ComfyUI/comfy_extras/nodes_post_processing.py
2025-12-17 22:54:50 -08:00

460 lines
19 KiB
Python

from typing_extensions import override
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import math
from enum import Enum
from typing import TypedDict, Literal
import comfy.utils
import comfy.model_management
import node_helpers
from comfy_api.latest import ComfyExtension, io
from nodes import MAX_RESOLUTION
class Blend(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ImageBlend",
category="image/postprocessing",
inputs=[
io.Image.Input("image1"),
io.Image.Input("image2"),
io.Float.Input("blend_factor", default=0.5, min=0.0, max=1.0, step=0.01),
io.Combo.Input("blend_mode", options=["normal", "multiply", "screen", "overlay", "soft_light", "difference"]),
],
outputs=[
io.Image.Output(),
],
)
@classmethod
def execute(cls, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str) -> io.NodeOutput:
image1, image2 = node_helpers.image_alpha_fix(image1, image2)
image2 = image2.to(image1.device)
if image1.shape != image2.shape:
image2 = image2.permute(0, 3, 1, 2)
image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
image2 = image2.permute(0, 2, 3, 1)
blended_image = cls.blend_mode(image1, image2, blend_mode)
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
blended_image = torch.clamp(blended_image, 0, 1)
return io.NodeOutput(blended_image)
@classmethod
def blend_mode(cls, img1, img2, mode):
if mode == "normal":
return img2
elif mode == "multiply":
return img1 * img2
elif mode == "screen":
return 1 - (1 - img1) * (1 - img2)
elif mode == "overlay":
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
elif mode == "soft_light":
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (cls.g(img1) - img1))
elif mode == "difference":
return img1 - img2
raise ValueError(f"Unsupported blend mode: {mode}")
@classmethod
def g(cls, x):
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
def gaussian_kernel(kernel_size: int, sigma: float, device=None):
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
d = torch.sqrt(x * x + y * y)
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
return g / g.sum()
class Blur(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ImageBlur",
category="image/postprocessing",
inputs=[
io.Image.Input("image"),
io.Int.Input("blur_radius", default=1, min=1, max=31, step=1),
io.Float.Input("sigma", default=1.0, min=0.1, max=10.0, step=0.1),
],
outputs=[
io.Image.Output(),
],
)
@classmethod
def execute(cls, image: torch.Tensor, blur_radius: int, sigma: float) -> io.NodeOutput:
if blur_radius == 0:
return io.NodeOutput(image)
image = image.to(comfy.model_management.get_torch_device())
batch_size, height, width, channels = image.shape
kernel_size = blur_radius * 2 + 1
kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1)
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
blurred = blurred.permute(0, 2, 3, 1)
return io.NodeOutput(blurred.to(comfy.model_management.intermediate_device()))
class Quantize(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ImageQuantize",
category="image/postprocessing",
inputs=[
io.Image.Input("image"),
io.Int.Input("colors", default=256, min=1, max=256, step=1),
io.Combo.Input("dither", options=["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"]),
],
outputs=[
io.Image.Output(),
],
)
@staticmethod
def bayer(im, pal_im, order):
def normalized_bayer_matrix(n):
if n == 0:
return np.zeros((1,1), "float32")
else:
q = 4 ** n
m = q * normalized_bayer_matrix(n - 1)
return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q
num_colors = len(pal_im.getpalette()) // 3
spread = 2 * 256 / num_colors
bayer_n = int(math.log2(order))
bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5)
result = torch.from_numpy(np.array(im).astype(np.float32))
tw = math.ceil(result.shape[0] / bayer_matrix.shape[0])
th = math.ceil(result.shape[1] / bayer_matrix.shape[1])
tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1)
result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255)
result = result.to(dtype=torch.uint8)
im = Image.fromarray(result.cpu().numpy())
im = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
return im
@classmethod
def execute(cls, image: torch.Tensor, colors: int, dither: str) -> io.NodeOutput:
batch_size, height, width, _ = image.shape
result = torch.zeros_like(image)
for b in range(batch_size):
im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB')
pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
if dither == "none":
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
elif dither == "floyd-steinberg":
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG)
elif dither.startswith("bayer"):
order = int(dither.split('-')[-1])
quantized_image = Quantize.bayer(im, pal_im, order)
quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
result[b] = quantized_array
return io.NodeOutput(result)
class Sharpen(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ImageSharpen",
category="image/postprocessing",
inputs=[
io.Image.Input("image"),
io.Int.Input("sharpen_radius", default=1, min=1, max=31, step=1),
io.Float.Input("sigma", default=1.0, min=0.1, max=10.0, step=0.01),
io.Float.Input("alpha", default=1.0, min=0.0, max=5.0, step=0.01),
],
outputs=[
io.Image.Output(),
],
)
@classmethod
def execute(cls, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float) -> io.NodeOutput:
if sharpen_radius == 0:
return io.NodeOutput(image)
batch_size, height, width, channels = image.shape
image = image.to(comfy.model_management.get_torch_device())
kernel_size = sharpen_radius * 2 + 1
kernel = gaussian_kernel(kernel_size, sigma, device=image.device) * -(alpha*10)
kernel = kernel.to(dtype=image.dtype)
center = kernel_size // 2
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
sharpened = sharpened.permute(0, 2, 3, 1)
result = torch.clamp(sharpened, 0, 1)
return io.NodeOutput(result.to(comfy.model_management.intermediate_device()))
class ImageScaleToTotalPixels(io.ComfyNode):
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
crop_methods = ["disabled", "center"]
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ImageScaleToTotalPixels",
category="image/upscaling",
inputs=[
io.Image.Input("image"),
io.Combo.Input("upscale_method", options=cls.upscale_methods),
io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01),
io.Int.Input("resolution_steps", default=1, min=1, max=256),
],
outputs=[
io.Image.Output(),
],
)
@classmethod
def execute(cls, image, upscale_method, megapixels, resolution_steps) -> io.NodeOutput:
samples = image.movedim(-1,1)
total = megapixels * 1024 * 1024
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
width = round(samples.shape[3] * scale_by / resolution_steps) * resolution_steps
height = round(samples.shape[2] * scale_by / resolution_steps) * resolution_steps
s = comfy.utils.common_upscale(samples, int(width), int(height), upscale_method, "disabled")
s = s.movedim(1,-1)
return io.NodeOutput(s)
class ResizeType(str, Enum):
SCALE_BY = "scale by multiplier"
SCALE_DIMENSIONS = "scale dimensions"
SCALE_LONGER_DIMENSION = "scale longer dimension"
SCALE_SHORTER_DIMENSION = "scale shorter dimension"
SCALE_WIDTH = "scale width"
SCALE_HEIGHT = "scale height"
SCALE_TOTAL_PIXELS = "scale total pixels"
MATCH_SIZE = "match size"
def is_image(input: torch.Tensor) -> bool:
# images have 4 dimensions: [batch, height, width, channels]
# masks have 3 dimensions: [batch, height, width]
return len(input.shape) == 4
def init_image_mask_input(input: torch.Tensor, is_type_image: bool) -> torch.Tensor:
if is_type_image:
input = input.movedim(-1, 1)
else:
input = input.unsqueeze(1)
return input
def finalize_image_mask_input(input: torch.Tensor, is_type_image: bool) -> torch.Tensor:
if is_type_image:
input = input.movedim(1, -1)
else:
input = input.squeeze(1)
return input
def scale_by(input: torch.Tensor, multiplier: float, scale_method: str) -> torch.Tensor:
is_type_image = is_image(input)
input = init_image_mask_input(input, is_type_image)
width = round(input.shape[-1] * multiplier)
height = round(input.shape[-2] * multiplier)
input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled")
input = finalize_image_mask_input(input, is_type_image)
return input
def scale_dimensions(input: torch.Tensor, width: int, height: int, scale_method: str, crop: str="disabled") -> torch.Tensor:
if width == 0 and height == 0:
return input
is_type_image = is_image(input)
input = init_image_mask_input(input, is_type_image)
if width == 0:
width = max(1, round(input.shape[-1] * height / input.shape[-2]))
elif height == 0:
height = max(1, round(input.shape[-2] * width / input.shape[-1]))
input = comfy.utils.common_upscale(input, width, height, scale_method, crop)
input = finalize_image_mask_input(input, is_type_image)
return input
def scale_longer_dimension(input: torch.Tensor, longer_size: int, scale_method: str) -> torch.Tensor:
is_type_image = is_image(input)
input = init_image_mask_input(input, is_type_image)
width = input.shape[-1]
height = input.shape[-2]
if height > width:
width = round((width / height) * longer_size)
height = longer_size
elif width > height:
height = round((height / width) * longer_size)
width = longer_size
else:
height = longer_size
width = longer_size
input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled")
input = finalize_image_mask_input(input, is_type_image)
return input
def scale_shorter_dimension(input: torch.Tensor, shorter_size: int, scale_method: str) -> torch.Tensor:
is_type_image = is_image(input)
input = init_image_mask_input(input, is_type_image)
width = input.shape[-1]
height = input.shape[-2]
if height < width:
width = round((width / height) * shorter_size)
height = shorter_size
elif width > height:
height = round((height / width) * shorter_size)
width = shorter_size
else:
height = shorter_size
width = shorter_size
input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled")
input = finalize_image_mask_input(input, is_type_image)
return input
def scale_total_pixels(input: torch.Tensor, megapixels: float, scale_method: str) -> torch.Tensor:
is_type_image = is_image(input)
input = init_image_mask_input(input, is_type_image)
total = int(megapixels * 1024 * 1024)
scale_by = math.sqrt(total / (input.shape[-1] * input.shape[-2]))
width = round(input.shape[-1] * scale_by)
height = round(input.shape[-2] * scale_by)
input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled")
input = finalize_image_mask_input(input, is_type_image)
return input
def scale_match_size(input: torch.Tensor, match: torch.Tensor, scale_method: str, crop: str) -> torch.Tensor:
is_type_image = is_image(input)
input = init_image_mask_input(input, is_type_image)
match = init_image_mask_input(match, is_image(match))
width = match.shape[-1]
height = match.shape[-2]
input = comfy.utils.common_upscale(input, width, height, scale_method, crop)
input = finalize_image_mask_input(input, is_type_image)
return input
class ResizeImageMaskNode(io.ComfyNode):
scale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
crop_methods = ["disabled", "center"]
class ResizeTypedDict(TypedDict):
resize_type: ResizeType
scale_method: Literal["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
crop: Literal["disabled", "center"]
multiplier: float
width: int
height: int
longer_size: int
shorter_size: int
megapixels: float
@classmethod
def define_schema(cls):
template = io.MatchType.Template("input_type", [io.Image, io.Mask])
crop_combo = io.Combo.Input("crop", options=cls.crop_methods)
return io.Schema(
node_id="ResizeImageMaskNode",
display_name="Resize Image/Mask",
category="transform",
inputs=[
io.MatchType.Input("input", template=template),
io.DynamicCombo.Input("resize_type", options=[
io.DynamicCombo.Option(ResizeType.SCALE_BY, [
io.Float.Input("multiplier", default=1.00, min=0.01, max=8.0, step=0.01),
]),
io.DynamicCombo.Option(ResizeType.SCALE_DIMENSIONS, [
io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1),
io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1),
crop_combo,
]),
io.DynamicCombo.Option(ResizeType.SCALE_LONGER_DIMENSION, [
io.Int.Input("longer_size", default=512, min=0, max=MAX_RESOLUTION, step=1),
]),
io.DynamicCombo.Option(ResizeType.SCALE_SHORTER_DIMENSION, [
io.Int.Input("shorter_size", default=512, min=0, max=MAX_RESOLUTION, step=1),
]),
io.DynamicCombo.Option(ResizeType.SCALE_WIDTH, [
io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1),
]),
io.DynamicCombo.Option(ResizeType.SCALE_HEIGHT, [
io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1),
]),
io.DynamicCombo.Option(ResizeType.SCALE_TOTAL_PIXELS, [
io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01),
]),
io.DynamicCombo.Option(ResizeType.MATCH_SIZE, [
io.MultiType.Input("match", [io.Image, io.Mask]),
crop_combo,
]),
]),
io.Combo.Input("scale_method", options=cls.scale_methods, default="area"),
],
outputs=[io.MatchType.Output(template=template, display_name="resized")]
)
@classmethod
def execute(cls, input: io.Image.Type | io.Mask.Type, scale_method: io.Combo.Type, resize_type: ResizeTypedDict) -> io.NodeOutput:
selected_type = resize_type["resize_type"]
if selected_type == ResizeType.SCALE_BY:
return io.NodeOutput(scale_by(input, resize_type["multiplier"], scale_method))
elif selected_type == ResizeType.SCALE_DIMENSIONS:
return io.NodeOutput(scale_dimensions(input, resize_type["width"], resize_type["height"], scale_method, resize_type["crop"]))
elif selected_type == ResizeType.SCALE_LONGER_DIMENSION:
return io.NodeOutput(scale_longer_dimension(input, resize_type["longer_size"], scale_method))
elif selected_type == ResizeType.SCALE_SHORTER_DIMENSION:
return io.NodeOutput(scale_shorter_dimension(input, resize_type["shorter_size"], scale_method))
elif selected_type == ResizeType.SCALE_WIDTH:
return io.NodeOutput(scale_dimensions(input, resize_type["width"], 0, scale_method))
elif selected_type == ResizeType.SCALE_HEIGHT:
return io.NodeOutput(scale_dimensions(input, 0, resize_type["height"], scale_method))
elif selected_type == ResizeType.SCALE_TOTAL_PIXELS:
return io.NodeOutput(scale_total_pixels(input, resize_type["megapixels"], scale_method))
elif selected_type == ResizeType.MATCH_SIZE:
return io.NodeOutput(scale_match_size(input, resize_type["match"], scale_method, resize_type["crop"]))
raise ValueError(f"Unsupported resize type: {selected_type}")
class PostProcessingExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
Blend,
Blur,
Quantize,
Sharpen,
ImageScaleToTotalPixels,
ResizeImageMaskNode,
]
async def comfy_entrypoint() -> PostProcessingExtension:
return PostProcessingExtension()