更新节点

This commit is contained in:
wangbo 2025-05-15 20:23:06 +08:00
parent 89dbe3b916
commit cbe1fc951d
3 changed files with 108 additions and 12 deletions

View File

@ -1,7 +1,6 @@
import soundfile as sf
import requests
import io
import numpy as np
import librosa.core as core
import torch
class AudioLoadPath:
@ -13,7 +12,7 @@ class AudioLoadPath:
"duration": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1e6, "step": 0.001})}}
RETURN_TYPES = ("AUDIO", )
CATEGORY = "Audio Reactor"
CATEGORY = "EasyAI"
FUNCTION = "load"
def load(self, path: str, sample_rate: int, offset: float, duration: float|None):
@ -27,20 +26,17 @@ class AudioLoadPath:
response.raise_for_status()
audio_data = io.BytesIO(response.content)
# 使用 soundfile 从内存中读取音频数据
audio, file_sr = sf.read(audio_data)
# 如果需要重采样
if file_sr != sample_rate:
# 这里需要添加重采样逻辑
# 可以使用 librosa.resample 或其他方法
pass
# 使用 librosa 直接从内存中读取音频数据
import warnings
with warnings.catch_warnings():
warnings.simplefilter("ignore")
audio, _ = core.load(audio_data, sr=sample_rate, offset=offset, duration=duration)
except Exception as e:
raise Exception(f"加载网络音频失败: {str(e)}")
else:
# 本地文件使用原有的 librosa 方式加载
audio, _ = librosa.load(path, sr=sample_rate, offset=offset, duration=duration)
audio, _ = core.load(path, sr=sample_rate, offset=offset, duration=duration)
# 转换为 torch tensor 并调整维度
audio = torch.from_numpy(audio)[None,:,None]

View File

@ -0,0 +1 @@
numpy~=2.2.5

99
test.py Normal file
View File

@ -0,0 +1,99 @@
import unittest
import torch
import os
import tempfile
import soundfile as sf
import numpy as np
from nodes import AudioLoadPath
class TestAudioLoadPath(unittest.TestCase):
def setUp(self):
# 创建一个临时的测试音频文件
self.temp_dir = tempfile.mkdtemp()
self.local_audio_path = os.path.join(self.temp_dir, "test_audio.wav")
# 生成一个简单的测试音频信号
sample_rate = 22050
duration = 2.0 # 2秒
t = np.linspace(0, duration, int(sample_rate * duration))
audio_data = np.sin(2 * np.pi * 440 * t) # 440Hz的正弦波
sf.write(self.local_audio_path, audio_data, sample_rate)
# 初始化测试类
self.audio_loader = AudioLoadPath()
# 一个可用的测试音频URL请替换为实际可用的URL
self.test_url = "https://wangbo0808.oss-cn-shanghai.aliyuncs.com/%E5%B0%8F%E7%8C%B4%E5%AD%90%E4%B8%8B%E5%B1%B1.mp3"
def test_local_file_loading(self):
# 测试本地文件加载
sample_rate = 22050
audio_tensor = self.audio_loader.load(
path=self.local_audio_path,
sample_rate=sample_rate,
offset=0.0,
duration=1.0
)[0]
# 验证返回的张量格式和维度
self.assertIsInstance(audio_tensor, torch.Tensor)
self.assertEqual(len(audio_tensor.shape), 3) # [1, samples, 1]
self.assertEqual(audio_tensor.shape[0], 1)
self.assertEqual(audio_tensor.shape[2], 1)
# 验证采样率转换
expected_samples = int(sample_rate * 1.0) # 1秒的音频
self.assertEqual(audio_tensor.shape[1], expected_samples)
def test_url_loading(self):
# 测试网络文件加载
try:
audio_tensor = self.audio_loader.load(
path=self.test_url,
sample_rate=22050,
offset=0.0,
duration=0.0
)[0]
# 验证返回的张量格式和维度
self.assertIsInstance(audio_tensor, torch.Tensor)
self.assertEqual(len(audio_tensor.shape), 3)
except Exception as e:
# 如果测试URL不可用这个测试可能会失败
print(f"URL加载测试失败: {str(e)}")
def test_invalid_path(self):
# 测试无效路径
with self.assertRaises(Exception):
self.audio_loader.load(
path="nonexistent_file.wav",
sample_rate=22050,
offset=0.0,
duration=0.0
)
def test_duration_and_offset(self):
# 测试偏移和持续时间参数
sample_rate = 22050
offset = 0.5
duration = 1.0
audio_tensor = self.audio_loader.load(
path=self.local_audio_path,
sample_rate=sample_rate,
offset=offset,
duration=duration
)[0]
# 验证音频长度
expected_samples = int(sample_rate * duration)
self.assertEqual(audio_tensor.shape[1], expected_samples)
def tearDown(self):
# 清理临时文件
import shutil
shutil.rmtree(self.temp_dir)
if __name__ == '__main__':
unittest.main()