mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-24 21:30:15 +08:00
* causal_video_ae: Remove attention ResNet
This attention_head_dim argument does not exist on this constructor so
this is dead code. Remove as generic attention mid VAE conflicts with
temporal roll.
* ltx-vae: consoldate causal/non-causal code paths
* ltx-vae: add cache rolling adder
* ltx-vae: use cached adder for resnet
* ltx-vae: Implement rolling VAE
Implement a temporal rolling VAE for the LTX2 VAE.
Usually when doing temporal rolling VAEs you can just chunk on time relying
on causality and cache behind you as you go. The LTX VAE is however
non-causal.
So go whole hog and implement per layer run ahead and backpressure between
the decoder layers using recursive state beween the layers.
Operations are ammended with temporal_cache_state{} which they can use to
hold any state then need for partial execution. Convolutions cache their
inputs behind the up to N-1 frames, and skip connections need to cache the
mismatch between convolution input and output that happens due to missing
future (non-causal) input.
Each call to run_up() processes a layer accross a range on input that
may or may not be complete. It goes depth first to process as much as
possible to try and digest frames to the final output ASAP. If layers run
out of input due to convolution losses, they simply return without action
effectively applying back-pressure to the earlier layers. As the earlier
layers do more work and caller deeper, the partial states are reconciled
and output continues to digest depth first as much as possible.
Chunking is done using a size quota rather than a fixed frame length and
any layer can initiate chunking, and multiple layers can chunk at different
granulatiries. This remove the old limitation of always having to process
1 latent frame to entirety and having to hold 8 full decoded frames as
the VRAM peak.
1175 lines
44 KiB
Python
1175 lines
44 KiB
Python
from __future__ import annotations
|
|
import threading
|
|
import torch
|
|
from torch import nn
|
|
from functools import partial
|
|
import math
|
|
from einops import rearrange
|
|
from typing import List, Optional, Tuple, Union
|
|
from .conv_nd_factory import make_conv_nd, make_linear_nd
|
|
from .causal_conv3d import CausalConv3d
|
|
from .pixel_norm import PixelNorm
|
|
from ..model import PixArtAlphaCombinedTimestepSizeEmbeddings
|
|
import comfy.ops
|
|
from comfy.ldm.modules.diffusionmodules.model import torch_cat_if_needed
|
|
|
|
ops = comfy.ops.disable_weight_init
|
|
|
|
def mark_conv3d_ended(module):
|
|
tid = threading.get_ident()
|
|
for _, m in module.named_modules():
|
|
if isinstance(m, CausalConv3d):
|
|
current = m.temporal_cache_state.get(tid, (None, False))
|
|
m.temporal_cache_state[tid] = (current[0], True)
|
|
|
|
def split2(tensor, split_point, dim=2):
|
|
return torch.split(tensor, [split_point, tensor.shape[dim] - split_point], dim=dim)
|
|
|
|
def add_exchange_cache(dest, cache_in, new_input, dim=2):
|
|
if dest is not None:
|
|
if cache_in is not None:
|
|
cache_to_dest = min(dest.shape[dim], cache_in.shape[dim])
|
|
lead_in_dest, dest = split2(dest, cache_to_dest, dim=dim)
|
|
lead_in_source, cache_in = split2(cache_in, cache_to_dest, dim=dim)
|
|
lead_in_dest.add_(lead_in_source)
|
|
body, new_input = split2(new_input, dest.shape[dim], dim)
|
|
dest.add_(body)
|
|
return torch_cat_if_needed([cache_in, new_input], dim=dim)
|
|
|
|
class Encoder(nn.Module):
|
|
r"""
|
|
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
|
|
|
|
Args:
|
|
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
|
The number of dimensions to use in convolutions.
|
|
in_channels (`int`, *optional*, defaults to 3):
|
|
The number of input channels.
|
|
out_channels (`int`, *optional*, defaults to 3):
|
|
The number of output channels.
|
|
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
|
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
|
base_channels (`int`, *optional*, defaults to 128):
|
|
The number of output channels for the first convolutional layer.
|
|
norm_num_groups (`int`, *optional*, defaults to 32):
|
|
The number of groups for normalization.
|
|
patch_size (`int`, *optional*, defaults to 1):
|
|
The patch size to use. Should be a power of 2.
|
|
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
|
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
|
latent_log_var (`str`, *optional*, defaults to `per_channel`):
|
|
The number of channels for the log variance. Can be either `per_channel`, `uniform`, `constant` or `none`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dims: Union[int, Tuple[int, int]] = 3,
|
|
in_channels: int = 3,
|
|
out_channels: int = 3,
|
|
blocks: List[Tuple[str, int | dict]] = [("res_x", 1)],
|
|
base_channels: int = 128,
|
|
norm_num_groups: int = 32,
|
|
patch_size: Union[int, Tuple[int]] = 1,
|
|
norm_layer: str = "group_norm", # group_norm, pixel_norm
|
|
latent_log_var: str = "per_channel",
|
|
spatial_padding_mode: str = "zeros",
|
|
):
|
|
super().__init__()
|
|
self.patch_size = patch_size
|
|
self.norm_layer = norm_layer
|
|
self.latent_channels = out_channels
|
|
self.latent_log_var = latent_log_var
|
|
self.blocks_desc = blocks
|
|
|
|
in_channels = in_channels * patch_size**2
|
|
output_channel = base_channels
|
|
|
|
self.conv_in = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=in_channels,
|
|
out_channels=output_channel,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
|
|
self.down_blocks = nn.ModuleList([])
|
|
|
|
for block_name, block_params in blocks:
|
|
input_channel = output_channel
|
|
if isinstance(block_params, int):
|
|
block_params = {"num_layers": block_params}
|
|
|
|
if block_name == "res_x":
|
|
block = UNetMidBlock3D(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
num_layers=block_params["num_layers"],
|
|
resnet_eps=1e-6,
|
|
resnet_groups=norm_num_groups,
|
|
norm_layer=norm_layer,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "res_x_y":
|
|
output_channel = block_params.get("multiplier", 2) * output_channel
|
|
block = ResnetBlock3D(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
eps=1e-6,
|
|
groups=norm_num_groups,
|
|
norm_layer=norm_layer,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_time":
|
|
block = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
kernel_size=3,
|
|
stride=(2, 1, 1),
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_space":
|
|
block = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
kernel_size=3,
|
|
stride=(1, 2, 2),
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_all":
|
|
block = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
kernel_size=3,
|
|
stride=(2, 2, 2),
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_all_x_y":
|
|
output_channel = block_params.get("multiplier", 2) * output_channel
|
|
block = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
kernel_size=3,
|
|
stride=(2, 2, 2),
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_all_res":
|
|
output_channel = block_params.get("multiplier", 2) * output_channel
|
|
block = SpaceToDepthDownsample(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
stride=(2, 2, 2),
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_space_res":
|
|
output_channel = block_params.get("multiplier", 2) * output_channel
|
|
block = SpaceToDepthDownsample(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
stride=(1, 2, 2),
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_time_res":
|
|
output_channel = block_params.get("multiplier", 2) * output_channel
|
|
block = SpaceToDepthDownsample(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
stride=(2, 1, 1),
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
else:
|
|
raise ValueError(f"unknown block: {block_name}")
|
|
|
|
self.down_blocks.append(block)
|
|
|
|
# out
|
|
if norm_layer == "group_norm":
|
|
self.conv_norm_out = nn.GroupNorm(
|
|
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
|
)
|
|
elif norm_layer == "pixel_norm":
|
|
self.conv_norm_out = PixelNorm()
|
|
elif norm_layer == "layer_norm":
|
|
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
|
|
|
self.conv_act = nn.SiLU()
|
|
|
|
conv_out_channels = out_channels
|
|
if latent_log_var == "per_channel":
|
|
conv_out_channels *= 2
|
|
elif latent_log_var == "uniform":
|
|
conv_out_channels += 1
|
|
elif latent_log_var == "constant":
|
|
conv_out_channels += 1
|
|
elif latent_log_var != "none":
|
|
raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
|
|
self.conv_out = make_conv_nd(
|
|
dims,
|
|
output_channel,
|
|
conv_out_channels,
|
|
3,
|
|
padding=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward_orig(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
|
r"""The forward method of the `Encoder` class."""
|
|
|
|
sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
|
sample = self.conv_in(sample)
|
|
|
|
checkpoint_fn = (
|
|
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
|
if self.gradient_checkpointing and self.training
|
|
else lambda x: x
|
|
)
|
|
|
|
for down_block in self.down_blocks:
|
|
sample = checkpoint_fn(down_block)(sample)
|
|
|
|
sample = self.conv_norm_out(sample)
|
|
sample = self.conv_act(sample)
|
|
sample = self.conv_out(sample)
|
|
|
|
if self.latent_log_var == "uniform":
|
|
last_channel = sample[:, -1:, ...]
|
|
num_dims = sample.dim()
|
|
|
|
if num_dims == 4:
|
|
# For shape (B, C, H, W)
|
|
repeated_last_channel = last_channel.repeat(
|
|
1, sample.shape[1] - 2, 1, 1
|
|
)
|
|
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
|
elif num_dims == 5:
|
|
# For shape (B, C, F, H, W)
|
|
repeated_last_channel = last_channel.repeat(
|
|
1, sample.shape[1] - 2, 1, 1, 1
|
|
)
|
|
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
|
else:
|
|
raise ValueError(f"Invalid input shape: {sample.shape}")
|
|
elif self.latent_log_var == "constant":
|
|
sample = sample[:, :-1, ...]
|
|
approx_ln_0 = (
|
|
-30
|
|
) # this is the minimal clamp value in DiagonalGaussianDistribution objects
|
|
sample = torch.cat(
|
|
[sample, torch.ones_like(sample, device=sample.device) * approx_ln_0],
|
|
dim=1,
|
|
)
|
|
|
|
return sample
|
|
|
|
def forward(self, *args, **kwargs):
|
|
#No encoder support so just flag the end so it doesnt use the cache.
|
|
mark_conv3d_ended(self)
|
|
try:
|
|
return self.forward_orig(*args, **kwargs)
|
|
finally:
|
|
tid = threading.get_ident()
|
|
for _, module in self.named_modules():
|
|
# ComfyUI doesn't thread this kind of stuff today, but just in case
|
|
# we key on the thread to make it thread safe.
|
|
tid = threading.get_ident()
|
|
if hasattr(module, "temporal_cache_state"):
|
|
module.temporal_cache_state.pop(tid, None)
|
|
|
|
|
|
MAX_CHUNK_SIZE=(128 * 1024 ** 2)
|
|
|
|
class Decoder(nn.Module):
|
|
r"""
|
|
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
|
|
|
Args:
|
|
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
|
The number of dimensions to use in convolutions.
|
|
in_channels (`int`, *optional*, defaults to 3):
|
|
The number of input channels.
|
|
out_channels (`int`, *optional*, defaults to 3):
|
|
The number of output channels.
|
|
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
|
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
|
base_channels (`int`, *optional*, defaults to 128):
|
|
The number of output channels for the first convolutional layer.
|
|
norm_num_groups (`int`, *optional*, defaults to 32):
|
|
The number of groups for normalization.
|
|
patch_size (`int`, *optional*, defaults to 1):
|
|
The patch size to use. Should be a power of 2.
|
|
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
|
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
|
causal (`bool`, *optional*, defaults to `True`):
|
|
Whether to use causal convolutions or not.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dims,
|
|
in_channels: int = 3,
|
|
out_channels: int = 3,
|
|
blocks: List[Tuple[str, int | dict]] = [("res_x", 1)],
|
|
base_channels: int = 128,
|
|
layers_per_block: int = 2,
|
|
norm_num_groups: int = 32,
|
|
patch_size: int = 1,
|
|
norm_layer: str = "group_norm",
|
|
causal: bool = True,
|
|
timestep_conditioning: bool = False,
|
|
spatial_padding_mode: str = "zeros",
|
|
):
|
|
super().__init__()
|
|
self.patch_size = patch_size
|
|
self.layers_per_block = layers_per_block
|
|
out_channels = out_channels * patch_size**2
|
|
self.causal = causal
|
|
self.blocks_desc = blocks
|
|
|
|
# Compute output channel to be product of all channel-multiplier blocks
|
|
output_channel = base_channels
|
|
for block_name, block_params in list(reversed(blocks)):
|
|
block_params = block_params if isinstance(block_params, dict) else {}
|
|
if block_name == "res_x_y":
|
|
output_channel = output_channel * block_params.get("multiplier", 2)
|
|
if block_name == "compress_all":
|
|
output_channel = output_channel * block_params.get("multiplier", 1)
|
|
|
|
self.conv_in = make_conv_nd(
|
|
dims,
|
|
in_channels,
|
|
output_channel,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
|
|
self.up_blocks = nn.ModuleList([])
|
|
|
|
for block_name, block_params in list(reversed(blocks)):
|
|
input_channel = output_channel
|
|
if isinstance(block_params, int):
|
|
block_params = {"num_layers": block_params}
|
|
|
|
if block_name == "res_x":
|
|
block = UNetMidBlock3D(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
num_layers=block_params["num_layers"],
|
|
resnet_eps=1e-6,
|
|
resnet_groups=norm_num_groups,
|
|
norm_layer=norm_layer,
|
|
inject_noise=block_params.get("inject_noise", False),
|
|
timestep_conditioning=timestep_conditioning,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "res_x_y":
|
|
output_channel = output_channel // block_params.get("multiplier", 2)
|
|
block = ResnetBlock3D(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
eps=1e-6,
|
|
groups=norm_num_groups,
|
|
norm_layer=norm_layer,
|
|
inject_noise=block_params.get("inject_noise", False),
|
|
timestep_conditioning=False,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_time":
|
|
block = DepthToSpaceUpsample(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
stride=(2, 1, 1),
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_space":
|
|
block = DepthToSpaceUpsample(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
stride=(1, 2, 2),
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_all":
|
|
output_channel = output_channel // block_params.get("multiplier", 1)
|
|
block = DepthToSpaceUpsample(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
stride=(2, 2, 2),
|
|
residual=block_params.get("residual", False),
|
|
out_channels_reduction_factor=block_params.get("multiplier", 1),
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
else:
|
|
raise ValueError(f"unknown layer: {block_name}")
|
|
|
|
self.up_blocks.append(block)
|
|
|
|
if norm_layer == "group_norm":
|
|
self.conv_norm_out = nn.GroupNorm(
|
|
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
|
)
|
|
elif norm_layer == "pixel_norm":
|
|
self.conv_norm_out = PixelNorm()
|
|
elif norm_layer == "layer_norm":
|
|
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
|
|
|
self.conv_act = nn.SiLU()
|
|
self.conv_out = make_conv_nd(
|
|
dims,
|
|
output_channel,
|
|
out_channels,
|
|
3,
|
|
padding=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
self.timestep_conditioning = timestep_conditioning
|
|
|
|
if timestep_conditioning:
|
|
self.timestep_scale_multiplier = nn.Parameter(
|
|
torch.tensor(1000.0, dtype=torch.float32)
|
|
)
|
|
self.last_time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
|
output_channel * 2, 0, operations=ops,
|
|
)
|
|
self.last_scale_shift_table = nn.Parameter(torch.empty(2, output_channel))
|
|
|
|
|
|
# def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor:
|
|
def forward_orig(
|
|
self,
|
|
sample: torch.FloatTensor,
|
|
timestep: Optional[torch.Tensor] = None,
|
|
) -> torch.FloatTensor:
|
|
r"""The forward method of the `Decoder` class."""
|
|
batch_size = sample.shape[0]
|
|
|
|
mark_conv3d_ended(self.conv_in)
|
|
sample = self.conv_in(sample, causal=self.causal)
|
|
|
|
checkpoint_fn = (
|
|
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
|
if self.gradient_checkpointing and self.training
|
|
else lambda x: x
|
|
)
|
|
|
|
timestep_shift_scale = None
|
|
if self.timestep_conditioning:
|
|
assert (
|
|
timestep is not None
|
|
), "should pass timestep with timestep_conditioning=True"
|
|
scaled_timestep = timestep * self.timestep_scale_multiplier.to(dtype=sample.dtype, device=sample.device)
|
|
embedded_timestep = self.last_time_embedder(
|
|
timestep=scaled_timestep.flatten(),
|
|
resolution=None,
|
|
aspect_ratio=None,
|
|
batch_size=sample.shape[0],
|
|
hidden_dtype=sample.dtype,
|
|
)
|
|
embedded_timestep = embedded_timestep.view(
|
|
batch_size, embedded_timestep.shape[-1], 1, 1, 1
|
|
)
|
|
ada_values = self.last_scale_shift_table[
|
|
None, ..., None, None, None
|
|
].to(device=sample.device, dtype=sample.dtype) + embedded_timestep.reshape(
|
|
batch_size,
|
|
2,
|
|
-1,
|
|
embedded_timestep.shape[-3],
|
|
embedded_timestep.shape[-2],
|
|
embedded_timestep.shape[-1],
|
|
)
|
|
timestep_shift_scale = ada_values.unbind(dim=1)
|
|
|
|
output = []
|
|
|
|
def run_up(idx, sample, ended):
|
|
if idx >= len(self.up_blocks):
|
|
sample = self.conv_norm_out(sample)
|
|
if timestep_shift_scale is not None:
|
|
shift, scale = timestep_shift_scale
|
|
sample = sample * (1 + scale) + shift
|
|
sample = self.conv_act(sample)
|
|
if ended:
|
|
mark_conv3d_ended(self.conv_out)
|
|
sample = self.conv_out(sample, causal=self.causal)
|
|
if sample is not None and sample.shape[2] > 0:
|
|
output.append(sample)
|
|
return
|
|
|
|
up_block = self.up_blocks[idx]
|
|
if (ended):
|
|
mark_conv3d_ended(up_block)
|
|
if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
|
|
sample = checkpoint_fn(up_block)(
|
|
sample, causal=self.causal, timestep=scaled_timestep
|
|
)
|
|
else:
|
|
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
|
|
|
|
if sample is None or sample.shape[2] == 0:
|
|
return
|
|
|
|
total_bytes = sample.numel() * sample.element_size()
|
|
num_chunks = (total_bytes + MAX_CHUNK_SIZE - 1) // MAX_CHUNK_SIZE
|
|
samples = torch.chunk(sample, chunks=num_chunks, dim=2)
|
|
|
|
for chunk_idx, sample1 in enumerate(samples):
|
|
run_up(idx + 1, sample1, ended and chunk_idx == len(samples) - 1)
|
|
|
|
run_up(0, sample, True)
|
|
sample = torch.cat(output, dim=2)
|
|
|
|
sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
|
|
|
return sample
|
|
|
|
def forward(self, *args, **kwargs):
|
|
try:
|
|
return self.forward_orig(*args, **kwargs)
|
|
finally:
|
|
for _, module in self.named_modules():
|
|
#ComfyUI doesn't thread this kind of stuff today, but just incase
|
|
#we key on the thread to make it thread safe.
|
|
tid = threading.get_ident()
|
|
if hasattr(module, "temporal_cache_state"):
|
|
module.temporal_cache_state.pop(tid, None)
|
|
|
|
|
|
class UNetMidBlock3D(nn.Module):
|
|
"""
|
|
A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
|
|
|
|
Args:
|
|
in_channels (`int`): The number of input channels.
|
|
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
|
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
|
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
|
resnet_groups (`int`, *optional*, defaults to 32):
|
|
The number of groups to use in the group normalization layers of the resnet blocks.
|
|
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
|
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
|
inject_noise (`bool`, *optional*, defaults to `False`):
|
|
Whether to inject noise into the hidden states.
|
|
timestep_conditioning (`bool`, *optional*, defaults to `False`):
|
|
Whether to condition the hidden states on the timestep.
|
|
|
|
Returns:
|
|
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
|
in_channels, height, width)`.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dims: Union[int, Tuple[int, int]],
|
|
in_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_groups: int = 32,
|
|
norm_layer: str = "group_norm",
|
|
inject_noise: bool = False,
|
|
timestep_conditioning: bool = False,
|
|
spatial_padding_mode: str = "zeros",
|
|
):
|
|
super().__init__()
|
|
resnet_groups = (
|
|
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
|
)
|
|
|
|
self.timestep_conditioning = timestep_conditioning
|
|
|
|
if timestep_conditioning:
|
|
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
|
in_channels * 4, 0, operations=ops,
|
|
)
|
|
|
|
self.res_blocks = nn.ModuleList(
|
|
[
|
|
ResnetBlock3D(
|
|
dims=dims,
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
norm_layer=norm_layer,
|
|
inject_noise=inject_noise,
|
|
timestep_conditioning=timestep_conditioning,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
causal: bool = True,
|
|
timestep: Optional[torch.Tensor] = None,
|
|
) -> torch.FloatTensor:
|
|
timestep_embed = None
|
|
if self.timestep_conditioning:
|
|
assert (
|
|
timestep is not None
|
|
), "should pass timestep with timestep_conditioning=True"
|
|
batch_size = hidden_states.shape[0]
|
|
timestep_embed = self.time_embedder(
|
|
timestep=timestep.flatten(),
|
|
resolution=None,
|
|
aspect_ratio=None,
|
|
batch_size=batch_size,
|
|
hidden_dtype=hidden_states.dtype,
|
|
)
|
|
timestep_embed = timestep_embed.view(
|
|
batch_size, timestep_embed.shape[-1], 1, 1, 1
|
|
)
|
|
|
|
for resnet in self.res_blocks:
|
|
hidden_states = resnet(hidden_states, causal=causal, timestep=timestep_embed)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class SpaceToDepthDownsample(nn.Module):
|
|
def __init__(self, dims, in_channels, out_channels, stride, spatial_padding_mode):
|
|
super().__init__()
|
|
self.stride = stride
|
|
self.group_size = in_channels * math.prod(stride) // out_channels
|
|
self.conv = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels // math.prod(stride),
|
|
kernel_size=3,
|
|
stride=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
|
|
def forward(self, x, causal: bool = True):
|
|
if self.stride[0] == 2:
|
|
x = torch.cat(
|
|
[x[:, :, :1, :, :], x], dim=2
|
|
) # duplicate first frames for padding
|
|
|
|
# skip connection
|
|
x_in = rearrange(
|
|
x,
|
|
"b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
|
|
p1=self.stride[0],
|
|
p2=self.stride[1],
|
|
p3=self.stride[2],
|
|
)
|
|
x_in = rearrange(x_in, "b (c g) d h w -> b c g d h w", g=self.group_size)
|
|
x_in = x_in.mean(dim=2)
|
|
|
|
# conv
|
|
x = self.conv(x, causal=causal)
|
|
x = rearrange(
|
|
x,
|
|
"b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
|
|
p1=self.stride[0],
|
|
p2=self.stride[1],
|
|
p3=self.stride[2],
|
|
)
|
|
|
|
x = x + x_in
|
|
|
|
return x
|
|
|
|
|
|
class DepthToSpaceUpsample(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dims,
|
|
in_channels,
|
|
stride,
|
|
residual=False,
|
|
out_channels_reduction_factor=1,
|
|
spatial_padding_mode="zeros",
|
|
):
|
|
super().__init__()
|
|
self.stride = stride
|
|
self.out_channels = (
|
|
math.prod(stride) * in_channels // out_channels_reduction_factor
|
|
)
|
|
self.conv = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=in_channels,
|
|
out_channels=self.out_channels,
|
|
kernel_size=3,
|
|
stride=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
self.residual = residual
|
|
self.out_channels_reduction_factor = out_channels_reduction_factor
|
|
self.temporal_cache_state = {}
|
|
|
|
def forward(self, x, causal: bool = True, timestep: Optional[torch.Tensor] = None):
|
|
tid = threading.get_ident()
|
|
cached, drop_first_conv, drop_first_res = self.temporal_cache_state.get(tid, (None, True, True))
|
|
y = self.conv(x, causal=causal)
|
|
y = rearrange(
|
|
y,
|
|
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
|
|
p1=self.stride[0],
|
|
p2=self.stride[1],
|
|
p3=self.stride[2],
|
|
)
|
|
if self.stride[0] == 2 and y.shape[2] > 0 and drop_first_conv:
|
|
y = y[:, :, 1:, :, :]
|
|
drop_first_conv = False
|
|
if self.residual:
|
|
# Reshape and duplicate the input to match the output shape
|
|
x_in = rearrange(
|
|
x,
|
|
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
|
|
p1=self.stride[0],
|
|
p2=self.stride[1],
|
|
p3=self.stride[2],
|
|
)
|
|
num_repeat = math.prod(self.stride) // self.out_channels_reduction_factor
|
|
x_in = x_in.repeat(1, num_repeat, 1, 1, 1)
|
|
if self.stride[0] == 2 and x_in.shape[2] > 0 and drop_first_res:
|
|
x_in = x_in[:, :, 1:, :, :]
|
|
drop_first_res = False
|
|
|
|
if y.shape[2] == 0:
|
|
y = None
|
|
|
|
cached = add_exchange_cache(y, cached, x_in, dim=2)
|
|
self.temporal_cache_state[tid] = (cached, drop_first_conv, drop_first_res)
|
|
|
|
else:
|
|
self.temporal_cache_state[tid] = (None, drop_first_conv, False)
|
|
|
|
return y
|
|
|
|
class LayerNorm(nn.Module):
|
|
def __init__(self, dim, eps, elementwise_affine=True) -> None:
|
|
super().__init__()
|
|
self.norm = ops.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
|
|
|
|
def forward(self, x):
|
|
x = rearrange(x, "b c d h w -> b d h w c")
|
|
x = self.norm(x)
|
|
x = rearrange(x, "b d h w c -> b c d h w")
|
|
return x
|
|
|
|
|
|
class ResnetBlock3D(nn.Module):
|
|
r"""
|
|
A Resnet block.
|
|
|
|
Parameters:
|
|
in_channels (`int`): The number of channels in the input.
|
|
out_channels (`int`, *optional*, default to be `None`):
|
|
The number of output channels for the first conv layer. If None, same as `in_channels`.
|
|
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
|
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
|
|
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dims: Union[int, Tuple[int, int]],
|
|
in_channels: int,
|
|
out_channels: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
groups: int = 32,
|
|
eps: float = 1e-6,
|
|
norm_layer: str = "group_norm",
|
|
inject_noise: bool = False,
|
|
timestep_conditioning: bool = False,
|
|
spatial_padding_mode: str = "zeros",
|
|
):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
out_channels = in_channels if out_channels is None else out_channels
|
|
self.out_channels = out_channels
|
|
self.inject_noise = inject_noise
|
|
|
|
if norm_layer == "group_norm":
|
|
self.norm1 = nn.GroupNorm(
|
|
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
|
)
|
|
elif norm_layer == "pixel_norm":
|
|
self.norm1 = PixelNorm()
|
|
elif norm_layer == "layer_norm":
|
|
self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
|
|
|
self.non_linearity = nn.SiLU()
|
|
|
|
self.conv1 = make_conv_nd(
|
|
dims,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
|
|
if inject_noise:
|
|
self.per_channel_scale1 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
|
|
|
|
if norm_layer == "group_norm":
|
|
self.norm2 = nn.GroupNorm(
|
|
num_groups=groups, num_channels=out_channels, eps=eps, affine=True
|
|
)
|
|
elif norm_layer == "pixel_norm":
|
|
self.norm2 = PixelNorm()
|
|
elif norm_layer == "layer_norm":
|
|
self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True)
|
|
|
|
self.dropout = torch.nn.Dropout(dropout)
|
|
|
|
self.conv2 = make_conv_nd(
|
|
dims,
|
|
out_channels,
|
|
out_channels,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
|
|
if inject_noise:
|
|
self.per_channel_scale2 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
|
|
|
|
self.conv_shortcut = (
|
|
make_linear_nd(
|
|
dims=dims, in_channels=in_channels, out_channels=out_channels
|
|
)
|
|
if in_channels != out_channels
|
|
else nn.Identity()
|
|
)
|
|
|
|
self.norm3 = (
|
|
LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
|
if in_channels != out_channels
|
|
else nn.Identity()
|
|
)
|
|
|
|
self.timestep_conditioning = timestep_conditioning
|
|
|
|
if timestep_conditioning:
|
|
self.scale_shift_table = nn.Parameter(
|
|
torch.randn(4, in_channels) / in_channels**0.5
|
|
)
|
|
|
|
self.temporal_cache_state={}
|
|
|
|
def _feed_spatial_noise(
|
|
self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor
|
|
) -> torch.FloatTensor:
|
|
spatial_shape = hidden_states.shape[-2:]
|
|
device = hidden_states.device
|
|
dtype = hidden_states.dtype
|
|
|
|
# similar to the "explicit noise inputs" method in style-gan
|
|
spatial_noise = torch.randn(spatial_shape, device=device, dtype=dtype)[None]
|
|
scaled_noise = (spatial_noise * per_channel_scale)[None, :, None, ...]
|
|
hidden_states = hidden_states + scaled_noise
|
|
|
|
return hidden_states
|
|
|
|
def forward(
|
|
self,
|
|
input_tensor: torch.FloatTensor,
|
|
causal: bool = True,
|
|
timestep: Optional[torch.Tensor] = None,
|
|
) -> torch.FloatTensor:
|
|
hidden_states = input_tensor
|
|
batch_size = hidden_states.shape[0]
|
|
|
|
hidden_states = self.norm1(hidden_states)
|
|
if self.timestep_conditioning:
|
|
assert (
|
|
timestep is not None
|
|
), "should pass timestep with timestep_conditioning=True"
|
|
ada_values = self.scale_shift_table[
|
|
None, ..., None, None, None
|
|
].to(device=hidden_states.device, dtype=hidden_states.dtype) + timestep.reshape(
|
|
batch_size,
|
|
4,
|
|
-1,
|
|
timestep.shape[-3],
|
|
timestep.shape[-2],
|
|
timestep.shape[-1],
|
|
)
|
|
shift1, scale1, shift2, scale2 = ada_values.unbind(dim=1)
|
|
|
|
hidden_states = hidden_states * (1 + scale1) + shift1
|
|
|
|
hidden_states = self.non_linearity(hidden_states)
|
|
|
|
hidden_states = self.conv1(hidden_states, causal=causal)
|
|
|
|
if self.inject_noise:
|
|
hidden_states = self._feed_spatial_noise(
|
|
hidden_states, self.per_channel_scale1.to(device=hidden_states.device, dtype=hidden_states.dtype)
|
|
)
|
|
|
|
hidden_states = self.norm2(hidden_states)
|
|
|
|
if self.timestep_conditioning:
|
|
hidden_states = hidden_states * (1 + scale2) + shift2
|
|
|
|
hidden_states = self.non_linearity(hidden_states)
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
hidden_states = self.conv2(hidden_states, causal=causal)
|
|
|
|
if self.inject_noise:
|
|
hidden_states = self._feed_spatial_noise(
|
|
hidden_states, self.per_channel_scale2.to(device=hidden_states.device, dtype=hidden_states.dtype)
|
|
)
|
|
|
|
input_tensor = self.norm3(input_tensor)
|
|
|
|
batch_size = input_tensor.shape[0]
|
|
|
|
input_tensor = self.conv_shortcut(input_tensor)
|
|
|
|
tid = threading.get_ident()
|
|
cached = self.temporal_cache_state.get(tid, None)
|
|
cached = add_exchange_cache(hidden_states, cached, input_tensor, dim=2)
|
|
self.temporal_cache_state[tid] = cached
|
|
|
|
return hidden_states
|
|
|
|
|
|
def patchify(x, patch_size_hw, patch_size_t=1):
|
|
if patch_size_hw == 1 and patch_size_t == 1:
|
|
return x
|
|
if x.dim() == 4:
|
|
x = rearrange(
|
|
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw
|
|
)
|
|
elif x.dim() == 5:
|
|
x = rearrange(
|
|
x,
|
|
"b c (f p) (h q) (w r) -> b (c p r q) f h w",
|
|
p=patch_size_t,
|
|
q=patch_size_hw,
|
|
r=patch_size_hw,
|
|
)
|
|
else:
|
|
raise ValueError(f"Invalid input shape: {x.shape}")
|
|
|
|
return x
|
|
|
|
|
|
def unpatchify(x, patch_size_hw, patch_size_t=1):
|
|
if patch_size_hw == 1 and patch_size_t == 1:
|
|
return x
|
|
|
|
if x.dim() == 4:
|
|
x = rearrange(
|
|
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw
|
|
)
|
|
elif x.dim() == 5:
|
|
x = rearrange(
|
|
x,
|
|
"b (c p r q) f h w -> b c (f p) (h q) (w r)",
|
|
p=patch_size_t,
|
|
q=patch_size_hw,
|
|
r=patch_size_hw,
|
|
)
|
|
|
|
return x
|
|
|
|
class processor(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.register_buffer("std-of-means", torch.empty(128))
|
|
self.register_buffer("mean-of-means", torch.empty(128))
|
|
self.register_buffer("mean-of-stds", torch.empty(128))
|
|
self.register_buffer("mean-of-stds_over_std-of-means", torch.empty(128))
|
|
self.register_buffer("channel", torch.empty(128))
|
|
|
|
def un_normalize(self, x):
|
|
return (x * self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)) + self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)
|
|
|
|
def normalize(self, x):
|
|
return (x - self.get_buffer("mean-of-means").view(1, -1, 1, 1, 1).to(x)) / self.get_buffer("std-of-means").view(1, -1, 1, 1, 1).to(x)
|
|
|
|
class VideoVAE(nn.Module):
|
|
def __init__(self, version=0, config=None):
|
|
super().__init__()
|
|
|
|
if config is None:
|
|
config = self.guess_config(version)
|
|
|
|
self.timestep_conditioning = config.get("timestep_conditioning", False)
|
|
double_z = config.get("double_z", True)
|
|
latent_log_var = config.get(
|
|
"latent_log_var", "per_channel" if double_z else "none"
|
|
)
|
|
|
|
self.encoder = Encoder(
|
|
dims=config["dims"],
|
|
in_channels=config.get("in_channels", 3),
|
|
out_channels=config["latent_channels"],
|
|
blocks=config.get("encoder_blocks", config.get("encoder_blocks", config.get("blocks"))),
|
|
patch_size=config.get("patch_size", 1),
|
|
latent_log_var=latent_log_var,
|
|
norm_layer=config.get("norm_layer", "group_norm"),
|
|
spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
|
|
)
|
|
|
|
self.decoder = Decoder(
|
|
dims=config["dims"],
|
|
in_channels=config["latent_channels"],
|
|
out_channels=config.get("out_channels", 3),
|
|
blocks=config.get("decoder_blocks", config.get("decoder_blocks", config.get("blocks"))),
|
|
patch_size=config.get("patch_size", 1),
|
|
norm_layer=config.get("norm_layer", "group_norm"),
|
|
causal=config.get("causal_decoder", False),
|
|
timestep_conditioning=self.timestep_conditioning,
|
|
spatial_padding_mode=config.get("spatial_padding_mode", "reflect"),
|
|
)
|
|
|
|
self.per_channel_statistics = processor()
|
|
|
|
def guess_config(self, version):
|
|
if version == 0:
|
|
config = {
|
|
"_class_name": "CausalVideoAutoencoder",
|
|
"dims": 3,
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"latent_channels": 128,
|
|
"blocks": [
|
|
["res_x", 4],
|
|
["compress_all", 1],
|
|
["res_x_y", 1],
|
|
["res_x", 3],
|
|
["compress_all", 1],
|
|
["res_x_y", 1],
|
|
["res_x", 3],
|
|
["compress_all", 1],
|
|
["res_x", 3],
|
|
["res_x", 4],
|
|
],
|
|
"scaling_factor": 1.0,
|
|
"norm_layer": "pixel_norm",
|
|
"patch_size": 4,
|
|
"latent_log_var": "uniform",
|
|
"use_quant_conv": False,
|
|
"causal_decoder": False,
|
|
}
|
|
elif version == 1:
|
|
config = {
|
|
"_class_name": "CausalVideoAutoencoder",
|
|
"dims": 3,
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"latent_channels": 128,
|
|
"decoder_blocks": [
|
|
["res_x", {"num_layers": 5, "inject_noise": True}],
|
|
["compress_all", {"residual": True, "multiplier": 2}],
|
|
["res_x", {"num_layers": 6, "inject_noise": True}],
|
|
["compress_all", {"residual": True, "multiplier": 2}],
|
|
["res_x", {"num_layers": 7, "inject_noise": True}],
|
|
["compress_all", {"residual": True, "multiplier": 2}],
|
|
["res_x", {"num_layers": 8, "inject_noise": False}]
|
|
],
|
|
"encoder_blocks": [
|
|
["res_x", {"num_layers": 4}],
|
|
["compress_all", {}],
|
|
["res_x_y", 1],
|
|
["res_x", {"num_layers": 3}],
|
|
["compress_all", {}],
|
|
["res_x_y", 1],
|
|
["res_x", {"num_layers": 3}],
|
|
["compress_all", {}],
|
|
["res_x", {"num_layers": 3}],
|
|
["res_x", {"num_layers": 4}]
|
|
],
|
|
"scaling_factor": 1.0,
|
|
"norm_layer": "pixel_norm",
|
|
"patch_size": 4,
|
|
"latent_log_var": "uniform",
|
|
"use_quant_conv": False,
|
|
"causal_decoder": False,
|
|
"timestep_conditioning": True,
|
|
}
|
|
else:
|
|
config = {
|
|
"_class_name": "CausalVideoAutoencoder",
|
|
"dims": 3,
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"latent_channels": 128,
|
|
"encoder_blocks": [
|
|
["res_x", {"num_layers": 4}],
|
|
["compress_space_res", {"multiplier": 2}],
|
|
["res_x", {"num_layers": 6}],
|
|
["compress_time_res", {"multiplier": 2}],
|
|
["res_x", {"num_layers": 6}],
|
|
["compress_all_res", {"multiplier": 2}],
|
|
["res_x", {"num_layers": 2}],
|
|
["compress_all_res", {"multiplier": 2}],
|
|
["res_x", {"num_layers": 2}]
|
|
],
|
|
"decoder_blocks": [
|
|
["res_x", {"num_layers": 5, "inject_noise": False}],
|
|
["compress_all", {"residual": True, "multiplier": 2}],
|
|
["res_x", {"num_layers": 5, "inject_noise": False}],
|
|
["compress_all", {"residual": True, "multiplier": 2}],
|
|
["res_x", {"num_layers": 5, "inject_noise": False}],
|
|
["compress_all", {"residual": True, "multiplier": 2}],
|
|
["res_x", {"num_layers": 5, "inject_noise": False}]
|
|
],
|
|
"scaling_factor": 1.0,
|
|
"norm_layer": "pixel_norm",
|
|
"patch_size": 4,
|
|
"latent_log_var": "uniform",
|
|
"use_quant_conv": False,
|
|
"causal_decoder": False,
|
|
"timestep_conditioning": True
|
|
}
|
|
return config
|
|
|
|
def encode(self, x):
|
|
frames_count = x.shape[2]
|
|
if ((frames_count - 1) % 8) != 0:
|
|
raise ValueError("Invalid number of frames: Encode input must have 1 + 8 * x frames (e.g., 1, 9, 17, ...). Please check your input.")
|
|
means, logvar = torch.chunk(self.encoder(x), 2, dim=1)
|
|
return self.per_channel_statistics.normalize(means)
|
|
|
|
def decode(self, x, timestep=0.05, noise_scale=0.025):
|
|
if self.timestep_conditioning: #TODO: seed
|
|
x = torch.randn_like(x) * noise_scale + (1.0 - noise_scale) * x
|
|
return self.decoder(self.per_channel_statistics.un_normalize(x), timestep=timestep)
|
|
|