mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-24 05:10:18 +08:00
* feat: Add search_aliases field to node schema
Adds `search_aliases` field to improve node discoverability. Users can define alternative search terms for nodes (e.g., "text concat" → StringConcatenate).
Changes:
- Add `search_aliases: list[str]` to V3 Schema
- Add `SEARCH_ALIASES` support for V1 nodes
- Include field in `/object_info` response
- Add aliases to high-priority core nodes
V1 usage:
```python
class MyNode:
SEARCH_ALIASES = ["alt name", "synonym"]
```
V3 usage:
```python
io.Schema(
node_id="MyNode",
search_aliases=["alt name", "synonym"],
...
)
```
## Related PRs
- Frontend: Comfy-Org/ComfyUI_frontend#XXXX (draft - merge after this)
- Docs: Comfy-Org/docs#XXXX (draft - merge after stable)
* Propagate search_aliases through V3 Schema.get_v1_info to NodeInfoV1
* feat: add SEARCH_ALIASES for core nodes (#12016)
Add search aliases to 22 core nodes in nodes.py to improve node discoverability:
- Checkpoint/model loaders: CheckpointLoader, DiffusersLoader
- Conditioning nodes: ConditioningAverage, ConditioningSetArea, ConditioningSetMask, ConditioningZeroOut
- Style nodes: StyleModelApply
- Image nodes: LoadImageMask, LoadImageOutput, ImageBatch, ImageInvert, ImagePadForOutpaint
- Latent nodes: LoadLatent, SaveLatent, LatentBlend, LatentComposite, LatentCrop, LatentFlip, LatentFromBatch, LatentUpscale, LatentUpscaleBy, RepeatLatentBatch
* feat: add SEARCH_ALIASES for image, mask, and string nodes (#12017)
Add search aliases to nodes in comfy_extras for better discoverability:
- nodes_mask.py: mask manipulation nodes
- nodes_images.py: image processing nodes
- nodes_post_processing.py: post-processing effect nodes
- nodes_string.py: string manipulation nodes
- nodes_compositing.py: compositing nodes
- nodes_morphology.py: morphological operation nodes
- nodes_latent.py: latent space nodes
Uses search_aliases parameter in io.Schema() for v3 nodes.
* feat: add SEARCH_ALIASES for audio and video nodes (#12018)
Add search aliases to audio and video nodes for better discoverability:
- nodes_audio.py: audio loading, saving, and processing nodes
- nodes_video.py: video loading and processing nodes
- nodes_wan.py: WAN model nodes
Uses search_aliases parameter in io.Schema() for v3 nodes.
* feat: add SEARCH_ALIASES for model and misc nodes (#12019)
Add search aliases to model-related and miscellaneous nodes:
- Model nodes: nodes_model_merging.py, nodes_model_advanced.py, nodes_lora_extract.py
- Sampler nodes: nodes_custom_sampler.py, nodes_align_your_steps.py
- Control nodes: nodes_controlnet.py, nodes_attention_multiply.py, nodes_hooks.py
- Training nodes: nodes_train.py, nodes_dataset.py
- Utility nodes: nodes_logic.py, nodes_canny.py, nodes_differential_diffusion.py
- Architecture-specific: nodes_sd3.py, nodes_pixart.py, nodes_lumina2.py, nodes_kandinsky5.py, nodes_hidream.py, nodes_fresca.py, nodes_hunyuan3d.py
- Media nodes: nodes_load_3d.py, nodes_webcam.py, nodes_preview_any.py, nodes_wanmove.py
Uses search_aliases parameter in io.Schema() for v3 nodes, SEARCH_ALIASES class attribute for legacy nodes.
135 lines
5.0 KiB
Python
135 lines
5.0 KiB
Python
import torch
|
|
import comfy.model_management
|
|
import comfy.utils
|
|
import folder_paths
|
|
import os
|
|
import logging
|
|
from enum import Enum
|
|
from typing_extensions import override
|
|
from comfy_api.latest import ComfyExtension, io
|
|
|
|
CLAMP_QUANTILE = 0.99
|
|
|
|
def extract_lora(diff, rank):
|
|
conv2d = (len(diff.shape) == 4)
|
|
kernel_size = None if not conv2d else diff.size()[2:4]
|
|
conv2d_3x3 = conv2d and kernel_size != (1, 1)
|
|
out_dim, in_dim = diff.size()[0:2]
|
|
rank = min(rank, in_dim, out_dim)
|
|
|
|
if conv2d:
|
|
if conv2d_3x3:
|
|
diff = diff.flatten(start_dim=1)
|
|
else:
|
|
diff = diff.squeeze()
|
|
|
|
|
|
U, S, Vh = torch.linalg.svd(diff.float())
|
|
U = U[:, :rank]
|
|
S = S[:rank]
|
|
U = U @ torch.diag(S)
|
|
Vh = Vh[:rank, :]
|
|
|
|
dist = torch.cat([U.flatten(), Vh.flatten()])
|
|
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
|
|
low_val = -hi_val
|
|
|
|
U = U.clamp(low_val, hi_val)
|
|
Vh = Vh.clamp(low_val, hi_val)
|
|
if conv2d:
|
|
U = U.reshape(out_dim, rank, 1, 1)
|
|
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1])
|
|
return (U, Vh)
|
|
|
|
class LORAType(Enum):
|
|
STANDARD = 0
|
|
FULL_DIFF = 1
|
|
|
|
LORA_TYPES = {"standard": LORAType.STANDARD,
|
|
"full_diff": LORAType.FULL_DIFF}
|
|
|
|
def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, bias_diff=False):
|
|
comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True)
|
|
sd = model_diff.model_state_dict(filter_prefix=prefix_model)
|
|
|
|
for k in sd:
|
|
if k.endswith(".weight"):
|
|
weight_diff = sd[k]
|
|
if lora_type == LORAType.STANDARD:
|
|
if weight_diff.ndim < 2:
|
|
if bias_diff:
|
|
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu()
|
|
continue
|
|
try:
|
|
out = extract_lora(weight_diff, rank)
|
|
output_sd["{}{}.lora_up.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[0].contiguous().half().cpu()
|
|
output_sd["{}{}.lora_down.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[1].contiguous().half().cpu()
|
|
except:
|
|
logging.warning("Could not generate lora weights for key {}, is the weight difference a zero?".format(k))
|
|
elif lora_type == LORAType.FULL_DIFF:
|
|
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu()
|
|
|
|
elif bias_diff and k.endswith(".bias"):
|
|
output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = sd[k].contiguous().half().cpu()
|
|
return output_sd
|
|
|
|
class LoraSave(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="LoraSave",
|
|
search_aliases=["export lora"],
|
|
display_name="Extract and Save Lora",
|
|
category="_for_testing",
|
|
inputs=[
|
|
io.String.Input("filename_prefix", default="loras/ComfyUI_extracted_lora"),
|
|
io.Int.Input("rank", default=8, min=1, max=4096, step=1),
|
|
io.Combo.Input("lora_type", options=tuple(LORA_TYPES.keys())),
|
|
io.Boolean.Input("bias_diff", default=True),
|
|
io.Model.Input(
|
|
"model_diff",
|
|
tooltip="The ModelSubtract output to be converted to a lora.",
|
|
optional=True,
|
|
),
|
|
io.Clip.Input(
|
|
"text_encoder_diff",
|
|
tooltip="The CLIPSubtract output to be converted to a lora.",
|
|
optional=True,
|
|
),
|
|
],
|
|
is_experimental=True,
|
|
is_output_node=True,
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, filename_prefix, rank, lora_type, bias_diff, model_diff=None, text_encoder_diff=None) -> io.NodeOutput:
|
|
if model_diff is None and text_encoder_diff is None:
|
|
return io.NodeOutput()
|
|
|
|
lora_type = LORA_TYPES.get(lora_type)
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory())
|
|
|
|
output_sd = {}
|
|
if model_diff is not None:
|
|
output_sd = calc_lora_model(model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, bias_diff=bias_diff)
|
|
if text_encoder_diff is not None:
|
|
output_sd = calc_lora_model(text_encoder_diff.patcher, rank, "", "text_encoders.", output_sd, lora_type, bias_diff=bias_diff)
|
|
|
|
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
|
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
|
|
|
comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=None)
|
|
return io.NodeOutput()
|
|
|
|
|
|
class LoraSaveExtension(ComfyExtension):
|
|
@override
|
|
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
|
return [
|
|
LoraSave,
|
|
]
|
|
|
|
|
|
async def comfy_entrypoint() -> LoraSaveExtension:
|
|
return LoraSaveExtension()
|