATION_KWARGS_TYPE_NAME,
FUNCTION = "execute"
def execute(self, **kwargs):
do_sample = {
"do_sample": any(k == "do_sample" and v for value in kwargs.values() for k, v in value.items())
}
return (reduce(operator.or_, list(kwargs.values()) + [do_sample], {}),)
class TransformersImageProcessorLoader(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"ckpt_name": (get_huggingface_repo_list(),),
"subfolder": ("STRING", {}),
"model": ("MODEL", {}),
"overwrite_tokenizer": ("BOOLEAN", {"default": False}),
}
}
CATEGORY = "language"
RETURN_TYPES = "MODEL",
FUNCTION = "execute"
def execute(self, ckpt_name: str, subfolder: Optional[str] = None, model: TransformersManagedModel = None, overwrite_tokenizer: bool = False):
hub_kwargs = {}
if subfolder is not None and subfolder != "":
hub_kwargs["subfolder"] = subfolder
ckpt_name = get_or_download_huggingface_repo(ckpt_name)
processor = AutoProcessor.from_pretrained(ckpt_name, torch_dtype=unet_dtype(), device_map=get_torch_device_name(unet_offload_device()), low_cpu_mem_usage=True, trust_remote_code=True, **hub_kwargs)
return model.patch_processor(processor, overwrite_tokenizer),
class TransformersLoader(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"ckpt_name": (get_huggingface_repo_list(),),
},
"optional": {
"subfolder": ("STRING", {}),
}
}
CATEGORY = "language"
RETURN_TYPES = "MODEL",
RETURN_NAMES = "language model",
FUNCTION = "execute"
def execute(self, ckpt_name: str, subfolder: Optional[str] = None, *args, **kwargs) -> tuple[TransformersManagedModel]:
return TransformersManagedModel.from_pretrained(ckpt_name, subfolder),
class TransformersLoader1(TransformersLoader):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"ckpt_name": ("STRING", {}),
},
"optional": {
"subfolder": ("STRING", {}),
}
}
class TransformersTokenize(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"model": ("MODEL",),
"prompt": ("STRING", {"default": "", "multiline": True}),
},
}
CATEGORY = "language"
RETURN_TYPES = (TOKENS_TYPE_NAME,)
FUNCTION = "execute"
def execute(self, model: LanguageModel, prompt: str) -> ValidatedNodeResult:
return model.tokenize(prompt, [], None),
class TransformersM2M100LanguageCodes(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"lang_id": (tokenization_m2m_100_FAIRSEQ_LANGUAGE_CODES["m2m100"], {"default": "en"}),
},
}
CATEGORY = "language"
RETURN_TYPES = ("STRING",)
FUNCTION = "execute"
def execute(self, lang_id: str) -> ValidatedNodeResult:
return lang_id,
class TransformersFlores200LanguageCodes(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"lang_id": (tokenization_nllb_FAIRSEQ_LANGUAGE_CODES, {"default": "eng_Latn"}),
},
}
CATEGORY = "language"
RETURN_TYPES = ("STRING",)
FUNCTION = "execute"
def execute(self, lang_id: str) -> ValidatedNodeResult:
return lang_id,
class TransformersTranslationTokenize(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"model": ("MODEL",),
"prompt": ("STRING", {"default": "", "multiline": True}),
"src_lang": ("STRING", {}),
"tgt_lang": ("STRING", {}),
},
}
CATEGORY = "language"
RETURN_TYPES = (TOKENS_TYPE_NAME,)
FUNCTION = "execute"
def execute(self, model: TransformersManagedModel, prompt: str, src_lang: str, tgt_lang: str) -> ValidatedNodeResult:
tokenizer = model.tokenizer
if hasattr(tokenizer, "src_lang"):
prev_src_lang = tokenizer.src_lang
else:
prev_src_lang = None
if hasattr(tokenizer, "tgt_lang"):
prev_tgt_lang = tokenizer.tgt_lang
else:
prev_tgt_lang = None
try:
if hasattr(tokenizer, "_build_translation_inputs"):
encoded = tokenizer._build_translation_inputs(
prompt, return_tensors="pt", src_lang=src_lang, tgt_lang=tgt_lang
)
else:
tokenizer.src_lang = src_lang
tokenizer.tgt_lang = tgt_lang
encoded = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
encoded["input_ids"] = encoded["input_ids"].to(device=model.load_device)
encoded["attention_mask"] = encoded["attention_mask"].to(device=model.load_device)
encoded["src_lang"] = src_lang
encoded["tgt_lang"] = tgt_lang
return encoded,
finally:
if prev_src_lang is not None:
tokenizer.src_lang = prev_src_lang
if prev_tgt_lang is not None:
tokenizer.tgt_lang = prev_tgt_lang
class OneShotInstructTokenize(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"model": ("MODEL",),
"prompt": ("STRING", {"default": "", "multiline": True}),
"chat_template": ([_AUTO_CHAT_TEMPLATE] + list(KNOWN_CHAT_TEMPLATES.keys()), {})
},
"optional": {
"images": ("IMAGE", {}),
"system_prompt": ("STRING", {"multiline": True, "default": ""})
}
}
CATEGORY = "language"
RETURN_TYPES = (TOKENS_TYPE_NAME,)
FUNCTION = "execute"
def execute(self, model: LanguageModel, prompt: str, images: List[torch.Tensor] | torch.Tensor = None, chat_template: Optional[str] = _AUTO_CHAT_TEMPLATE, system_prompt: str = "") -> ValidatedNodeResult:
if chat_template == _AUTO_CHAT_TEMPLATE:
# use an exact match
model_name = os.path.basename(model.repo_id)
if model_name in KNOWN_CHAT_TEMPLATES:
chat_template = KNOWN_CHAT_TEMPLATES[model_name]
else:
chat_template = None
elif chat_template is not None:
chat_template = KNOWN_CHAT_TEMPLATES[chat_template]
messages: LanguagePrompt | str
if system_prompt != "":
messages: LanguagePrompt = [
{"role": "system",
"content": system_prompt},
{"role": "user",
"content": [
{"type": "text",
"text": prompt}
] + [
{"type": "image"} for _ in range(len(images) if images is not None else 0)
], }
]
else:
messages: str = prompt
return model.tokenize(messages, images, chat_template),
class TransformersGenerate(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"model": ("MODEL",),
"tokens": (TOKENS_TYPE_NAME, {}),
"max_new_tokens": ("INT", {"default": 512, "min": 1}),
"repetition_penalty": ("FLOAT", {"default": 0.0, "min": 0}),
"seed": Seed,
},
"optional": {
"sampler": (GENERATION_KWARGS_TYPE_NAME, {}),
}
}
CATEGORY = "language"
RETURN_TYPES = ("STRING",)
FUNCTION = "execute"
def execute(self,
model: Optional[LanguageModel] = None,
tokens: TOKENS_TYPE = None,
max_new_tokens: int = 512,
repetition_penalty: float = 0.0,
seed: int = 0,
sampler: Optional[GENERATION_KWARGS_TYPE] = None,
):
return model.generate(tokens, max_new_tokens, repetition_penalty, seed, sampler),
class PreviewString(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"value": ("STRING", {"forceInput": True}),
}
}
CATEGORY = "strings"
FUNCTION = "execute"
RETURN_TYPES = ("STRING",)
OUTPUT_NODE = True
def execute(self, value: str):
return {"ui": {"string": [value]}}
class SaveString(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"value": ("STRING", {"forceInput": True}),
"filename_prefix": ("STRING", {"default": "ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."})
},
"optional": {
"extension": ("STRING", {"default": ".json"})
}
}
CATEGORY = "strings"
FUNCTION = "execute"
OUTPUT_NODE = True
RETURN_TYPES = ()
def get_save_path(self, filename_prefix) -> SaveImagePathTuple:
return folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory(), 0, 0)
def execute(self, value: str | list[str], filename_prefix: str, extension: str = ".json"):
full_output_folder, filename, counter, subfolder, filename_prefix = self.get_save_path(filename_prefix)
if isinstance(value, str):
value = [value]
for i, value_i in enumerate(value):
# roughly matches the behavior of save image, but does not support batch numbers
with open(os.path.join(full_output_folder, f"{filename}_{counter:05d}_{extension}" if len(value) == 1 else f"{filename}_{counter:05d}_{i:02d}_{extension}"), "wt+") as f:
f.write(value_i)
return {"ui": {"string": value}}
export_custom_nodes()
export_package_as_web_directory("comfy_extras.language_web")