ComfyUI/comfy_extras/nodes_compositing.py
Christian Byrne bbb8864778
add search aliases to all nodes (#12035)
* feat: Add search_aliases field to node schema

Adds `search_aliases` field to improve node discoverability. Users can define alternative search terms for nodes (e.g., "text concat" → StringConcatenate).

Changes:
- Add `search_aliases: list[str]` to V3 Schema
- Add `SEARCH_ALIASES` support for V1 nodes
- Include field in `/object_info` response
- Add aliases to high-priority core nodes

V1 usage:
```python
class MyNode:
    SEARCH_ALIASES = ["alt name", "synonym"]
```

V3 usage:
```python
io.Schema(
    node_id="MyNode",
    search_aliases=["alt name", "synonym"],
    ...
)
```

## Related PRs
- Frontend: Comfy-Org/ComfyUI_frontend#XXXX (draft - merge after this)
- Docs: Comfy-Org/docs#XXXX (draft - merge after stable)

* Propagate search_aliases through V3 Schema.get_v1_info to NodeInfoV1

* feat: add SEARCH_ALIASES for core nodes (#12016)

Add search aliases to 22 core nodes in nodes.py to improve node discoverability:
- Checkpoint/model loaders: CheckpointLoader, DiffusersLoader
- Conditioning nodes: ConditioningAverage, ConditioningSetArea, ConditioningSetMask, ConditioningZeroOut
- Style nodes: StyleModelApply
- Image nodes: LoadImageMask, LoadImageOutput, ImageBatch, ImageInvert, ImagePadForOutpaint
- Latent nodes: LoadLatent, SaveLatent, LatentBlend, LatentComposite, LatentCrop, LatentFlip, LatentFromBatch, LatentUpscale, LatentUpscaleBy, RepeatLatentBatch

* feat: add SEARCH_ALIASES for image, mask, and string nodes (#12017)

Add search aliases to nodes in comfy_extras for better discoverability:
- nodes_mask.py: mask manipulation nodes
- nodes_images.py: image processing nodes
- nodes_post_processing.py: post-processing effect nodes
- nodes_string.py: string manipulation nodes
- nodes_compositing.py: compositing nodes
- nodes_morphology.py: morphological operation nodes
- nodes_latent.py: latent space nodes

Uses search_aliases parameter in io.Schema() for v3 nodes.

* feat: add SEARCH_ALIASES for audio and video nodes (#12018)

Add search aliases to audio and video nodes for better discoverability:
- nodes_audio.py: audio loading, saving, and processing nodes
- nodes_video.py: video loading and processing nodes
- nodes_wan.py: WAN model nodes

Uses search_aliases parameter in io.Schema() for v3 nodes.

* feat: add SEARCH_ALIASES for model and misc nodes (#12019)

Add search aliases to model-related and miscellaneous nodes:
- Model nodes: nodes_model_merging.py, nodes_model_advanced.py, nodes_lora_extract.py
- Sampler nodes: nodes_custom_sampler.py, nodes_align_your_steps.py
- Control nodes: nodes_controlnet.py, nodes_attention_multiply.py, nodes_hooks.py
- Training nodes: nodes_train.py, nodes_dataset.py
- Utility nodes: nodes_logic.py, nodes_canny.py, nodes_differential_diffusion.py
- Architecture-specific: nodes_sd3.py, nodes_pixart.py, nodes_lumina2.py, nodes_kandinsky5.py, nodes_hidream.py, nodes_fresca.py, nodes_hunyuan3d.py
- Media nodes: nodes_load_3d.py, nodes_webcam.py, nodes_preview_any.py, nodes_wanmove.py

Uses search_aliases parameter in io.Schema() for v3 nodes, SEARCH_ALIASES class attribute for legacy nodes.
2026-01-22 18:36:58 -08:00

227 lines
8.9 KiB
Python

import torch
import comfy.utils
from enum import Enum
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
def resize_mask(mask, shape):
return torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[0], shape[1]), mode="bilinear").squeeze(1)
class PorterDuffMode(Enum):
ADD = 0
CLEAR = 1
DARKEN = 2
DST = 3
DST_ATOP = 4
DST_IN = 5
DST_OUT = 6
DST_OVER = 7
LIGHTEN = 8
MULTIPLY = 9
OVERLAY = 10
SCREEN = 11
SRC = 12
SRC_ATOP = 13
SRC_IN = 14
SRC_OUT = 15
SRC_OVER = 16
XOR = 17
def porter_duff_composite(src_image: torch.Tensor, src_alpha: torch.Tensor, dst_image: torch.Tensor, dst_alpha: torch.Tensor, mode: PorterDuffMode):
# convert mask to alpha
src_alpha = 1 - src_alpha
dst_alpha = 1 - dst_alpha
# premultiply alpha
src_image = src_image * src_alpha
dst_image = dst_image * dst_alpha
# composite ops below assume alpha-premultiplied images
if mode == PorterDuffMode.ADD:
out_alpha = torch.clamp(src_alpha + dst_alpha, 0, 1)
out_image = torch.clamp(src_image + dst_image, 0, 1)
elif mode == PorterDuffMode.CLEAR:
out_alpha = torch.zeros_like(dst_alpha)
out_image = torch.zeros_like(dst_image)
elif mode == PorterDuffMode.DARKEN:
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.min(src_image, dst_image)
elif mode == PorterDuffMode.DST:
out_alpha = dst_alpha
out_image = dst_image
elif mode == PorterDuffMode.DST_ATOP:
out_alpha = src_alpha
out_image = src_alpha * dst_image + (1 - dst_alpha) * src_image
elif mode == PorterDuffMode.DST_IN:
out_alpha = src_alpha * dst_alpha
out_image = dst_image * src_alpha
elif mode == PorterDuffMode.DST_OUT:
out_alpha = (1 - src_alpha) * dst_alpha
out_image = (1 - src_alpha) * dst_image
elif mode == PorterDuffMode.DST_OVER:
out_alpha = dst_alpha + (1 - dst_alpha) * src_alpha
out_image = dst_image + (1 - dst_alpha) * src_image
elif mode == PorterDuffMode.LIGHTEN:
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.max(src_image, dst_image)
elif mode == PorterDuffMode.MULTIPLY:
out_alpha = src_alpha * dst_alpha
out_image = src_image * dst_image
elif mode == PorterDuffMode.OVERLAY:
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
out_image = torch.where(2 * dst_image < dst_alpha, 2 * src_image * dst_image,
src_alpha * dst_alpha - 2 * (dst_alpha - src_image) * (src_alpha - dst_image))
elif mode == PorterDuffMode.SCREEN:
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
out_image = src_image + dst_image - src_image * dst_image
elif mode == PorterDuffMode.SRC:
out_alpha = src_alpha
out_image = src_image
elif mode == PorterDuffMode.SRC_ATOP:
out_alpha = dst_alpha
out_image = dst_alpha * src_image + (1 - src_alpha) * dst_image
elif mode == PorterDuffMode.SRC_IN:
out_alpha = src_alpha * dst_alpha
out_image = src_image * dst_alpha
elif mode == PorterDuffMode.SRC_OUT:
out_alpha = (1 - dst_alpha) * src_alpha
out_image = (1 - dst_alpha) * src_image
elif mode == PorterDuffMode.SRC_OVER:
out_alpha = src_alpha + (1 - src_alpha) * dst_alpha
out_image = src_image + (1 - src_alpha) * dst_image
elif mode == PorterDuffMode.XOR:
out_alpha = (1 - dst_alpha) * src_alpha + (1 - src_alpha) * dst_alpha
out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image
else:
return None, None
# back to non-premultiplied alpha
out_image = torch.where(out_alpha > 1e-5, out_image / out_alpha, torch.zeros_like(out_image))
out_image = torch.clamp(out_image, 0, 1)
# convert alpha to mask
out_alpha = 1 - out_alpha
return out_image, out_alpha
class PorterDuffImageComposite(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="PorterDuffImageComposite",
search_aliases=["alpha composite", "blend modes", "layer blend", "transparency blend"],
display_name="Porter-Duff Image Composite",
category="mask/compositing",
inputs=[
io.Image.Input("source"),
io.Mask.Input("source_alpha"),
io.Image.Input("destination"),
io.Mask.Input("destination_alpha"),
io.Combo.Input("mode", options=[mode.name for mode in PorterDuffMode], default=PorterDuffMode.DST.name),
],
outputs=[
io.Image.Output(),
io.Mask.Output(),
],
)
@classmethod
def execute(cls, source: torch.Tensor, source_alpha: torch.Tensor, destination: torch.Tensor, destination_alpha: torch.Tensor, mode) -> io.NodeOutput:
batch_size = min(len(source), len(source_alpha), len(destination), len(destination_alpha))
out_images = []
out_alphas = []
for i in range(batch_size):
src_image = source[i]
dst_image = destination[i]
assert src_image.shape[2] == dst_image.shape[2] # inputs need to have same number of channels
src_alpha = source_alpha[i].unsqueeze(2)
dst_alpha = destination_alpha[i].unsqueeze(2)
if dst_alpha.shape[:2] != dst_image.shape[:2]:
upscale_input = dst_alpha.unsqueeze(0).permute(0, 3, 1, 2)
upscale_output = comfy.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center')
dst_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0)
if src_image.shape != dst_image.shape:
upscale_input = src_image.unsqueeze(0).permute(0, 3, 1, 2)
upscale_output = comfy.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center')
src_image = upscale_output.permute(0, 2, 3, 1).squeeze(0)
if src_alpha.shape != dst_alpha.shape:
upscale_input = src_alpha.unsqueeze(0).permute(0, 3, 1, 2)
upscale_output = comfy.utils.common_upscale(upscale_input, dst_alpha.shape[1], dst_alpha.shape[0], upscale_method='bicubic', crop='center')
src_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0)
out_image, out_alpha = porter_duff_composite(src_image, src_alpha, dst_image, dst_alpha, PorterDuffMode[mode])
out_images.append(out_image)
out_alphas.append(out_alpha.squeeze(2))
return io.NodeOutput(torch.stack(out_images), torch.stack(out_alphas))
class SplitImageWithAlpha(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SplitImageWithAlpha",
search_aliases=["extract alpha", "separate transparency", "remove alpha"],
display_name="Split Image with Alpha",
category="mask/compositing",
inputs=[
io.Image.Input("image"),
],
outputs=[
io.Image.Output(),
io.Mask.Output(),
],
)
@classmethod
def execute(cls, image: torch.Tensor) -> io.NodeOutput:
out_images = [i[:,:,:3] for i in image]
out_alphas = [i[:,:,3] if i.shape[2] > 3 else torch.ones_like(i[:,:,0]) for i in image]
return io.NodeOutput(torch.stack(out_images), 1.0 - torch.stack(out_alphas))
class JoinImageWithAlpha(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="JoinImageWithAlpha",
search_aliases=["add transparency", "apply alpha", "composite alpha", "RGBA"],
display_name="Join Image with Alpha",
category="mask/compositing",
inputs=[
io.Image.Input("image"),
io.Mask.Input("alpha"),
],
outputs=[io.Image.Output()],
)
@classmethod
def execute(cls, image: torch.Tensor, alpha: torch.Tensor) -> io.NodeOutput:
batch_size = min(len(image), len(alpha))
out_images = []
alpha = 1.0 - resize_mask(alpha, image.shape[1:])
for i in range(batch_size):
out_images.append(torch.cat((image[i][:,:,:3], alpha[i].unsqueeze(2)), dim=2))
return io.NodeOutput(torch.stack(out_images))
class CompositingExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
PorterDuffImageComposite,
SplitImageWithAlpha,
JoinImageWithAlpha,
]
async def comfy_entrypoint() -> CompositingExtension:
return CompositingExtension()