ComfyUI/comfy/sd1_clip.py

854 lines
33 KiB
Python

from __future__ import annotations
import copy
import importlib.resources
import logging
import numbers
import os
import re
import traceback
import zipfile
from pathlib import Path
from typing import Tuple, Sequence, TypeVar, Callable, Optional, Union
import torch
from transformers import CLIPTokenizer, PreTrainedTokenizerBase
from . import clip_model
from . import model_management
from . import ops
from .component_model import files
from .component_model.files import get_path_as_dict, get_package_as_path
from .text_encoders.spiece_tokenizer import SPieceTokenizer
try:
from importlib.resources.abc import Traversable # pylint: disable=no-name-in-module
except ImportError:
from importlib.abc import Traversable # pylint: disable=no-name-in-module, deprecated-class
logger = logging.getLogger(__name__)
def gen_empty_tokens(special_tokens, length):
start_token = special_tokens.get("start", None)
end_token = special_tokens.get("end", None)
pad_token = special_tokens.get("pad")
output = []
if start_token is not None:
output.append(start_token)
if end_token is not None:
output.append(end_token)
output += [pad_token] * (length - len(output))
return output
class ClipTokenWeightEncoder:
def encode_token_weights(self, token_weight_pairs):
to_encode = list()
max_token_len = 0
has_weights = False
for x in token_weight_pairs:
tokens = list(map(lambda a: a[0], x))
max_token_len = max(len(tokens), max_token_len)
has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
to_encode.append(tokens)
sections = len(to_encode)
if has_weights or sections == 0 and hasattr(self, "special_tokens"):
if hasattr(self, "gen_empty_tokens"):
to_encode.append(self.gen_empty_tokens(self.special_tokens, max_token_len))
else:
to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len)) # pylint: disable=no-member
assert hasattr(self, "encode")
assert isinstance(self.encode, Callable) # pylint: disable=no-member
o = self.encode(to_encode) # pylint: disable=no-member
out, pooled = o[:2]
if pooled is not None:
first_pooled = pooled[0:1].to(model_management.intermediate_device())
else:
first_pooled = pooled
output = []
for k in range(0, sections):
z = out[k:k + 1]
if has_weights:
z_empty = out[-1]
for i in range(len(z)):
for j in range(len(z[i])):
weight = token_weight_pairs[k][j][1]
if weight != 1.0:
z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
output.append(z)
if (len(output) == 0):
r = (out[-1:].to(model_management.intermediate_device()), first_pooled)
else:
r = (torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled)
if len(o) > 2:
extra = {}
for k in o[2]:
v = o[2][k]
if k == "attention_mask":
v = v[:sections].flatten().unsqueeze(dim=0).to(model_management.intermediate_device())
extra[k] = v
r = r + (extra,)
return r
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
LAYERS = [
"last",
"pooled",
"hidden",
"all"
]
def __init__(self, device="cpu", max_length=77,
freeze=True, layer="last", layer_idx=None, textmodel_json_config: str | dict | None = None, dtype=None, model_class=clip_model.CLIPTextModel,
special_tokens=None, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False,
return_projected_pooled=True, return_attention_masks=False, model_options=None): # clip-vit-base-patch32
super().__init__()
if model_options is None:
model_options = {}
if special_tokens is None:
special_tokens = {"start": 49406, "end": 49407, "pad": 49407}
assert layer in self.LAYERS
if textmodel_json_config is None and "model_name" not in model_options:
model_options = {**model_options, "model_name": "clip_l"}
if "model_name" in model_options and "clip" not in model_options["model_name"].lower() and textmodel_json_config is None:
_model_name = model_options['model_name']
logger.warning(f"Text encoder {_model_name} provided a None textmodel_json_config, when it should have been an empty dict")
textmodel_json_config = {}
config = get_path_as_dict(textmodel_json_config, "sd1_clip_config.json", package=__package__)
te_model_options = model_options.get("{}_model_config".format(model_options.get("model_name", "")), {})
for k, v in te_model_options.items():
config[k] = v
operations = model_options.get("custom_operations", None)
quant_config = model_options.get("quantization_metadata", None)
if operations is None:
if quant_config is not None:
operations = ops.mixed_precision_ops(quant_config, dtype, full_precision_mm=True)
logger.debug("Using MixedPrecisionOps for text encoder")
else:
operations = ops.manual_cast
self.operations = operations
self.transformer = model_class(config, dtype, device, self.operations)
self.num_layers = self.transformer.num_layers
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
self.layer_idx = None
self.special_tokens = special_tokens
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
self.enable_attention_masks = enable_attention_masks
self.zero_out_masked = zero_out_masked
self.layer_norm_hidden_state = layer_norm_hidden_state
self.return_projected_pooled = return_projected_pooled
self.return_attention_masks = return_attention_masks
self.execution_device = None
if layer == "hidden":
assert layer_idx is not None
assert abs(layer_idx) < self.num_layers
self.set_clip_options({"layer": layer_idx})
self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled)
def freeze(self):
self.transformer = self.transformer.eval()
# self.train = disabled_train
for param in self.parameters():
param.requires_grad = False
def set_clip_options(self, options):
layer_idx = options.get("layer", self.layer_idx)
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
self.execution_device = options.get("execution_device", self.execution_device)
if isinstance(self.layer, list) or self.layer == "all":
pass
elif layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last"
else:
self.layer = "hidden"
self.layer_idx = layer_idx
def reset_clip_options(self):
self.layer = self.options_default[0]
self.layer_idx = self.options_default[1]
self.return_projected_pooled = self.options_default[2]
self.execution_device = None
def process_tokens(self, tokens, device):
end_token = self.special_tokens.get("end", None)
if end_token is None:
cmp_token = self.special_tokens.get("pad", -1)
else:
cmp_token = end_token
embeds_out = []
attention_masks = []
num_tokens = []
for x in tokens:
attention_mask = []
tokens_temp = []
other_embeds = []
eos = False
index = 0
for y in x:
if isinstance(y, numbers.Integral):
if eos:
attention_mask.append(0)
else:
attention_mask.append(1)
token = int(y)
tokens_temp += [token]
if not eos and token == cmp_token:
if end_token is None:
attention_mask[-1] = 0
eos = True
else:
other_embeds.append((index, y))
index += 1
tokens_embed = torch.tensor([tokens_temp], device=device, dtype=torch.long)
tokens_embed = self.transformer.get_input_embeddings()(tokens_embed, out_dtype=torch.float32)
index = 0
pad_extra = 0
embeds_info = []
for o in other_embeds:
emb = o[1]
if torch.is_tensor(emb):
emb = {"type": "embedding", "data": emb}
extra = None
emb_type = emb.get("type", None)
if emb_type == "embedding":
emb = emb.get("data", None)
else:
if hasattr(self.transformer, "preprocess_embed"):
emb, extra = self.transformer.preprocess_embed(emb, device=device)
else:
emb = None
if emb is None:
index += -1
continue
ind = index + o[0]
emb = emb.view(1, -1, emb.shape[-1]).to(device=device, dtype=torch.float32)
emb_shape = emb.shape[1]
if emb.shape[-1] == tokens_embed.shape[-1]:
tokens_embed = torch.cat([tokens_embed[:, :ind], emb, tokens_embed[:, ind:]], dim=1)
attention_mask = attention_mask[:ind] + [1] * emb_shape + attention_mask[ind:]
index += emb_shape - 1
embeds_info.append({"type": emb_type, "index": ind, "size": emb_shape, "extra": extra})
else:
index += -1
pad_extra += emb_shape
logger.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(emb.shape[-1], tokens_embed.shape[-1]))
if pad_extra > 0:
padd_embed = self.transformer.get_input_embeddings()(torch.tensor([[self.special_tokens["pad"]] * pad_extra], device=device, dtype=torch.long), out_dtype=torch.float32)
tokens_embed = torch.cat([tokens_embed, padd_embed], dim=1)
attention_mask = attention_mask + [0] * pad_extra
embeds_out.append(tokens_embed)
attention_masks.append(attention_mask)
num_tokens.append(sum(attention_mask))
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens, embeds_info
def forward(self, tokens):
if self.execution_device is None:
device = self.transformer.get_input_embeddings().weight.device
else:
device = self.execution_device
embeds, attention_mask, num_tokens, embeds_info = self.process_tokens(tokens, device)
attention_mask_model = None
if self.enable_attention_masks:
attention_mask_model = attention_mask
if isinstance(self.layer, list):
intermediate_output = self.layer
elif self.layer == "all":
intermediate_output = "all"
else:
intermediate_output = self.layer_idx
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32, embeds_info=embeds_info)
if self.layer == "last":
z = outputs[0].float()
else:
z = outputs[1].float()
if self.zero_out_masked:
z *= attention_mask.unsqueeze(-1).float()
pooled_output = None
if len(outputs) >= 3:
if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None:
pooled_output = outputs[3].float()
elif outputs[2] is not None:
pooled_output = outputs[2].float()
extra = {}
if self.return_attention_masks:
extra["attention_mask"] = attention_mask
if len(extra) > 0:
return z, pooled_output, extra
return z, pooled_output
def encode(self, tokens):
return self(tokens)
def encode_token_weights(self, token_weight_pairs):
to_encode = list()
max_token_len = 0
has_weights = False
for x in token_weight_pairs:
tokens = list(map(lambda a: a[0], x))
max_token_len = max(len(tokens), max_token_len)
has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
to_encode.append(tokens)
sections = len(to_encode)
if has_weights or sections == 0:
to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))
o = self.encode(to_encode)
out, pooled = o[:2]
if pooled is not None:
first_pooled = pooled[0:1].to(model_management.intermediate_device())
else:
first_pooled = pooled
output = []
for k in range(0, sections):
z = out[k:k + 1]
if has_weights:
z_empty = out[-1]
for i in range(len(z)):
for j in range(len(z[i])):
weight = token_weight_pairs[k][j][1]
if weight != 1.0:
z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
output.append(z)
if (len(output) == 0):
r = (out[-1:].to(model_management.intermediate_device()), first_pooled)
else:
r = (torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled)
if len(o) > 2:
extra = {}
for k in o[2]:
v = o[2][k]
if k == "attention_mask":
v = v[:sections].flatten().unsqueeze(dim=0).to(model_management.intermediate_device())
extra[k] = v
r = r + (extra,)
return r
def load_sd(self, sd):
return self.transformer.load_state_dict(sd, strict=False)
def parse_parentheses(string):
result = []
current_item = ""
nesting_level = 0
for char in string:
if char == "(":
if nesting_level == 0:
if current_item:
result.append(current_item)
current_item = "("
else:
current_item = "("
else:
current_item += char
nesting_level += 1
elif char == ")":
nesting_level -= 1
if nesting_level == 0:
result.append(current_item + ")")
current_item = ""
else:
current_item += char
else:
current_item += char
if current_item:
result.append(current_item)
return result
def token_weights(string, current_weight):
a = parse_parentheses(string)
out = []
for x in a:
weight = current_weight
if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
x = x[1:-1]
xx = x.rfind(":")
weight *= 1.1
if xx > 0:
try:
weight = float(x[xx + 1:])
x = x[:xx]
except:
pass
out += token_weights(x, weight)
else:
out += [(x, current_weight)]
return out
def escape_important(text):
text = text.replace("\\)", "\0\1")
text = text.replace("\\(", "\0\2")
return text
def unescape_important(text):
text = text.replace("\0\1", ")")
text = text.replace("\0\2", "(")
return text
def safe_load_embed_zip(embed_path):
with zipfile.ZipFile(embed_path) as myzip:
names = list(filter(lambda a: "data/" in a, myzip.namelist()))
names.reverse()
for n in names:
with myzip.open(n) as myfile:
data = myfile.read()
number = len(data) // 4
length_embed = 1024 # sd2.x
if number < 768:
continue
if number % 768 == 0:
length_embed = 768 # sd1.x
num_embeds = number // length_embed
embed = torch.frombuffer(data, dtype=torch.float)
out = embed.reshape((num_embeds, length_embed)).clone()
del embed
return out
def expand_directory_list(directories):
dirs = set()
for x in directories:
dirs.add(x)
for root, subdir, file in os.walk(x, followlinks=True):
dirs.add(root)
return list(dirs)
def bundled_embed(embed, prefix, suffix): # bundled embedding in lora format
out_list = []
for k in embed:
if k.startswith(prefix) and k.endswith(suffix):
out_list.append(embed[k])
if len(out_list) == 0:
return None
return torch.cat(out_list, dim=0)
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
if isinstance(embedding_directory, str):
embedding_directory = [embedding_directory]
embedding_directory = expand_directory_list(embedding_directory)
valid_file = None
for embed_dir in embedding_directory:
# todo: improve this, so that it is more compatible between linux and windows
embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name))
embed_dir = os.path.abspath(embed_dir)
try:
if os.path.commonpath((embed_dir, embed_path)) != embed_dir:
continue
except:
continue
if not os.path.isfile(embed_path):
extensions = ['.safetensors', '.pt', '.bin']
for x in extensions:
t = embed_path + x
if os.path.isfile(t):
valid_file = t
break
else:
valid_file = embed_path
if valid_file is not None:
break
if valid_file is None:
return None
embed_path = valid_file
embed_out = None
try:
if embed_path.lower().endswith(".safetensors"):
import safetensors.torch
embed = safetensors.torch.load_file(embed_path, device="cpu")
else:
try:
embed = torch.load(embed_path, weights_only=True, map_location="cpu")
except:
embed_out = safe_load_embed_zip(embed_path)
except Exception:
logger.warning("{}\n\nerror loading embedding, skipping loading: {}".format(traceback.format_exc(), embedding_name))
return None
if embed_out is None:
if 'string_to_param' in embed:
values = embed['string_to_param'].values()
embed_out = next(iter(values))
elif isinstance(embed, list):
out_list = []
for x in range(len(embed)):
for k in embed[x]:
t = embed[x][k]
if t.shape[-1] != embedding_size:
continue
out_list.append(t.reshape(-1, t.shape[-1]))
embed_out = torch.cat(out_list, dim=0)
elif embed_key is not None and embed_key in embed:
embed_out = embed[embed_key]
else:
embed_out = bundled_embed(embed, 'bundle_emb.', '.string_to_param.*')
if embed_out is None:
embed_out = bundled_embed(embed, 'bundle_emb.', '.{}'.format(embed_key))
if embed_out is None:
values = embed.values()
embed_out = next(iter(values))
return embed_out
SDTokenizerT = TypeVar('SDTokenizerT', bound='SDTokenizer')
class SDTokenizer:
def __init__(self, tokenizer_path: Optional[Union[torch.Tensor, bytes, bytearray, memoryview, str, Path, Traversable]] = None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, pad_left=False, tokenizer_data=None, tokenizer_args=None):
if tokenizer_data is None:
tokenizer_data = dict()
if tokenizer_args is None:
tokenizer_args = dict()
if tokenizer_path is None:
tokenizer_path = files.get_package_as_path("comfy.sd1_tokenizer")
if isinstance(tokenizer_path, Path):
tokenizer_path = str(tokenizer_path)
if isinstance(tokenizer_path, Traversable):
contextlib_path = importlib.resources.as_file(tokenizer_path)
tokenizer_path = contextlib_path.__enter__()
if issubclass(tokenizer_class, CLIPTokenizer) and not os.path.exists(os.path.join(tokenizer_path, "tokenizer_config.json")):
# assumes sd1_tokenizer
tokenizer_path = get_package_as_path('comfy.sd1_tokenizer')
self.tokenizer_class = tokenizer_class
self.tokenizer_path = tokenizer_path
self.tokenizer: PreTrainedTokenizerBase | SPieceTokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
self.max_length = tokenizer_data.get("{}_max_length".format(embedding_key), max_length)
self.min_length = tokenizer_data.get("{}_min_length".format(embedding_key), min_length)
self.end_token = None
self.min_padding = min_padding
self.pad_left = pad_left
empty = self.tokenizer('')["input_ids"]
self.tokenizer_adds_end_token = has_end_token
if has_start_token:
self.tokens_start = 1
self.start_token = empty[0]
if end_token is not None:
self.end_token = end_token
else:
if has_end_token:
self.end_token = empty[1]
else:
self.tokens_start = 0
self.start_token = None
if end_token is not None:
self.end_token = end_token
else:
if has_end_token:
self.end_token = empty[0]
if pad_token is not None:
self.pad_token = pad_token
elif pad_with_end:
self.pad_token = self.end_token
else:
self.pad_token = 0
self.pad_with_end = pad_with_end
self.pad_to_max_length = pad_to_max_length
self.additional_tokens: Tuple[str, ...] = ()
self.add_tokens([])
self.embedding_directory = embedding_directory
self.max_word_length = 8
self.embedding_identifier = "embedding:"
self.embedding_size = embedding_size
self.embedding_key = embedding_key
def clone(self) -> SDTokenizerT:
sd_tokenizer = copy.copy(self)
# correctly copy additional vocab
sd_tokenizer.tokenizer = self.tokenizer_class.from_pretrained(self.tokenizer_path, legacy=True)
sd_tokenizer.add_tokens(sd_tokenizer.additional_tokens)
return sd_tokenizer
def add_tokens(self, tokens: Sequence[str]):
self.additional_tokens += tuple(tokens)
if len(tokens) > 0:
self.tokenizer.add_tokens(list(tokens))
vocab = self.tokenizer.get_vocab()
self.inv_vocab = {v: k for k, v in vocab.items()}
def _try_get_embedding(self, embedding_name: str):
'''
Takes a potential embedding name and tries to retrieve it.
Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
'''
split_embed = embedding_name.split()
embedding_name = split_embed[0]
leftover = ' '.join(split_embed[1:])
embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
if embed is None:
stripped = embedding_name.strip(',')
if len(stripped) < len(embedding_name):
embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
return (embed, "{} {}".format(embedding_name[len(stripped):], leftover))
return (embed, leftover)
def pad_tokens(self, tokens, amount):
if self.pad_left:
for i in range(amount):
tokens.insert(0, (self.pad_token, 1.0, 0))
else:
tokens.extend([(self.pad_token, 1.0, 0)] * amount)
def tokenize_with_weights(self, text: str, return_word_ids=False, tokenizer_options={}, **kwargs):
'''
Takes a prompt and converts it to a list of (token, weight, word id) elements.
Tokens can both be integer tokens and pre computed CLIP tensors.
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
Returned list has the dimensions NxM where M is the input size of CLIP
'''
min_length = tokenizer_options.get("{}_min_length".format(self.embedding_key), self.min_length)
min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding)
text = escape_important(text)
if kwargs.get("disable_weights", False):
parsed_weights = [(text, 1.0)]
else:
parsed_weights = token_weights(text, 1.0)
vocab = self.tokenizer.get_vocab()
# tokenize words
tokens = []
for weighted_segment, weight in parsed_weights:
to_tokenize = unescape_important(weighted_segment)
split = re.split(' {0}|\n{0}'.format(self.embedding_identifier), to_tokenize)
to_tokenize = [split[0]]
for i in range(1, len(split)):
to_tokenize.append("{}{}".format(self.embedding_identifier, split[i]))
to_tokenize = [x for x in to_tokenize if x != ""]
for word in to_tokenize:
# if we find an embedding, deal with the embedding
if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
embedding_name = word[len(self.embedding_identifier):].strip('\n')
embed, leftover = self._try_get_embedding(embedding_name)
if embed is None:
logger.warning(f"warning, embedding:{embedding_name} does not exist, ignoring")
else:
if len(embed.shape) == 1:
tokens.append([(embed, weight)])
else:
tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
# if we accidentally have leftover text, continue parsing using leftover, else move on to next word
if leftover != "":
word = leftover
else:
continue
end = 999999999999
if self.tokenizer_adds_end_token:
end = -1
# parse word
exact_word = f"{word}</w>"
if hasattr(self.tokenizer, "eos_token") and word == self.tokenizer.eos_token:
tokenizer_result = [self.tokenizer.eos_token_id]
elif exact_word in vocab:
tokenizer_result = [vocab[exact_word]]
else:
tokenizer_result = self.tokenizer(word)["input_ids"][self.tokens_start:end]
tokens.append([(t, weight) for t in tokenizer_result])
# reshape token array to CLIP input size
batched_tokens = []
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
for i, t_group in enumerate(tokens):
# determine if we're going to try and keep the tokens in a single batch
is_large = len(t_group) >= self.max_word_length
if self.end_token is not None:
has_end_token = 1
else:
has_end_token = 0
while len(t_group) > 0:
if len(t_group) + len(batch) > self.max_length - has_end_token:
remaining_length = self.max_length - len(batch) - has_end_token
# break word in two and add end token
if is_large:
batch.extend([(t, w, i + 1) for t, w in t_group[:remaining_length]])
if self.end_token is not None:
batch.append((self.end_token, 1.0, 0))
t_group = t_group[remaining_length:]
# add end token and pad
else:
if self.end_token is not None:
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
self.pad_tokens(batch, remaining_length)
# start new batch
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
else:
batch.extend([(t, w, i + 1) for t, w in t_group])
t_group = []
# fill last batch
if self.end_token is not None:
batch.append((self.end_token, 1.0, 0))
if min_padding is not None:
self.pad_tokens(batch, min_padding)
if self.pad_to_max_length and len(batch) < self.max_length:
self.pad_tokens(batch, self.max_length - len(batch))
if min_length is not None and len(batch) < min_length:
self.pad_tokens(batch, min_length - len(batch))
if not return_word_ids:
batched_tokens = [[(t, w) for t, w, _ in x] for x in batched_tokens]
return batched_tokens
def untokenize(self, token_weight_pair):
return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
def state_dict(self):
return {}
SD1TokenizerT = TypeVar("SD1TokenizerT", bound="SD1Tokenizer")
class SD1Tokenizer:
def __init__(self, embedding_directory=None, tokenizer_data: dict = None, clip_name="l", tokenizer=SDTokenizer, name=None):
if tokenizer_data is None:
tokenizer_data = {}
if name is not None:
self.clip_name = name
self.clip = "{}".format(self.clip_name)
else:
self.clip_name = clip_name
self.clip = "clip_{}".format(self.clip_name)
tokenizer = tokenizer_data.get("{}_tokenizer_class".format(self.clip), tokenizer)
self.sd_tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text: str, return_word_ids=False, **kwargs):
out = {}
out[self.clip_name] = self.sd_tokenizer.tokenize_with_weights(text, return_word_ids, **kwargs)
return out
def untokenize(self, token_weight_pair):
return self.sd_tokenizer.untokenize(token_weight_pair)
@property
def sd_tokenizer(self) -> SDTokenizer:
return getattr(self, self.clip)
@sd_tokenizer.setter
def sd_tokenizer(self, value):
setattr(self, self.clip, value)
def clone(self) -> SD1TokenizerT:
sd1_tokenizer = copy.copy(self)
sd1_tokenizer.sd_tokenizer = self.sd_tokenizer.clone()
return sd1_tokenizer
def state_dict(self):
return getattr(self, self.clip).state_dict()
class SD1CheckpointClipModel(SDClipModel):
def __init__(self, device="cpu", dtype=None, model_options=None, textmodel_json_config=None):
if model_options is None:
model_options = {}
super().__init__(device=device, return_projected_pooled=False, dtype=dtype, model_options=model_options, textmodel_json_config=textmodel_json_config)
class SD1ClipModel(torch.nn.Module):
def __init__(self, device="cpu", dtype=None, model_options=None, clip_name="l", clip_model=SD1CheckpointClipModel, textmodel_json_config=None, name=None, **kwargs):
super().__init__()
if model_options is None:
model_options = {}
if name is not None:
self.clip_name = name
self.clip = "{}".format(self.clip_name)
else:
self.clip_name = clip_name
self.clip = "clip_{}".format(self.clip_name)
clip_model = model_options.get("{}_class".format(self.clip), clip_model)
model_options = {**model_options, "model_name": self.clip}
setattr(self, self.clip, clip_model(device=device, dtype=dtype, model_options=model_options, textmodel_json_config=textmodel_json_config, **kwargs))
self.dtypes = set()
if dtype is not None:
self.dtypes.add(dtype)
def set_clip_options(self, options):
getattr(self, self.clip).set_clip_options(options)
def reset_clip_options(self):
getattr(self, self.clip).reset_clip_options()
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs = token_weight_pairs[self.clip_name]
out = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
return out
def load_sd(self, sd):
return getattr(self, self.clip).load_sd(sd)