ComfyUI-EasyAI/nodes.py
2025-05-15 20:23:06 +08:00

47 lines
1.8 KiB
Python

import requests
import io
import librosa.core as core
import torch
class AudioLoadPath:
@classmethod
def INPUT_TYPES(s):
return {"required": { "path": ("STRING", {"default": "X://insert/path/here.mp4"}),
"sample_rate": ("INT", {"default": 22050, "min": 6000, "max": 192000, "step": 1}),
"offset": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1e6, "step": 0.001}),
"duration": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1e6, "step": 0.001})}}
RETURN_TYPES = ("AUDIO", )
CATEGORY = "EasyAI"
FUNCTION = "load"
def load(self, path: str, sample_rate: int, offset: float, duration: float|None):
if duration == 0.0:
duration = None
if path.startswith(('http://', 'https://')):
# 对于网络路径,直接从内存加载
try:
response = requests.get(path)
response.raise_for_status()
audio_data = io.BytesIO(response.content)
# 使用 librosa 直接从内存中读取音频数据
import warnings
with warnings.catch_warnings():
warnings.simplefilter("ignore")
audio, _ = core.load(audio_data, sr=sample_rate, offset=offset, duration=duration)
except Exception as e:
raise Exception(f"加载网络音频失败: {str(e)}")
else:
# 本地文件使用原有的 librosa 方式加载
audio, _ = core.load(path, sr=sample_rate, offset=offset, duration=duration)
# 转换为 torch tensor 并调整维度
audio = torch.from_numpy(audio)[None,:,None]
return (audio,)
NODE_CLASS_MAPPINGS = {
"AudioLoadPath": AudioLoadPath,
}