mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-24 05:10:18 +08:00
* feat: Add search_aliases field to node schema
Adds `search_aliases` field to improve node discoverability. Users can define alternative search terms for nodes (e.g., "text concat" → StringConcatenate).
Changes:
- Add `search_aliases: list[str]` to V3 Schema
- Add `SEARCH_ALIASES` support for V1 nodes
- Include field in `/object_info` response
- Add aliases to high-priority core nodes
V1 usage:
```python
class MyNode:
SEARCH_ALIASES = ["alt name", "synonym"]
```
V3 usage:
```python
io.Schema(
node_id="MyNode",
search_aliases=["alt name", "synonym"],
...
)
```
## Related PRs
- Frontend: Comfy-Org/ComfyUI_frontend#XXXX (draft - merge after this)
- Docs: Comfy-Org/docs#XXXX (draft - merge after stable)
* Propagate search_aliases through V3 Schema.get_v1_info to NodeInfoV1
* feat: add SEARCH_ALIASES for core nodes (#12016)
Add search aliases to 22 core nodes in nodes.py to improve node discoverability:
- Checkpoint/model loaders: CheckpointLoader, DiffusersLoader
- Conditioning nodes: ConditioningAverage, ConditioningSetArea, ConditioningSetMask, ConditioningZeroOut
- Style nodes: StyleModelApply
- Image nodes: LoadImageMask, LoadImageOutput, ImageBatch, ImageInvert, ImagePadForOutpaint
- Latent nodes: LoadLatent, SaveLatent, LatentBlend, LatentComposite, LatentCrop, LatentFlip, LatentFromBatch, LatentUpscale, LatentUpscaleBy, RepeatLatentBatch
* feat: add SEARCH_ALIASES for image, mask, and string nodes (#12017)
Add search aliases to nodes in comfy_extras for better discoverability:
- nodes_mask.py: mask manipulation nodes
- nodes_images.py: image processing nodes
- nodes_post_processing.py: post-processing effect nodes
- nodes_string.py: string manipulation nodes
- nodes_compositing.py: compositing nodes
- nodes_morphology.py: morphological operation nodes
- nodes_latent.py: latent space nodes
Uses search_aliases parameter in io.Schema() for v3 nodes.
* feat: add SEARCH_ALIASES for audio and video nodes (#12018)
Add search aliases to audio and video nodes for better discoverability:
- nodes_audio.py: audio loading, saving, and processing nodes
- nodes_video.py: video loading and processing nodes
- nodes_wan.py: WAN model nodes
Uses search_aliases parameter in io.Schema() for v3 nodes.
* feat: add SEARCH_ALIASES for model and misc nodes (#12019)
Add search aliases to model-related and miscellaneous nodes:
- Model nodes: nodes_model_merging.py, nodes_model_advanced.py, nodes_lora_extract.py
- Sampler nodes: nodes_custom_sampler.py, nodes_align_your_steps.py
- Control nodes: nodes_controlnet.py, nodes_attention_multiply.py, nodes_hooks.py
- Training nodes: nodes_train.py, nodes_dataset.py
- Utility nodes: nodes_logic.py, nodes_canny.py, nodes_differential_diffusion.py
- Architecture-specific: nodes_sd3.py, nodes_pixart.py, nodes_lumina2.py, nodes_kandinsky5.py, nodes_hidream.py, nodes_fresca.py, nodes_hunyuan3d.py
- Media nodes: nodes_load_3d.py, nodes_webcam.py, nodes_preview_any.py, nodes_wanmove.py
Uses search_aliases parameter in io.Schema() for v3 nodes, SEARCH_ALIASES class attribute for legacy nodes.
116 lines
3.8 KiB
Python
116 lines
3.8 KiB
Python
# Code based on https://github.com/WikiChao/FreSca (MIT License)
|
|
import torch
|
|
import torch.fft as fft
|
|
from typing_extensions import override
|
|
from comfy_api.latest import ComfyExtension, io
|
|
|
|
|
|
def Fourier_filter(x, scale_low=1.0, scale_high=1.5, freq_cutoff=20):
|
|
"""
|
|
Apply frequency-dependent scaling to an image tensor using Fourier transforms.
|
|
|
|
Parameters:
|
|
x: Input tensor of shape (B, C, H, W)
|
|
scale_low: Scaling factor for low-frequency components (default: 1.0)
|
|
scale_high: Scaling factor for high-frequency components (default: 1.5)
|
|
freq_cutoff: Number of frequency indices around center to consider as low-frequency (default: 20)
|
|
|
|
Returns:
|
|
x_filtered: Filtered version of x in spatial domain with frequency-specific scaling applied.
|
|
"""
|
|
# Preserve input dtype and device
|
|
dtype, device = x.dtype, x.device
|
|
|
|
# Convert to float32 for FFT computations
|
|
x = x.to(torch.float32)
|
|
|
|
# 1) Apply FFT and shift low frequencies to center
|
|
x_freq = fft.fftn(x, dim=(-2, -1))
|
|
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
|
|
|
|
# Initialize mask with high-frequency scaling factor
|
|
mask = torch.ones(x_freq.shape, device=device) * scale_high
|
|
m = mask
|
|
for d in range(len(x_freq.shape) - 2):
|
|
dim = d + 2
|
|
cc = x_freq.shape[dim] // 2
|
|
f_c = min(freq_cutoff, cc)
|
|
m = m.narrow(dim, cc - f_c, f_c * 2)
|
|
|
|
# Apply low-frequency scaling factor to center region
|
|
m[:] = scale_low
|
|
|
|
# 3) Apply frequency-specific scaling
|
|
x_freq = x_freq * mask
|
|
|
|
# 4) Convert back to spatial domain
|
|
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
|
|
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
|
|
|
|
# 5) Restore original dtype
|
|
x_filtered = x_filtered.to(dtype)
|
|
|
|
return x_filtered
|
|
|
|
|
|
class FreSca(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="FreSca",
|
|
search_aliases=["frequency guidance"],
|
|
display_name="FreSca",
|
|
category="_for_testing",
|
|
description="Applies frequency-dependent scaling to the guidance",
|
|
inputs=[
|
|
io.Model.Input("model"),
|
|
io.Float.Input("scale_low", default=1.0, min=0, max=10, step=0.01,
|
|
tooltip="Scaling factor for low-frequency components"),
|
|
io.Float.Input("scale_high", default=1.25, min=0, max=10, step=0.01,
|
|
tooltip="Scaling factor for high-frequency components"),
|
|
io.Int.Input("freq_cutoff", default=20, min=1, max=10000, step=1,
|
|
tooltip="Number of frequency indices around center to consider as low-frequency"),
|
|
],
|
|
outputs=[
|
|
io.Model.Output(),
|
|
],
|
|
is_experimental=True,
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, model, scale_low, scale_high, freq_cutoff):
|
|
def custom_cfg_function(args):
|
|
conds_out = args["conds_out"]
|
|
if len(conds_out) <= 1 or None in args["conds"][:2]:
|
|
return conds_out
|
|
cond = conds_out[0]
|
|
uncond = conds_out[1]
|
|
|
|
guidance = cond - uncond
|
|
filtered_guidance = Fourier_filter(
|
|
guidance,
|
|
scale_low=scale_low,
|
|
scale_high=scale_high,
|
|
freq_cutoff=freq_cutoff,
|
|
)
|
|
filtered_cond = filtered_guidance + uncond
|
|
|
|
return [filtered_cond, uncond] + conds_out[2:]
|
|
|
|
m = model.clone()
|
|
m.set_model_sampler_pre_cfg_function(custom_cfg_function)
|
|
|
|
return io.NodeOutput(m)
|
|
|
|
|
|
class FreScaExtension(ComfyExtension):
|
|
@override
|
|
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
|
return [
|
|
FreSca,
|
|
]
|
|
|
|
|
|
async def comfy_entrypoint() -> FreScaExtension:
|
|
return FreScaExtension()
|