mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 23:00:51 +08:00
1012 lines
36 KiB
Python
1012 lines
36 KiB
Python
import os
|
|
import sys
|
|
import copy
|
|
import json
|
|
import threading
|
|
import heapq
|
|
import traceback
|
|
import gc
|
|
import time
|
|
import itertools
|
|
from typing import List, Dict
|
|
import dataclasses
|
|
from dataclasses import dataclass
|
|
|
|
import torch
|
|
import nodes
|
|
|
|
import comfy.model_management
|
|
|
|
|
|
@dataclass
|
|
class CombinatorialBatches:
|
|
batches: List
|
|
input_to_index: Dict
|
|
index_to_values: Dict
|
|
indices: List
|
|
combinations: List
|
|
|
|
|
|
def find(d, pred):
|
|
for i, x in d.items():
|
|
if pred(x):
|
|
return i, x
|
|
return None, None
|
|
|
|
|
|
def get_input_data_batches(input_data_all):
|
|
"""Given input data that can contain combinatorial input values, returns all
|
|
the possible batches that can be made by combining the different input
|
|
values together."""
|
|
|
|
input_to_index = {}
|
|
index_to_values = []
|
|
index_to_axis = {}
|
|
index_to_coords = []
|
|
|
|
# Sort by input name first so the order which batch inputs are applied can
|
|
# be easily calculated (node execution order first, then alphabetical input
|
|
# name second)
|
|
sorted_input_names = sorted(input_data_all.keys())
|
|
|
|
i = 0
|
|
for input_name in sorted_input_names:
|
|
value = input_data_all[input_name]
|
|
if isinstance(value, dict) and "combinatorial" in value:
|
|
if "axis_id" in value:
|
|
found_i = next((k for k, v in index_to_axis.items() if v == value["axis_id"]), None)
|
|
else:
|
|
found_i = None
|
|
|
|
if found_i is not None:
|
|
input_to_index[input_name] = found_i
|
|
else:
|
|
input_to_index[input_name] = i
|
|
index_to_values.append(value["values"])
|
|
index_to_coords.append(list(range(len(value["values"]))))
|
|
if "axis_id" in value:
|
|
index_to_axis[i] = value["axis_id"]
|
|
i += 1
|
|
|
|
if len(index_to_values) == 0:
|
|
# No combinatorial options.
|
|
return CombinatorialBatches([input_data_all], input_to_index, index_to_values, None, None)
|
|
|
|
batches = []
|
|
|
|
indices = list(itertools.product(*index_to_coords))
|
|
combinations = list(itertools.product(*index_to_values))
|
|
for combination in combinations:
|
|
batch = {}
|
|
for input_name, value in input_data_all.items():
|
|
if isinstance(value, dict) and "combinatorial" in value:
|
|
combination_index = input_to_index[input_name]
|
|
batch[input_name] = [combination[combination_index]]
|
|
else:
|
|
# already made into a list by get_input_data
|
|
batch[input_name] = value
|
|
batches.append(batch)
|
|
|
|
print("------------------=+++++++++++++++++")
|
|
for batch in batches:
|
|
print(format_dict(batch))
|
|
print(format_dict(input_to_index))
|
|
print(format_dict({ "v": index_to_values }))
|
|
print(index_to_coords)
|
|
print("------------------=+++++++++++++++++")
|
|
|
|
return CombinatorialBatches(batches, input_to_index, index_to_values, indices, combinations)
|
|
|
|
|
|
def format_dict(d):
|
|
s = []
|
|
for k,v in d.items():
|
|
st = f"{k}: "
|
|
if isinstance(v, list):
|
|
st += f"list[len: {len(v)}]["
|
|
i = []
|
|
for v2 in v:
|
|
if isinstance(v2, (int, float, bool)):
|
|
i.append(str(v2))
|
|
else:
|
|
i.append(v2.__class__.__name__)
|
|
st += ",".join(i) + "]"
|
|
else:
|
|
if isinstance(v, (int, float, bool)):
|
|
st += str(v)
|
|
else:
|
|
st += str(type(v))
|
|
s.append(st)
|
|
return "( " + ", ".join(s) + " )"
|
|
|
|
|
|
def get_input_data(inputs, class_def, unique_id, outputs={}, prompt={}, extra_data={}):
|
|
"""Given input data from the prompt, returns a list of input data dicts for
|
|
each combinatorial batch."""
|
|
valid_inputs = class_def.INPUT_TYPES()
|
|
input_data_all = {}
|
|
for x in inputs:
|
|
input_data = inputs[x]
|
|
required_or_optional = ("required" in valid_inputs and x in valid_inputs["required"]) or ("optional" in valid_inputs and x in valid_inputs["optional"])
|
|
if isinstance(input_data, list):
|
|
input_unique_id = input_data[0]
|
|
output_index = input_data[1]
|
|
if input_unique_id not in outputs:
|
|
return None
|
|
|
|
# This is a list of outputs for each batch of combinatorial inputs.
|
|
# Without any combinatorial inputs, it's a list of length 1.
|
|
outputs_for_all_batches = outputs[input_unique_id]
|
|
|
|
def flatten(list_of_lists):
|
|
return list(itertools.chain.from_iterable(list_of_lists))
|
|
|
|
if len(outputs_for_all_batches) == 1:
|
|
# Single batch, no combinatorial stuff
|
|
input_data_all[x] = outputs_for_all_batches[0][output_index]
|
|
else:
|
|
# Make the outputs into a list for map-over-list use
|
|
# (they are themselves lists so flatten them afterwards)
|
|
input_values = [batch_output[output_index] for batch_output in outputs_for_all_batches]
|
|
print("COMB")
|
|
print(str(input_unique_id))
|
|
print(str(output_index))
|
|
print(format_dict({ "values": input_values }))
|
|
input_values = {
|
|
"combinatorial": True,
|
|
"values": flatten(input_values),
|
|
"axis_id": prompt[input_unique_id].get("axis_id")
|
|
}
|
|
input_data_all[x] = input_values
|
|
elif is_combinatorial_input(input_data):
|
|
if required_or_optional:
|
|
input_data_all[x] = {
|
|
"combinatorial": True,
|
|
"values": input_data["values"],
|
|
"axis_id": input_data.get("axis_id")
|
|
}
|
|
else:
|
|
if required_or_optional:
|
|
input_data_all[x] = [input_data]
|
|
|
|
if "hidden" in valid_inputs:
|
|
h = valid_inputs["hidden"]
|
|
for x in h:
|
|
if h[x] == "PROMPT":
|
|
input_data_all[x] = [prompt]
|
|
if h[x] == "EXTRA_PNGINFO":
|
|
if "extra_pnginfo" in extra_data:
|
|
input_data_all[x] = [extra_data['extra_pnginfo']]
|
|
if h[x] == "UNIQUE_ID":
|
|
input_data_all[x] = [unique_id]
|
|
|
|
input_data_all_batches = get_input_data_batches(input_data_all)
|
|
|
|
print("---------------------------------")
|
|
from pprint import pp
|
|
for batch in input_data_all_batches.batches:
|
|
print(format_dict(batch));
|
|
print("---------------------------------")
|
|
|
|
return input_data_all_batches
|
|
|
|
def slice_lists_into_dict(d, i):
|
|
"""
|
|
get a slice of inputs, repeat last input when list isn't long enough
|
|
d={ "seed": [ 1, 2, 3 ], "steps": [ 4, 8 ] }, i=2 -> { "seed": 3, "steps": 8 }
|
|
"""
|
|
d_new = {}
|
|
for k, v in d.items():
|
|
d_new[k] = v[i if len(v) > i else -1]
|
|
return d_new
|
|
|
|
def map_node_over_list(obj, input_data_all, func, allow_interrupt=False, callback=None):
|
|
# check if node wants the lists
|
|
input_is_list = False
|
|
if hasattr(obj, "INPUT_IS_LIST"):
|
|
input_is_list = obj.INPUT_IS_LIST
|
|
|
|
max_len_input = max(len(x) for x in input_data_all.values())
|
|
|
|
results = []
|
|
if input_is_list:
|
|
if allow_interrupt:
|
|
nodes.before_node_execution()
|
|
results.append(getattr(obj, func)(**input_data_all))
|
|
else:
|
|
for i in range(max_len_input):
|
|
if allow_interrupt:
|
|
nodes.before_node_execution()
|
|
results.append(getattr(obj, func)(**slice_lists_into_dict(input_data_all, i)))
|
|
if callback is not None:
|
|
callback(i + 1, max_len_input)
|
|
return results
|
|
|
|
def get_output_data(obj, input_data_all_batches, server, unique_id, prompt_id):
|
|
all_outputs = []
|
|
all_outputs_ui = []
|
|
total_batches = len(input_data_all_batches.batches)
|
|
|
|
total_inner_batches = 0
|
|
for batch in input_data_all_batches.batches:
|
|
total_inner_batches += max(len(x) for x in batch.values())
|
|
|
|
inner_totals = 0
|
|
|
|
def send_batch_progress(inner_num):
|
|
if server.client_id is not None:
|
|
message = {
|
|
"node": unique_id,
|
|
"prompt_id": prompt_id,
|
|
"batch_num": inner_totals + inner_num,
|
|
"total_batches": total_inner_batches
|
|
}
|
|
server.send_sync("batch_progress", message, server.client_id)
|
|
|
|
send_batch_progress(0)
|
|
|
|
for batch_num, batch in enumerate(input_data_all_batches.batches):
|
|
def cb(inner_num, inner_total):
|
|
send_batch_progress(inner_num)
|
|
|
|
return_values = map_node_over_list(obj, batch, obj.FUNCTION, allow_interrupt=True, callback=cb)
|
|
|
|
inner_totals += max(len(x) for x in batch.values())
|
|
|
|
uis = []
|
|
results = []
|
|
|
|
for r in return_values:
|
|
if isinstance(r, dict):
|
|
if 'ui' in r:
|
|
uis.append(r['ui'])
|
|
if 'result' in r:
|
|
results.append(r['result'])
|
|
else:
|
|
results.append(r)
|
|
|
|
output = []
|
|
if len(results) > 0:
|
|
# check which outputs need concatenating
|
|
output_is_list = [False] * len(results[0])
|
|
if hasattr(obj, "OUTPUT_IS_LIST"):
|
|
output_is_list = obj.OUTPUT_IS_LIST
|
|
|
|
# merge node execution results
|
|
for i, is_list in zip(range(len(results[0])), output_is_list):
|
|
if is_list:
|
|
output.append([x for o in results for x in o[i]])
|
|
else:
|
|
output.append([o[i] for o in results])
|
|
|
|
output_ui = None
|
|
if len(uis) > 0:
|
|
output_ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
|
|
|
|
all_outputs.append(output)
|
|
all_outputs_ui.append(output_ui)
|
|
|
|
outputs_ui_to_send = None
|
|
if any(all_outputs_ui):
|
|
outputs_ui_to_send = all_outputs_ui
|
|
|
|
# update the UI after each batch finishes
|
|
if server.client_id is not None:
|
|
message = {
|
|
"node": unique_id,
|
|
"output": outputs_ui_to_send,
|
|
"prompt_id": prompt_id,
|
|
"batch_num": inner_totals,
|
|
"total_batches": total_inner_batches,
|
|
}
|
|
if input_data_all_batches.indices:
|
|
message["indices"] = input_data_all_batches.indices[batch_num]
|
|
server.send_sync("executed", message, server.client_id)
|
|
|
|
return all_outputs, all_outputs_ui
|
|
|
|
def format_value(x):
|
|
if x is None:
|
|
return None
|
|
elif isinstance(x, (int, float, bool, str)):
|
|
return x
|
|
else:
|
|
return str(x)
|
|
|
|
def recursive_execute(server, prompt, outputs, current_item, extra_data, executed, prompt_id, outputs_ui):
|
|
unique_id = current_item
|
|
inputs = prompt[unique_id]['inputs']
|
|
class_type = prompt[unique_id]['class_type']
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
if unique_id in outputs:
|
|
return (True, None, None)
|
|
|
|
for x in inputs:
|
|
input_data = inputs[x]
|
|
|
|
if isinstance(input_data, list):
|
|
input_unique_id = input_data[0]
|
|
output_index = input_data[1]
|
|
if input_unique_id not in outputs:
|
|
result = recursive_execute(server, prompt, outputs, input_unique_id, extra_data, executed, prompt_id, outputs_ui)
|
|
if result[0] is not True:
|
|
# Another node failed further upstream
|
|
return result
|
|
|
|
input_data_all_batches = None
|
|
try:
|
|
input_data_all_batches = get_input_data(inputs, class_def, unique_id, outputs, prompt, extra_data)
|
|
if server.client_id is not None:
|
|
server.last_node_id = unique_id
|
|
combinations = None
|
|
if input_data_all_batches.indices:
|
|
combinations = {
|
|
"input_to_index": input_data_all_batches.input_to_index,
|
|
"indices": input_data_all_batches.indices
|
|
}
|
|
mes = {
|
|
"node": unique_id,
|
|
"prompt_id": prompt_id,
|
|
"combinations": combinations
|
|
}
|
|
server.send_sync("executing", mes, server.client_id)
|
|
|
|
obj = class_def()
|
|
|
|
output_data_from_batches, output_ui_from_batches = get_output_data(obj, input_data_all_batches, server, unique_id, prompt_id)
|
|
outputs[unique_id] = output_data_from_batches
|
|
if any(output_ui_from_batches):
|
|
outputs_ui[unique_id] = output_ui_from_batches
|
|
elif unique_id in outputs_ui:
|
|
outputs_ui.pop(unique_id)
|
|
except comfy.model_management.InterruptProcessingException as iex:
|
|
print("Processing interrupted")
|
|
|
|
# skip formatting inputs/outputs
|
|
error_details = {
|
|
"node_id": unique_id,
|
|
}
|
|
|
|
return (False, error_details, iex)
|
|
except Exception as ex:
|
|
typ, _, tb = sys.exc_info()
|
|
exception_type = full_type_name(typ)
|
|
|
|
print("!!! Exception during processing !!!")
|
|
print(traceback.format_exc())
|
|
|
|
input_data_formatted = []
|
|
if input_data_all_batches is not None:
|
|
d = {}
|
|
for batch in input_data_all_batches.batches:
|
|
for name, inputs in batch.items():
|
|
d[name] = [format_value(x) for x in inputs]
|
|
input_data_formatted.append(d)
|
|
|
|
output_data_formatted = []
|
|
for node_id, node_outputs in outputs.items():
|
|
d = {}
|
|
for batch_outputs in node_outputs:
|
|
d[node_id] = [[format_value(x) for x in l] for l in batch_outputs]
|
|
output_data_formatted.append(d)
|
|
|
|
error_details = {
|
|
"node_id": unique_id,
|
|
"exception_message": str(ex),
|
|
"exception_type": exception_type,
|
|
"traceback": traceback.format_tb(tb),
|
|
"current_inputs": input_data_formatted,
|
|
"current_outputs": output_data_formatted
|
|
}
|
|
return (False, error_details, ex)
|
|
|
|
executed.add(unique_id)
|
|
|
|
return (True, None, None)
|
|
|
|
def recursive_will_execute(prompt, outputs, current_item):
|
|
unique_id = current_item
|
|
inputs = prompt[unique_id]['inputs']
|
|
will_execute = []
|
|
if unique_id in outputs:
|
|
return []
|
|
|
|
for x in inputs:
|
|
input_data = inputs[x]
|
|
if isinstance(input_data, list):
|
|
input_unique_id = input_data[0]
|
|
output_index = input_data[1]
|
|
if input_unique_id not in outputs:
|
|
will_execute += recursive_will_execute(prompt, outputs, input_unique_id)
|
|
|
|
return will_execute + [unique_id]
|
|
|
|
def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item):
|
|
unique_id = current_item
|
|
inputs = prompt[unique_id]['inputs']
|
|
class_type = prompt[unique_id]['class_type']
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
|
|
is_changed_old = ''
|
|
is_changed = ''
|
|
to_delete = False
|
|
if hasattr(class_def, 'IS_CHANGED'):
|
|
if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]:
|
|
is_changed_old = old_prompt[unique_id]['is_changed']
|
|
if 'is_changed' not in prompt[unique_id]:
|
|
input_data_all_batches = get_input_data(inputs, class_def, unique_id, outputs, prompt)
|
|
if input_data_all_batches is not None:
|
|
try:
|
|
#is_changed = class_def.IS_CHANGED(**input_data_all)
|
|
for batch in input_data_all_batches.batches:
|
|
if map_node_over_list(class_def, batch, "IS_CHANGED"):
|
|
is_changed = True
|
|
break
|
|
prompt[unique_id]['is_changed'] = is_changed
|
|
except:
|
|
to_delete = True
|
|
else:
|
|
is_changed = prompt[unique_id]['is_changed']
|
|
|
|
if unique_id not in outputs:
|
|
return True
|
|
|
|
if not to_delete:
|
|
if is_changed != is_changed_old:
|
|
to_delete = True
|
|
elif unique_id not in old_prompt:
|
|
to_delete = True
|
|
elif inputs == old_prompt[unique_id]['inputs']:
|
|
for x in inputs:
|
|
input_data = inputs[x]
|
|
|
|
if isinstance(input_data, list):
|
|
input_unique_id = input_data[0]
|
|
output_index = input_data[1]
|
|
if input_unique_id in outputs:
|
|
to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id)
|
|
else:
|
|
to_delete = True
|
|
if to_delete:
|
|
break
|
|
else:
|
|
to_delete = True
|
|
|
|
if to_delete:
|
|
d = outputs.pop(unique_id)
|
|
del d
|
|
return to_delete
|
|
|
|
class PromptExecutor:
|
|
def __init__(self, server):
|
|
self.outputs = {}
|
|
self.outputs_ui = {}
|
|
self.old_prompt = {}
|
|
self.server = server
|
|
|
|
def handle_execution_error(self, prompt_id, prompt, current_outputs, executed, error, ex):
|
|
node_id = error["node_id"]
|
|
class_type = prompt[node_id]["class_type"]
|
|
|
|
# First, send back the status to the frontend depending
|
|
# on the exception type
|
|
if isinstance(ex, comfy.model_management.InterruptProcessingException):
|
|
mes = {
|
|
"prompt_id": prompt_id,
|
|
"node_id": node_id,
|
|
"node_type": class_type,
|
|
"executed": list(executed),
|
|
}
|
|
self.server.send_sync("execution_interrupted", mes, self.server.client_id)
|
|
else:
|
|
if self.server.client_id is not None:
|
|
mes = {
|
|
"prompt_id": prompt_id,
|
|
"node_id": node_id,
|
|
"node_type": class_type,
|
|
"executed": list(executed),
|
|
|
|
"exception_message": error["exception_message"],
|
|
"exception_type": error["exception_type"],
|
|
"traceback": error["traceback"],
|
|
"current_inputs": error["current_inputs"],
|
|
"current_outputs": error["current_outputs"],
|
|
}
|
|
self.server.send_sync("execution_error", mes, self.server.client_id)
|
|
|
|
# Next, remove the subsequent outputs since they will not be executed
|
|
to_delete = []
|
|
for o in self.outputs:
|
|
if (o not in current_outputs) and (o not in executed):
|
|
to_delete += [o]
|
|
if o in self.old_prompt:
|
|
d = self.old_prompt.pop(o)
|
|
del d
|
|
for o in to_delete:
|
|
d = self.outputs.pop(o)
|
|
del d
|
|
|
|
def execute(self, prompt, prompt_id, extra_data={}, execute_outputs=[]):
|
|
nodes.interrupt_processing(False)
|
|
|
|
if "client_id" in extra_data:
|
|
self.server.client_id = extra_data["client_id"]
|
|
else:
|
|
self.server.client_id = None
|
|
|
|
execution_start_time = time.perf_counter()
|
|
if self.server.client_id is not None:
|
|
self.server.send_sync("execution_start", { "prompt_id": prompt_id}, self.server.client_id)
|
|
|
|
with torch.inference_mode():
|
|
#delete cached outputs if nodes don't exist for them
|
|
to_delete = []
|
|
for o in self.outputs:
|
|
if o not in prompt:
|
|
to_delete += [o]
|
|
for o in to_delete:
|
|
d = self.outputs.pop(o)
|
|
del d
|
|
|
|
for x in prompt:
|
|
recursive_output_delete_if_changed(prompt, self.old_prompt, self.outputs, x)
|
|
|
|
current_outputs = set(self.outputs.keys())
|
|
for x in list(self.outputs_ui.keys()):
|
|
if x not in current_outputs:
|
|
d = self.outputs_ui.pop(x)
|
|
del d
|
|
|
|
if self.server.client_id is not None:
|
|
self.server.send_sync("execution_cached", { "nodes": list(current_outputs) , "prompt_id": prompt_id}, self.server.client_id)
|
|
executed = set()
|
|
output_node_id = None
|
|
to_execute = []
|
|
|
|
for node_id in list(execute_outputs):
|
|
to_execute += [(0, node_id)]
|
|
|
|
while len(to_execute) > 0:
|
|
#always execute the output that depends on the least amount of unexecuted nodes first
|
|
to_execute = sorted(list(map(lambda a: (len(recursive_will_execute(prompt, self.outputs, a[-1])), a[-1]), to_execute)))
|
|
output_node_id = to_execute.pop(0)[-1]
|
|
|
|
# This call shouldn't raise anything if there's an error deep in
|
|
# the actual SD code, instead it will report the node where the
|
|
# error was raised
|
|
success, error, ex = recursive_execute(self.server, prompt, self.outputs, output_node_id, extra_data, executed, prompt_id, self.outputs_ui)
|
|
if success is not True:
|
|
self.handle_execution_error(prompt_id, prompt, current_outputs, executed, error, ex)
|
|
break
|
|
|
|
for x in executed:
|
|
self.old_prompt[x] = copy.deepcopy(prompt[x])
|
|
self.server.last_node_id = None
|
|
if self.server.client_id is not None:
|
|
self.server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, self.server.client_id)
|
|
|
|
print("Prompt executed in {:.2f} seconds".format(time.perf_counter() - execution_start_time))
|
|
gc.collect()
|
|
comfy.model_management.soft_empty_cache()
|
|
|
|
|
|
def is_combinatorial_input(val):
|
|
return isinstance(val, dict) and "__inputType__" in val
|
|
|
|
|
|
def get_raw_inputs(raw_val):
|
|
if isinstance(raw_val, list):
|
|
# link to another node
|
|
return [raw_val]
|
|
elif is_combinatorial_input(raw_val):
|
|
return raw_val["values"]
|
|
return [raw_val]
|
|
|
|
|
|
def clamp_input(val, info, class_type, obj_class, x):
|
|
errors = []
|
|
|
|
if is_combinatorial_input(val):
|
|
if len(val["values"]) == 0:
|
|
error = {
|
|
"type": "combinatorial_input_missing_values",
|
|
"message": f"Combinatorial input has no values in its list.",
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
}
|
|
}
|
|
return (False, None, error)
|
|
for i, val_choice in enumerate(val["values"]):
|
|
r = clamp_input(val_choice, info, class_type, obj_class, x)
|
|
if r[0] == False:
|
|
return r
|
|
val["values"][i] = r[1]
|
|
return (True, val, None)
|
|
|
|
type_input = info[0]
|
|
|
|
try:
|
|
if type_input == "INT":
|
|
val = int(val)
|
|
if type_input == "FLOAT":
|
|
val = float(val)
|
|
if type_input == "STRING":
|
|
val = str(val)
|
|
except Exception as ex:
|
|
error = {
|
|
"type": "invalid_input_type",
|
|
"message": f"Failed to convert an input value to a {type_input} value",
|
|
"details": f"{x}, {val}, {ex}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
"exception_message": str(ex)
|
|
}
|
|
}
|
|
return (False, None, error)
|
|
|
|
if len(info) > 1:
|
|
if "min" in info[1] and val < info[1]["min"]:
|
|
error = {
|
|
"type": "value_smaller_than_min",
|
|
"message": "Value {} smaller than min of {}".format(val, info[1]["min"]),
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
}
|
|
}
|
|
return (False, None, error)
|
|
if "max" in info[1] and val > info[1]["max"]:
|
|
error = {
|
|
"type": "value_bigger_than_max",
|
|
"message": "Value {} bigger than max of {}".format(val, info[1]["max"]),
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
}
|
|
}
|
|
return (False, None, error)
|
|
|
|
return (True, val, None)
|
|
|
|
|
|
def validate_inputs(prompt, item, validated):
|
|
unique_id = item
|
|
if unique_id in validated:
|
|
return validated[unique_id]
|
|
|
|
inputs = prompt[unique_id]['inputs']
|
|
class_type = prompt[unique_id]['class_type']
|
|
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
|
|
class_inputs = obj_class.INPUT_TYPES()
|
|
required_inputs = class_inputs['required']
|
|
|
|
errors = []
|
|
valid = True
|
|
|
|
for x in required_inputs:
|
|
if x not in inputs:
|
|
error = {
|
|
"type": "required_input_missing",
|
|
"message": "Required input is missing",
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
val = inputs[x]
|
|
info = required_inputs[x]
|
|
type_input = info[0]
|
|
if isinstance(val, list):
|
|
if len(val) != 2:
|
|
error = {
|
|
"type": "bad_linked_input",
|
|
"message": "Bad linked input, must be a length-2 list of [node_id, slot_index]",
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
o_id = val[0]
|
|
o_class_type = prompt[o_id]['class_type']
|
|
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
|
|
if r[val[1]] != type_input:
|
|
received_type = r[val[1]]
|
|
details = f"{x}, {received_type} != {type_input}"
|
|
error = {
|
|
"type": "return_type_mismatch",
|
|
"message": "Return type mismatch between linked nodes",
|
|
"details": details,
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_type": received_type,
|
|
"linked_node": val
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
try:
|
|
r = validate_inputs(prompt, o_id, validated)
|
|
if r[0] is False:
|
|
# `r` will be set in `validated[o_id]` already
|
|
valid = False
|
|
continue
|
|
except Exception as ex:
|
|
typ, _, tb = sys.exc_info()
|
|
valid = False
|
|
exception_type = full_type_name(typ)
|
|
reasons = [{
|
|
"type": "exception_during_inner_validation",
|
|
"message": "Exception when validating inner node",
|
|
"details": str(ex),
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"exception_message": str(ex),
|
|
"exception_type": exception_type,
|
|
"traceback": traceback.format_tb(tb),
|
|
"linked_node": val
|
|
}
|
|
}]
|
|
validated[o_id] = (False, reasons, o_id)
|
|
continue
|
|
else:
|
|
r = clamp_input(val, info, class_type, obj_class, x)
|
|
if r[0] == False:
|
|
errors.append(r[2])
|
|
continue
|
|
else:
|
|
inputs[x] = r[1]
|
|
|
|
if hasattr(obj_class, "VALIDATE_INPUTS"):
|
|
input_data_all_batches = get_input_data(inputs, obj_class, unique_id, {}, prompt)
|
|
#ret = obj_class.VALIDATE_INPUTS(**input_data_all)
|
|
for batch in input_data_all_batches.batches:
|
|
ret = map_node_over_list(obj_class, batch, "VALIDATE_INPUTS")
|
|
for r in ret:
|
|
if r != True:
|
|
details = f"{x}"
|
|
if r is not False:
|
|
details += f" - {str(r)}"
|
|
|
|
error = {
|
|
"type": "custom_validation_failed",
|
|
"message": "Custom validation failed for node",
|
|
"details": details,
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
else:
|
|
if isinstance(type_input, list):
|
|
# Account for more than one combinatorial value
|
|
raw_vals = get_raw_inputs(val)
|
|
for raw_val in raw_vals:
|
|
if raw_val not in type_input:
|
|
input_config = info
|
|
list_info = ""
|
|
|
|
# Don't send back gigantic lists like if they're lots of
|
|
# scanned model filepaths
|
|
if len(type_input) > 20:
|
|
list_info = f"(list of length {len(type_input)})"
|
|
input_config = None
|
|
else:
|
|
list_info = str(type_input)
|
|
|
|
error = {
|
|
"type": "value_not_in_list",
|
|
"message": "Value not in list",
|
|
"details": f"{x}: '{raw_val}' not in {list_info}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": input_config,
|
|
"received_value": raw_val,
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
if len(errors) > 0 or valid is not True:
|
|
ret = (False, errors, unique_id)
|
|
else:
|
|
ret = (True, [], unique_id)
|
|
|
|
validated[unique_id] = ret
|
|
return ret
|
|
|
|
def full_type_name(klass):
|
|
module = klass.__module__
|
|
if module == 'builtins':
|
|
return klass.__qualname__
|
|
return module + '.' + klass.__qualname__
|
|
|
|
def validate_prompt(prompt):
|
|
outputs = set()
|
|
for x in prompt:
|
|
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']]
|
|
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE == True:
|
|
outputs.add(x)
|
|
|
|
if len(outputs) == 0:
|
|
error = {
|
|
"type": "prompt_no_outputs",
|
|
"message": "Prompt has no outputs",
|
|
"details": "",
|
|
"extra_info": {}
|
|
}
|
|
return (False, error, [], [])
|
|
|
|
good_outputs = set()
|
|
errors = []
|
|
node_errors = {}
|
|
validated = {}
|
|
for o in outputs:
|
|
valid = False
|
|
reasons = []
|
|
try:
|
|
m = validate_inputs(prompt, o, validated)
|
|
valid = m[0]
|
|
reasons = m[1]
|
|
except Exception as ex:
|
|
typ, _, tb = sys.exc_info()
|
|
valid = False
|
|
exception_type = full_type_name(typ)
|
|
reasons = [{
|
|
"type": "exception_during_validation",
|
|
"message": "Exception when validating node",
|
|
"details": str(ex),
|
|
"extra_info": {
|
|
"exception_type": exception_type,
|
|
"traceback": traceback.format_tb(tb)
|
|
}
|
|
}]
|
|
validated[o] = (False, reasons, o)
|
|
|
|
if valid is True:
|
|
good_outputs.add(o)
|
|
else:
|
|
print(f"Failed to validate prompt for output {o}:")
|
|
if len(reasons) > 0:
|
|
print("* (prompt):")
|
|
for reason in reasons:
|
|
print(f" - {reason['message']}: {reason['details']}")
|
|
errors += [(o, reasons)]
|
|
for node_id, result in validated.items():
|
|
valid = result[0]
|
|
reasons = result[1]
|
|
# If a node upstream has errors, the nodes downstream will also
|
|
# be reported as invalid, but there will be no errors attached.
|
|
# So don't return those nodes as having errors in the response.
|
|
if valid is not True and len(reasons) > 0:
|
|
if node_id not in node_errors:
|
|
class_type = prompt[node_id]['class_type']
|
|
node_errors[node_id] = {
|
|
"errors": reasons,
|
|
"dependent_outputs": [],
|
|
"class_type": class_type
|
|
}
|
|
print(f"* {class_type} {node_id}:")
|
|
for reason in reasons:
|
|
print(f" - {reason['message']}: {reason['details']}")
|
|
node_errors[node_id]["dependent_outputs"].append(o)
|
|
print("Output will be ignored")
|
|
|
|
if len(good_outputs) == 0:
|
|
errors_list = []
|
|
for o, errors in errors:
|
|
for error in errors:
|
|
errors_list.append(f"{error['message']}: {error['details']}")
|
|
errors_list = "\n".join(errors_list)
|
|
|
|
error = {
|
|
"type": "prompt_outputs_failed_validation",
|
|
"message": "Prompt outputs failed validation",
|
|
"details": errors_list,
|
|
"extra_info": {}
|
|
}
|
|
|
|
return (False, error, list(good_outputs), node_errors)
|
|
|
|
return (True, None, list(good_outputs), node_errors)
|
|
|
|
|
|
class PromptQueue:
|
|
def __init__(self, server):
|
|
self.server = server
|
|
self.mutex = threading.RLock()
|
|
self.not_empty = threading.Condition(self.mutex)
|
|
self.task_counter = 0
|
|
self.queue = []
|
|
self.currently_running = {}
|
|
self.history = {}
|
|
server.prompt_queue = self
|
|
|
|
def put(self, item):
|
|
with self.mutex:
|
|
heapq.heappush(self.queue, item)
|
|
self.server.queue_updated()
|
|
self.not_empty.notify()
|
|
|
|
def get(self):
|
|
with self.not_empty:
|
|
while len(self.queue) == 0:
|
|
self.not_empty.wait()
|
|
item = heapq.heappop(self.queue)
|
|
i = self.task_counter
|
|
self.currently_running[i] = copy.deepcopy(item)
|
|
self.task_counter += 1
|
|
self.server.queue_updated()
|
|
return (item, i)
|
|
|
|
def task_done(self, item_id, outputs):
|
|
with self.mutex:
|
|
prompt = self.currently_running.pop(item_id)
|
|
self.history[prompt[1]] = { "prompt": prompt, "outputs": {} }
|
|
for o in outputs:
|
|
self.history[prompt[1]]["outputs"][o] = outputs[o]
|
|
self.server.queue_updated()
|
|
|
|
def get_current_queue(self):
|
|
with self.mutex:
|
|
out = []
|
|
for x in self.currently_running.values():
|
|
out += [x]
|
|
return (out, copy.deepcopy(self.queue))
|
|
|
|
def get_tasks_remaining(self):
|
|
with self.mutex:
|
|
return len(self.queue) + len(self.currently_running)
|
|
|
|
def wipe_queue(self):
|
|
with self.mutex:
|
|
self.queue = []
|
|
self.server.queue_updated()
|
|
|
|
def delete_queue_item(self, function):
|
|
with self.mutex:
|
|
for x in range(len(self.queue)):
|
|
if function(self.queue[x]):
|
|
if len(self.queue) == 1:
|
|
self.wipe_queue()
|
|
else:
|
|
self.queue.pop(x)
|
|
heapq.heapify(self.queue)
|
|
self.server.queue_updated()
|
|
return True
|
|
return False
|
|
|
|
def get_history(self):
|
|
with self.mutex:
|
|
return copy.deepcopy(self.history)
|
|
|
|
def wipe_history(self):
|
|
with self.mutex:
|
|
self.history = {}
|
|
|
|
def delete_history_item(self, id_to_delete):
|
|
with self.mutex:
|
|
self.history.pop(id_to_delete, None)
|