mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-27 23:00:20 +08:00
Merge branch 'master' of github.com:comfyanonymous/ComfyUI
This commit is contained in:
commit
0a1ae64b0b
@ -22,6 +22,7 @@ A vanilla, up-to-date fork of [ComfyUI](https://github.com/comfyanonymous/comfyu
|
|||||||
|
|
||||||
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
|
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
|
||||||
- Fully supports SD1.x, SD2.x, [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/), [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/), [Stable Cascade](https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/), [SD3](https://comfyanonymous.github.io/ComfyUI_examples/sd3/) and [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
- Fully supports SD1.x, SD2.x, [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/), [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/), [Stable Cascade](https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/), [SD3](https://comfyanonymous.github.io/ComfyUI_examples/sd3/) and [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||||
|
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
|
||||||
- Asynchronous Queue system
|
- Asynchronous Queue system
|
||||||
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
|
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
|
||||||
- Smart memory management: can automatically run models on GPUs with as low as 1GB vram.
|
- Smart memory management: can automatically run models on GPUs with as low as 1GB vram.
|
||||||
|
|||||||
@ -5,7 +5,7 @@
|
|||||||
"attention_dropout": 0.0,
|
"attention_dropout": 0.0,
|
||||||
"bos_token_id": 0,
|
"bos_token_id": 0,
|
||||||
"dropout": 0.0,
|
"dropout": 0.0,
|
||||||
"eos_token_id": 2,
|
"eos_token_id": 49407,
|
||||||
"hidden_act": "gelu",
|
"hidden_act": "gelu",
|
||||||
"hidden_size": 1280,
|
"hidden_size": 1280,
|
||||||
"initializer_factor": 1.0,
|
"initializer_factor": 1.0,
|
||||||
|
|||||||
@ -1,5 +1,6 @@
|
|||||||
import torch
|
import torch
|
||||||
from .ldm.modules.attention import optimized_attention_for_device
|
from .ldm.modules.attention import optimized_attention_for_device
|
||||||
|
from . import ops
|
||||||
|
|
||||||
class CLIPAttention(torch.nn.Module):
|
class CLIPAttention(torch.nn.Module):
|
||||||
def __init__(self, embed_dim, heads, dtype, device, operations):
|
def __init__(self, embed_dim, heads, dtype, device, operations):
|
||||||
@ -71,13 +72,13 @@ class CLIPEncoder(torch.nn.Module):
|
|||||||
return x, intermediate
|
return x, intermediate
|
||||||
|
|
||||||
class CLIPEmbeddings(torch.nn.Module):
|
class CLIPEmbeddings(torch.nn.Module):
|
||||||
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None):
|
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
||||||
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
||||||
|
|
||||||
def forward(self, input_tokens):
|
def forward(self, input_tokens, dtype=torch.float32):
|
||||||
return self.token_embedding(input_tokens) + self.position_embedding.weight
|
return self.token_embedding(input_tokens, out_dtype=dtype) + ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device)
|
||||||
|
|
||||||
|
|
||||||
class CLIPTextModel_(torch.nn.Module):
|
class CLIPTextModel_(torch.nn.Module):
|
||||||
@ -88,14 +89,15 @@ class CLIPTextModel_(torch.nn.Module):
|
|||||||
intermediate_size = config_dict["intermediate_size"]
|
intermediate_size = config_dict["intermediate_size"]
|
||||||
intermediate_activation = config_dict["hidden_act"]
|
intermediate_activation = config_dict["hidden_act"]
|
||||||
vocab_size = config_dict["vocab_size"]
|
vocab_size = config_dict["vocab_size"]
|
||||||
|
self.eos_token_id = config_dict["eos_token_id"]
|
||||||
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.embeddings = CLIPEmbeddings(embed_dim, vocab_size=vocab_size, dtype=torch.float32, device=device)
|
self.embeddings = CLIPEmbeddings(embed_dim, vocab_size=vocab_size, dtype=dtype, device=device, operations=operations)
|
||||||
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
||||||
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
||||||
|
|
||||||
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
|
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
|
||||||
x = self.embeddings(input_tokens)
|
x = self.embeddings(input_tokens, dtype=dtype)
|
||||||
mask = None
|
mask = None
|
||||||
if attention_mask is not None:
|
if attention_mask is not None:
|
||||||
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
||||||
@ -112,7 +114,7 @@ class CLIPTextModel_(torch.nn.Module):
|
|||||||
if i is not None and final_layer_norm_intermediate:
|
if i is not None and final_layer_norm_intermediate:
|
||||||
i = self.final_layer_norm(i)
|
i = self.final_layer_norm(i)
|
||||||
|
|
||||||
pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),]
|
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
|
||||||
return x, i, pooled_output
|
return x, i, pooled_output
|
||||||
|
|
||||||
class CLIPTextModel(torch.nn.Module):
|
class CLIPTextModel(torch.nn.Module):
|
||||||
@ -154,11 +156,11 @@ class CLIPVisionEmbeddings(torch.nn.Module):
|
|||||||
|
|
||||||
num_patches = (image_size // patch_size) ** 2
|
num_patches = (image_size // patch_size) ** 2
|
||||||
num_positions = num_patches + 1
|
num_positions = num_patches + 1
|
||||||
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
||||||
|
|
||||||
def forward(self, pixel_values):
|
def forward(self, pixel_values):
|
||||||
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
|
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
|
||||||
return torch.cat([self.class_embedding.to(embeds.device).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight.to(embeds.device)
|
return torch.cat([ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + ops.cast_to_input(self.position_embedding.weight, embeds)
|
||||||
|
|
||||||
|
|
||||||
class CLIPVision(torch.nn.Module):
|
class CLIPVision(torch.nn.Module):
|
||||||
@ -170,7 +172,7 @@ class CLIPVision(torch.nn.Module):
|
|||||||
intermediate_size = config_dict["intermediate_size"]
|
intermediate_size = config_dict["intermediate_size"]
|
||||||
intermediate_activation = config_dict["hidden_act"]
|
intermediate_activation = config_dict["hidden_act"]
|
||||||
|
|
||||||
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=torch.float32, device=device, operations=operations)
|
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=dtype, device=device, operations=operations)
|
||||||
self.pre_layrnorm = operations.LayerNorm(embed_dim)
|
self.pre_layrnorm = operations.LayerNorm(embed_dim)
|
||||||
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
||||||
self.post_layernorm = operations.LayerNorm(embed_dim)
|
self.post_layernorm = operations.LayerNorm(embed_dim)
|
||||||
|
|||||||
@ -10,7 +10,7 @@ from typing import Optional, List, Set, Dict, Any, Iterator, Sequence
|
|||||||
from ..cli_args import args
|
from ..cli_args import args
|
||||||
from ..component_model.files import get_package_as_path
|
from ..component_model.files import get_package_as_path
|
||||||
|
|
||||||
supported_pt_extensions = frozenset(['.ckpt', '.pt', '.bin', '.pth', '.safetensors', '.pkl'])
|
supported_pt_extensions = frozenset(['.ckpt', '.pt', '.bin', '.pth', '.safetensors', '.pkl', '.sft'])
|
||||||
|
|
||||||
|
|
||||||
@dataclasses.dataclass
|
@dataclasses.dataclass
|
||||||
|
|||||||
@ -139,3 +139,32 @@ class SD3(LatentFormat):
|
|||||||
|
|
||||||
class StableAudio1(LatentFormat):
|
class StableAudio1(LatentFormat):
|
||||||
latent_channels = 64
|
latent_channels = 64
|
||||||
|
|
||||||
|
class Flux(SD3):
|
||||||
|
def __init__(self):
|
||||||
|
self.scale_factor = 0.3611
|
||||||
|
self.shift_factor = 0.1159
|
||||||
|
self.latent_rgb_factors =[
|
||||||
|
[-0.0404, 0.0159, 0.0609],
|
||||||
|
[ 0.0043, 0.0298, 0.0850],
|
||||||
|
[ 0.0328, -0.0749, -0.0503],
|
||||||
|
[-0.0245, 0.0085, 0.0549],
|
||||||
|
[ 0.0966, 0.0894, 0.0530],
|
||||||
|
[ 0.0035, 0.0399, 0.0123],
|
||||||
|
[ 0.0583, 0.1184, 0.1262],
|
||||||
|
[-0.0191, -0.0206, -0.0306],
|
||||||
|
[-0.0324, 0.0055, 0.1001],
|
||||||
|
[ 0.0955, 0.0659, -0.0545],
|
||||||
|
[-0.0504, 0.0231, -0.0013],
|
||||||
|
[ 0.0500, -0.0008, -0.0088],
|
||||||
|
[ 0.0982, 0.0941, 0.0976],
|
||||||
|
[-0.1233, -0.0280, -0.0897],
|
||||||
|
[-0.0005, -0.0530, -0.0020],
|
||||||
|
[-0.1273, -0.0932, -0.0680]
|
||||||
|
]
|
||||||
|
|
||||||
|
def process_in(self, latent):
|
||||||
|
return (latent - self.shift_factor) * self.scale_factor
|
||||||
|
|
||||||
|
def process_out(self, latent):
|
||||||
|
return (latent / self.scale_factor) + self.shift_factor
|
||||||
|
|||||||
@ -10,6 +10,7 @@ from einops import rearrange
|
|||||||
from torch import nn
|
from torch import nn
|
||||||
from torch.nn import functional as F
|
from torch.nn import functional as F
|
||||||
import math
|
import math
|
||||||
|
from ... import ops
|
||||||
|
|
||||||
class FourierFeatures(nn.Module):
|
class FourierFeatures(nn.Module):
|
||||||
def __init__(self, in_features, out_features, std=1., dtype=None, device=None):
|
def __init__(self, in_features, out_features, std=1., dtype=None, device=None):
|
||||||
@ -19,7 +20,7 @@ class FourierFeatures(nn.Module):
|
|||||||
[out_features // 2, in_features], dtype=dtype, device=device))
|
[out_features // 2, in_features], dtype=dtype, device=device))
|
||||||
|
|
||||||
def forward(self, input):
|
def forward(self, input):
|
||||||
f = 2 * math.pi * input @ self.weight.T.to(dtype=input.dtype, device=input.device)
|
f = 2 * math.pi * input @ ops.cast_to_input(self.weight.T, input)
|
||||||
return torch.cat([f.cos(), f.sin()], dim=-1)
|
return torch.cat([f.cos(), f.sin()], dim=-1)
|
||||||
|
|
||||||
# norms
|
# norms
|
||||||
@ -39,9 +40,9 @@ class LayerNorm(nn.Module):
|
|||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
beta = self.beta
|
beta = self.beta
|
||||||
if self.beta is not None:
|
if beta is not None:
|
||||||
beta = beta.to(dtype=x.dtype, device=x.device)
|
beta = ops.cast_to_input(beta, x)
|
||||||
return F.layer_norm(x, x.shape[-1:], weight=self.gamma.to(dtype=x.dtype, device=x.device), bias=beta)
|
return F.layer_norm(x, x.shape[-1:], weight=ops.cast_to_input(self.gamma, x), bias=beta)
|
||||||
|
|
||||||
class GLU(nn.Module):
|
class GLU(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
@ -124,7 +125,9 @@ class RotaryEmbedding(nn.Module):
|
|||||||
scale_base = 512,
|
scale_base = 512,
|
||||||
interpolation_factor = 1.,
|
interpolation_factor = 1.,
|
||||||
base = 10000,
|
base = 10000,
|
||||||
base_rescale_factor = 1.
|
base_rescale_factor = 1.,
|
||||||
|
dtype=None,
|
||||||
|
device=None,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
||||||
@ -132,8 +135,8 @@ class RotaryEmbedding(nn.Module):
|
|||||||
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
||||||
base *= base_rescale_factor ** (dim / (dim - 2))
|
base *= base_rescale_factor ** (dim / (dim - 2))
|
||||||
|
|
||||||
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
# inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
||||||
self.register_buffer('inv_freq', inv_freq)
|
self.register_buffer('inv_freq', torch.empty((dim // 2,), device=device, dtype=dtype))
|
||||||
|
|
||||||
assert interpolation_factor >= 1.
|
assert interpolation_factor >= 1.
|
||||||
self.interpolation_factor = interpolation_factor
|
self.interpolation_factor = interpolation_factor
|
||||||
@ -164,14 +167,14 @@ class RotaryEmbedding(nn.Module):
|
|||||||
|
|
||||||
t = t / self.interpolation_factor
|
t = t / self.interpolation_factor
|
||||||
|
|
||||||
freqs = torch.einsum('i , j -> i j', t, self.inv_freq.to(dtype=dtype, device=device))
|
freqs = torch.einsum('i , j -> i j', t, ops.cast_to_input(self.inv_freq, t))
|
||||||
freqs = torch.cat((freqs, freqs), dim = -1)
|
freqs = torch.cat((freqs, freqs), dim = -1)
|
||||||
|
|
||||||
if self.scale is None:
|
if self.scale is None:
|
||||||
return freqs, 1.
|
return freqs, 1.
|
||||||
|
|
||||||
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
|
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
|
||||||
scale = self.scale.to(dtype=dtype, device=device) ** rearrange(power, 'n -> n 1')
|
scale = ops.cast_to_input(self.scale, t) ** rearrange(power, 'n -> n 1')
|
||||||
scale = torch.cat((scale, scale), dim = -1)
|
scale = torch.cat((scale, scale), dim = -1)
|
||||||
|
|
||||||
return freqs, scale
|
return freqs, scale
|
||||||
@ -568,7 +571,7 @@ class ContinuousTransformer(nn.Module):
|
|||||||
self.project_out = operations.Linear(dim, dim_out, bias=False, dtype=dtype, device=device) if dim_out is not None else nn.Identity()
|
self.project_out = operations.Linear(dim, dim_out, bias=False, dtype=dtype, device=device) if dim_out is not None else nn.Identity()
|
||||||
|
|
||||||
if rotary_pos_emb:
|
if rotary_pos_emb:
|
||||||
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32))
|
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32), device=device, dtype=dtype)
|
||||||
else:
|
else:
|
||||||
self.rotary_pos_emb = None
|
self.rotary_pos_emb = None
|
||||||
|
|
||||||
|
|||||||
@ -7,7 +7,8 @@ import torch
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
|
||||||
from comfy.ldm.modules.attention import optimized_attention
|
from ..modules.attention import optimized_attention
|
||||||
|
from ... import ops
|
||||||
|
|
||||||
def modulate(x, shift, scale):
|
def modulate(x, shift, scale):
|
||||||
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
||||||
@ -409,7 +410,7 @@ class MMDiT(nn.Module):
|
|||||||
pad_h = (self.patch_size - H % self.patch_size) % self.patch_size
|
pad_h = (self.patch_size - H % self.patch_size) % self.patch_size
|
||||||
pad_w = (self.patch_size - W % self.patch_size) % self.patch_size
|
pad_w = (self.patch_size - W % self.patch_size) % self.patch_size
|
||||||
|
|
||||||
x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode='reflect')
|
x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode='circular')
|
||||||
x = x.view(
|
x = x.view(
|
||||||
B,
|
B,
|
||||||
C,
|
C,
|
||||||
@ -427,7 +428,7 @@ class MMDiT(nn.Module):
|
|||||||
max_dim = max(h, w)
|
max_dim = max(h, w)
|
||||||
|
|
||||||
cur_dim = self.h_max
|
cur_dim = self.h_max
|
||||||
pos_encoding = self.positional_encoding.reshape(1, cur_dim, cur_dim, -1).to(device=x.device, dtype=x.dtype)
|
pos_encoding = ops.cast_to_input(self.positional_encoding.reshape(1, cur_dim, cur_dim, -1), x)
|
||||||
|
|
||||||
if max_dim > cur_dim:
|
if max_dim > cur_dim:
|
||||||
pos_encoding = F.interpolate(pos_encoding.movedim(-1, 1), (max_dim, max_dim), mode="bilinear").movedim(1, -1)
|
pos_encoding = F.interpolate(pos_encoding.movedim(-1, 1), (max_dim, max_dim), mode="bilinear").movedim(1, -1)
|
||||||
@ -455,7 +456,7 @@ class MMDiT(nn.Module):
|
|||||||
t = timestep
|
t = timestep
|
||||||
|
|
||||||
c = self.cond_seq_linear(c_seq) # B, T_c, D
|
c = self.cond_seq_linear(c_seq) # B, T_c, D
|
||||||
c = torch.cat([self.register_tokens.to(device=c.device, dtype=c.dtype).repeat(c.size(0), 1, 1), c], dim=1)
|
c = torch.cat([ops.cast_to_input(self.register_tokens, c).repeat(c.size(0), 1, 1), c], dim=1)
|
||||||
|
|
||||||
global_cond = self.t_embedder(t, x.dtype) # B, D
|
global_cond = self.t_embedder(t, x.dtype) # B, D
|
||||||
|
|
||||||
|
|||||||
@ -19,14 +19,7 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from ..modules.attention import optimized_attention
|
from ..modules.attention import optimized_attention
|
||||||
|
from ... import ops
|
||||||
class Linear(torch.nn.Linear):
|
|
||||||
def reset_parameters(self):
|
|
||||||
return None
|
|
||||||
|
|
||||||
class Conv2d(torch.nn.Conv2d):
|
|
||||||
def reset_parameters(self):
|
|
||||||
return None
|
|
||||||
|
|
||||||
class OptimizedAttention(nn.Module):
|
class OptimizedAttention(nn.Module):
|
||||||
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
||||||
@ -78,13 +71,13 @@ class GlobalResponseNorm(nn.Module):
|
|||||||
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
|
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
|
||||||
def __init__(self, dim, dtype=None, device=None):
|
def __init__(self, dim, dtype=None, device=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device))
|
self.gamma = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
|
||||||
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device))
|
self.beta = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
|
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
|
||||||
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
||||||
return self.gamma.to(device=x.device, dtype=x.dtype) * (x * Nx) + self.beta.to(device=x.device, dtype=x.dtype) + x
|
return ops.cast_to_input(self.gamma, x) * (x * Nx) + ops.cast_to_input(self.beta, x) + x
|
||||||
|
|
||||||
|
|
||||||
class ResBlock(nn.Module):
|
class ResBlock(nn.Module):
|
||||||
|
|||||||
256
comfy/ldm/flux/layers.py
Normal file
256
comfy/ldm/flux/layers.py
Normal file
@ -0,0 +1,256 @@
|
|||||||
|
import math
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from einops import rearrange
|
||||||
|
from torch import Tensor, nn
|
||||||
|
|
||||||
|
from .math import attention, rope
|
||||||
|
from ... import ops
|
||||||
|
|
||||||
|
class EmbedND(nn.Module):
|
||||||
|
def __init__(self, dim: int, theta: int, axes_dim: list):
|
||||||
|
super().__init__()
|
||||||
|
self.dim = dim
|
||||||
|
self.theta = theta
|
||||||
|
self.axes_dim = axes_dim
|
||||||
|
|
||||||
|
def forward(self, ids: Tensor) -> Tensor:
|
||||||
|
n_axes = ids.shape[-1]
|
||||||
|
emb = torch.cat(
|
||||||
|
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
||||||
|
dim=-3,
|
||||||
|
)
|
||||||
|
|
||||||
|
return emb.unsqueeze(1)
|
||||||
|
|
||||||
|
|
||||||
|
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
||||||
|
"""
|
||||||
|
Create sinusoidal timestep embeddings.
|
||||||
|
:param t: a 1-D Tensor of N indices, one per batch element.
|
||||||
|
These may be fractional.
|
||||||
|
:param dim: the dimension of the output.
|
||||||
|
:param max_period: controls the minimum frequency of the embeddings.
|
||||||
|
:return: an (N, D) Tensor of positional embeddings.
|
||||||
|
"""
|
||||||
|
t = time_factor * t
|
||||||
|
half = dim // 2
|
||||||
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
||||||
|
t.device
|
||||||
|
)
|
||||||
|
|
||||||
|
args = t[:, None].float() * freqs[None]
|
||||||
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||||
|
if dim % 2:
|
||||||
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||||
|
if torch.is_floating_point(t):
|
||||||
|
embedding = embedding.to(t)
|
||||||
|
return embedding
|
||||||
|
|
||||||
|
|
||||||
|
class MLPEmbedder(nn.Module):
|
||||||
|
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
|
||||||
|
super().__init__()
|
||||||
|
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||||
|
self.silu = nn.SiLU()
|
||||||
|
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||||
|
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
return self.out_layer(self.silu(self.in_layer(x)))
|
||||||
|
|
||||||
|
|
||||||
|
class RMSNorm(torch.nn.Module):
|
||||||
|
def __init__(self, dim: int, dtype=None, device=None, operations=None):
|
||||||
|
super().__init__()
|
||||||
|
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device))
|
||||||
|
|
||||||
|
def forward(self, x: Tensor):
|
||||||
|
x_dtype = x.dtype
|
||||||
|
x = x.float()
|
||||||
|
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
||||||
|
return (x * rrms).to(dtype=x_dtype) * ops.cast_to(self.scale, dtype=x_dtype, device=x.device)
|
||||||
|
|
||||||
|
|
||||||
|
class QKNorm(torch.nn.Module):
|
||||||
|
def __init__(self, dim: int, dtype=None, device=None, operations=None):
|
||||||
|
super().__init__()
|
||||||
|
self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
|
||||||
|
self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple:
|
||||||
|
q = self.query_norm(q)
|
||||||
|
k = self.key_norm(k)
|
||||||
|
return q.to(v), k.to(v)
|
||||||
|
|
||||||
|
|
||||||
|
class SelfAttention(nn.Module):
|
||||||
|
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None):
|
||||||
|
super().__init__()
|
||||||
|
self.num_heads = num_heads
|
||||||
|
head_dim = dim // num_heads
|
||||||
|
|
||||||
|
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
|
||||||
|
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||||
|
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
|
||||||
|
|
||||||
|
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
|
||||||
|
qkv = self.qkv(x)
|
||||||
|
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
||||||
|
q, k = self.norm(q, k, v)
|
||||||
|
x = attention(q, k, v, pe=pe)
|
||||||
|
x = self.proj(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ModulationOut:
|
||||||
|
shift: Tensor
|
||||||
|
scale: Tensor
|
||||||
|
gate: Tensor
|
||||||
|
|
||||||
|
|
||||||
|
class Modulation(nn.Module):
|
||||||
|
def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None):
|
||||||
|
super().__init__()
|
||||||
|
self.is_double = double
|
||||||
|
self.multiplier = 6 if double else 3
|
||||||
|
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
|
||||||
|
|
||||||
|
def forward(self, vec: Tensor) -> tuple:
|
||||||
|
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
||||||
|
|
||||||
|
return (
|
||||||
|
ModulationOut(*out[:3]),
|
||||||
|
ModulationOut(*out[3:]) if self.is_double else None,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class DoubleStreamBlock(nn.Module):
|
||||||
|
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype=None, device=None, operations=None):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||||
|
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||||
|
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
|
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||||
|
self.img_mlp = nn.Sequential(
|
||||||
|
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||||
|
nn.GELU(approximate="tanh"),
|
||||||
|
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||||
|
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||||
|
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
|
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||||
|
self.txt_mlp = nn.Sequential(
|
||||||
|
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||||
|
nn.GELU(approximate="tanh"),
|
||||||
|
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor):
|
||||||
|
img_mod1, img_mod2 = self.img_mod(vec)
|
||||||
|
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||||
|
|
||||||
|
# prepare image for attention
|
||||||
|
img_modulated = self.img_norm1(img)
|
||||||
|
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
||||||
|
img_qkv = self.img_attn.qkv(img_modulated)
|
||||||
|
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
||||||
|
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||||
|
|
||||||
|
# prepare txt for attention
|
||||||
|
txt_modulated = self.txt_norm1(txt)
|
||||||
|
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
||||||
|
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||||
|
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
||||||
|
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||||
|
|
||||||
|
# run actual attention
|
||||||
|
q = torch.cat((txt_q, img_q), dim=2)
|
||||||
|
k = torch.cat((txt_k, img_k), dim=2)
|
||||||
|
v = torch.cat((txt_v, img_v), dim=2)
|
||||||
|
|
||||||
|
attn = attention(q, k, v, pe=pe)
|
||||||
|
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
||||||
|
|
||||||
|
# calculate the img bloks
|
||||||
|
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
||||||
|
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
||||||
|
|
||||||
|
# calculate the txt bloks
|
||||||
|
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
||||||
|
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
||||||
|
return img, txt
|
||||||
|
|
||||||
|
|
||||||
|
class SingleStreamBlock(nn.Module):
|
||||||
|
"""
|
||||||
|
A DiT block with parallel linear layers as described in
|
||||||
|
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
hidden_size: int,
|
||||||
|
num_heads: int,
|
||||||
|
mlp_ratio: float = 4.0,
|
||||||
|
qk_scale: float = None,
|
||||||
|
dtype=None,
|
||||||
|
device=None,
|
||||||
|
operations=None
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.hidden_dim = hidden_size
|
||||||
|
self.num_heads = num_heads
|
||||||
|
head_dim = hidden_size // num_heads
|
||||||
|
self.scale = qk_scale or head_dim**-0.5
|
||||||
|
|
||||||
|
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||||
|
# qkv and mlp_in
|
||||||
|
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
|
||||||
|
# proj and mlp_out
|
||||||
|
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
|
||||||
|
|
||||||
|
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||||
|
|
||||||
|
self.mlp_act = nn.GELU(approximate="tanh")
|
||||||
|
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
|
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
||||||
|
mod, _ = self.modulation(vec)
|
||||||
|
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
||||||
|
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||||
|
|
||||||
|
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
||||||
|
q, k = self.norm(q, k, v)
|
||||||
|
|
||||||
|
# compute attention
|
||||||
|
attn = attention(q, k, v, pe=pe)
|
||||||
|
# compute activation in mlp stream, cat again and run second linear layer
|
||||||
|
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||||
|
return x + mod.gate * output
|
||||||
|
|
||||||
|
|
||||||
|
class LastLayer(nn.Module):
|
||||||
|
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
||||||
|
super().__init__()
|
||||||
|
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||||
|
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
||||||
|
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
|
||||||
|
|
||||||
|
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
||||||
|
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
||||||
|
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
||||||
|
x = self.linear(x)
|
||||||
|
return x
|
||||||
36
comfy/ldm/flux/math.py
Normal file
36
comfy/ldm/flux/math.py
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
import torch
|
||||||
|
from einops import rearrange
|
||||||
|
from torch import Tensor
|
||||||
|
from ..modules.attention import optimized_attention
|
||||||
|
from ... import model_management
|
||||||
|
|
||||||
|
|
||||||
|
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
|
||||||
|
q, k = apply_rope(q, k, pe)
|
||||||
|
|
||||||
|
heads = q.shape[1]
|
||||||
|
x = optimized_attention(q, k, v, heads, skip_reshape=True)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
||||||
|
assert dim % 2 == 0
|
||||||
|
if model_management.is_device_mps(pos.device):
|
||||||
|
device = torch.device("cpu")
|
||||||
|
else:
|
||||||
|
device = pos.device
|
||||||
|
|
||||||
|
scale = torch.linspace(0, (dim - 2) / dim, steps=dim//2, dtype=torch.float64, device=device)
|
||||||
|
omega = 1.0 / (theta**scale)
|
||||||
|
out = torch.einsum("...n,d->...nd", pos.to(dtype=torch.float32, device=device), omega)
|
||||||
|
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
|
||||||
|
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
||||||
|
return out.to(dtype=torch.float32, device=pos.device)
|
||||||
|
|
||||||
|
|
||||||
|
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
|
||||||
|
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
||||||
|
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
||||||
|
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
||||||
|
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
||||||
|
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
||||||
138
comfy/ldm/flux/model.py
Normal file
138
comfy/ldm/flux/model.py
Normal file
@ -0,0 +1,138 @@
|
|||||||
|
#Original code can be found on: https://github.com/black-forest-labs/flux
|
||||||
|
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import Tensor, nn
|
||||||
|
|
||||||
|
from .layers import (
|
||||||
|
DoubleStreamBlock,
|
||||||
|
EmbedND,
|
||||||
|
LastLayer,
|
||||||
|
MLPEmbedder,
|
||||||
|
SingleStreamBlock,
|
||||||
|
timestep_embedding,
|
||||||
|
)
|
||||||
|
|
||||||
|
from einops import rearrange, repeat
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class FluxParams:
|
||||||
|
in_channels: int
|
||||||
|
vec_in_dim: int
|
||||||
|
context_in_dim: int
|
||||||
|
hidden_size: int
|
||||||
|
mlp_ratio: float
|
||||||
|
num_heads: int
|
||||||
|
depth: int
|
||||||
|
depth_single_blocks: int
|
||||||
|
axes_dim: list
|
||||||
|
theta: int
|
||||||
|
qkv_bias: bool
|
||||||
|
guidance_embed: bool
|
||||||
|
|
||||||
|
|
||||||
|
class Flux(nn.Module):
|
||||||
|
"""
|
||||||
|
Transformer model for flow matching on sequences.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, image_model=None, dtype=None, device=None, operations=None, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.dtype = dtype
|
||||||
|
params = FluxParams(**kwargs)
|
||||||
|
self.params = params
|
||||||
|
self.in_channels = params.in_channels
|
||||||
|
self.out_channels = self.in_channels
|
||||||
|
if params.hidden_size % params.num_heads != 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
||||||
|
)
|
||||||
|
pe_dim = params.hidden_size // params.num_heads
|
||||||
|
if sum(params.axes_dim) != pe_dim:
|
||||||
|
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
||||||
|
self.hidden_size = params.hidden_size
|
||||||
|
self.num_heads = params.num_heads
|
||||||
|
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
||||||
|
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||||
|
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||||
|
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||||
|
self.guidance_in = (
|
||||||
|
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
|
||||||
|
)
|
||||||
|
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
|
||||||
|
|
||||||
|
self.double_blocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
DoubleStreamBlock(
|
||||||
|
self.hidden_size,
|
||||||
|
self.num_heads,
|
||||||
|
mlp_ratio=params.mlp_ratio,
|
||||||
|
qkv_bias=params.qkv_bias,
|
||||||
|
dtype=dtype, device=device, operations=operations
|
||||||
|
)
|
||||||
|
for _ in range(params.depth)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
self.single_blocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
||||||
|
for _ in range(params.depth_single_blocks)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
|
def forward_orig(
|
||||||
|
self,
|
||||||
|
img: Tensor,
|
||||||
|
img_ids: Tensor,
|
||||||
|
txt: Tensor,
|
||||||
|
txt_ids: Tensor,
|
||||||
|
timesteps: Tensor,
|
||||||
|
y: Tensor,
|
||||||
|
guidance: Tensor = None,
|
||||||
|
) -> Tensor:
|
||||||
|
if img.ndim != 3 or txt.ndim != 3:
|
||||||
|
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||||
|
|
||||||
|
# running on sequences img
|
||||||
|
img = self.img_in(img)
|
||||||
|
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
|
||||||
|
if self.params.guidance_embed:
|
||||||
|
if guidance is None:
|
||||||
|
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
||||||
|
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
||||||
|
|
||||||
|
vec = vec + self.vector_in(y)
|
||||||
|
txt = self.txt_in(txt)
|
||||||
|
|
||||||
|
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||||
|
pe = self.pe_embedder(ids)
|
||||||
|
|
||||||
|
for block in self.double_blocks:
|
||||||
|
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
||||||
|
|
||||||
|
img = torch.cat((txt, img), 1)
|
||||||
|
for block in self.single_blocks:
|
||||||
|
img = block(img, vec=vec, pe=pe)
|
||||||
|
img = img[:, txt.shape[1] :, ...]
|
||||||
|
|
||||||
|
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
||||||
|
return img
|
||||||
|
|
||||||
|
def forward(self, x, timestep, context, y, guidance, **kwargs):
|
||||||
|
bs, c, h, w = x.shape
|
||||||
|
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
||||||
|
|
||||||
|
h_len = (h // 2)
|
||||||
|
w_len = (w // 2)
|
||||||
|
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||||
|
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None]
|
||||||
|
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :]
|
||||||
|
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||||
|
|
||||||
|
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||||
|
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance)
|
||||||
|
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)
|
||||||
@ -4,8 +4,9 @@ import torch
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
|
||||||
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm
|
from .... import ops
|
||||||
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
|
from ..modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm
|
||||||
|
from ..modules.diffusionmodules.util import timestep_embedding
|
||||||
from torch.utils import checkpoint
|
from torch.utils import checkpoint
|
||||||
|
|
||||||
from .attn_layers import Attention, CrossAttention
|
from .attn_layers import Attention, CrossAttention
|
||||||
@ -234,7 +235,7 @@ class HunYuanDiT(nn.Module):
|
|||||||
|
|
||||||
if self.use_style_cond:
|
if self.use_style_cond:
|
||||||
# Here we use a default learned embedder layer for future extension.
|
# Here we use a default learned embedder layer for future extension.
|
||||||
self.style_embedder = nn.Embedding(1, hidden_size, dtype=dtype, device=device)
|
self.style_embedder = operations.Embedding(1, hidden_size, dtype=dtype, device=device)
|
||||||
self.extra_in_dim += hidden_size
|
self.extra_in_dim += hidden_size
|
||||||
|
|
||||||
# Text embedding for `add`
|
# Text embedding for `add`
|
||||||
@ -321,7 +322,7 @@ class HunYuanDiT(nn.Module):
|
|||||||
b_t5, l_t5, c_t5 = text_states_t5.shape
|
b_t5, l_t5, c_t5 = text_states_t5.shape
|
||||||
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1)
|
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1)
|
||||||
|
|
||||||
padding = self.text_embedding_padding.to(text_states)
|
padding = ops.cast_to_input(self.text_embedding_padding, text_states)
|
||||||
|
|
||||||
text_states[:,-self.text_len:] = torch.where(text_states_mask[:,-self.text_len:].unsqueeze(2), text_states[:,-self.text_len:], padding[:self.text_len])
|
text_states[:,-self.text_len:] = torch.where(text_states_mask[:,-self.text_len:].unsqueeze(2), text_states[:,-self.text_len:], padding[:self.text_len])
|
||||||
text_states_t5[:,-self.text_len_t5:] = torch.where(text_states_t5_mask[:,-self.text_len_t5:].unsqueeze(2), text_states_t5[:,-self.text_len_t5:], padding[self.text_len:])
|
text_states_t5[:,-self.text_len_t5:] = torch.where(text_states_t5_mask[:,-self.text_len_t5:].unsqueeze(2), text_states_t5[:,-self.text_len_t5:], padding[self.text_len:])
|
||||||
@ -354,7 +355,7 @@ class HunYuanDiT(nn.Module):
|
|||||||
if self.use_style_cond:
|
if self.use_style_cond:
|
||||||
if style is None:
|
if style is None:
|
||||||
style = torch.zeros((extra_vec.shape[0],), device=x.device, dtype=torch.int)
|
style = torch.zeros((extra_vec.shape[0],), device=x.device, dtype=torch.int)
|
||||||
style_embedding = self.style_embedder(style)
|
style_embedding = self.style_embedder(style, out_dtype=x.dtype)
|
||||||
extra_vec = torch.cat([extra_vec, style_embedding], dim=1)
|
extra_vec = torch.cat([extra_vec, style_embedding], dim=1)
|
||||||
|
|
||||||
# Concatenate all extra vectors
|
# Concatenate all extra vectors
|
||||||
|
|||||||
@ -1,8 +1,8 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from comfy.ldm.modules.attention import optimized_attention #TODO
|
from comfy.ldm.modules.attention import optimized_attention
|
||||||
|
import comfy.ops
|
||||||
|
|
||||||
class AttentionPool(nn.Module):
|
class AttentionPool(nn.Module):
|
||||||
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None, dtype=None, device=None, operations=None):
|
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None, dtype=None, device=None, operations=None):
|
||||||
@ -19,7 +19,7 @@ class AttentionPool(nn.Module):
|
|||||||
x = x[:,:self.positional_embedding.shape[0] - 1]
|
x = x[:,:self.positional_embedding.shape[0] - 1]
|
||||||
x = x.permute(1, 0, 2) # NLC -> LNC
|
x = x.permute(1, 0, 2) # NLC -> LNC
|
||||||
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC
|
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC
|
||||||
x = x + self.positional_embedding[:, None, :].to(dtype=x.dtype, device=x.device) # (L+1)NC
|
x = x + comfy.ops.cast_to_input(self.positional_embedding[:, None, :], x) # (L+1)NC
|
||||||
|
|
||||||
q = self.q_proj(x[:1])
|
q = self.q_proj(x[:1])
|
||||||
k = self.k_proj(x)
|
k = self.k_proj(x)
|
||||||
|
|||||||
@ -9,6 +9,7 @@ import torch.nn as nn
|
|||||||
from .. import attention
|
from .. import attention
|
||||||
from einops import rearrange, repeat
|
from einops import rearrange, repeat
|
||||||
from .util import timestep_embedding
|
from .util import timestep_embedding
|
||||||
|
from .... import ops
|
||||||
|
|
||||||
def default(x, y):
|
def default(x, y):
|
||||||
if x is not None:
|
if x is not None:
|
||||||
@ -70,12 +71,14 @@ class PatchEmbed(nn.Module):
|
|||||||
bias: bool = True,
|
bias: bool = True,
|
||||||
strict_img_size: bool = True,
|
strict_img_size: bool = True,
|
||||||
dynamic_img_pad: bool = True,
|
dynamic_img_pad: bool = True,
|
||||||
|
padding_mode='circular',
|
||||||
dtype=None,
|
dtype=None,
|
||||||
device=None,
|
device=None,
|
||||||
operations=None,
|
operations=None,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.patch_size = (patch_size, patch_size)
|
self.patch_size = (patch_size, patch_size)
|
||||||
|
self.padding_mode = padding_mode
|
||||||
if img_size is not None:
|
if img_size is not None:
|
||||||
self.img_size = (img_size, img_size)
|
self.img_size = (img_size, img_size)
|
||||||
self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)])
|
self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)])
|
||||||
@ -111,7 +114,7 @@ class PatchEmbed(nn.Module):
|
|||||||
if self.dynamic_img_pad:
|
if self.dynamic_img_pad:
|
||||||
pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
|
pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
|
||||||
pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
|
pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
|
||||||
x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode='reflect')
|
x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode=self.padding_mode)
|
||||||
x = self.proj(x)
|
x = self.proj(x)
|
||||||
if self.flatten:
|
if self.flatten:
|
||||||
x = x.flatten(2).transpose(1, 2) # NCHW -> NLC
|
x = x.flatten(2).transpose(1, 2) # NCHW -> NLC
|
||||||
@ -927,7 +930,7 @@ class MMDiT(nn.Module):
|
|||||||
context = self.context_processor(context)
|
context = self.context_processor(context)
|
||||||
|
|
||||||
hw = x.shape[-2:]
|
hw = x.shape[-2:]
|
||||||
x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
|
x = self.x_embedder(x) + ops.cast_to_input(self.cropped_pos_embed(hw, device=x.device), x)
|
||||||
c = self.t_embedder(t, dtype=x.dtype) # (N, D)
|
c = self.t_embedder(t, dtype=x.dtype) # (N, D)
|
||||||
if y is not None and self.y_embedder is not None:
|
if y is not None and self.y_embedder is not None:
|
||||||
y = self.y_embedder(y) # (N, D)
|
y = self.y_embedder(y) # (N, D)
|
||||||
|
|||||||
@ -809,7 +809,7 @@ class UNetModel(nn.Module):
|
|||||||
self.out = nn.Sequential(
|
self.out = nn.Sequential(
|
||||||
operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
||||||
nn.SiLU(),
|
nn.SiLU(),
|
||||||
zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
|
operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device),
|
||||||
)
|
)
|
||||||
if self.predict_codebook_ids:
|
if self.predict_codebook_ids:
|
||||||
self.id_predictor = nn.Sequential(
|
self.id_predictor = nn.Sequential(
|
||||||
|
|||||||
@ -19,6 +19,7 @@ from .ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmenta
|
|||||||
from .ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
from .ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
||||||
from .ldm.aura.mmdit import MMDiT as AuraMMDiT
|
from .ldm.aura.mmdit import MMDiT as AuraMMDiT
|
||||||
from .ldm.hydit.models import HunYuanDiT
|
from .ldm.hydit.models import HunYuanDiT
|
||||||
|
from .ldm.flux import model as flux_model
|
||||||
|
|
||||||
class ModelType(Enum):
|
class ModelType(Enum):
|
||||||
EPS = 1
|
EPS = 1
|
||||||
@ -28,9 +29,10 @@ class ModelType(Enum):
|
|||||||
EDM = 5
|
EDM = 5
|
||||||
FLOW = 6
|
FLOW = 6
|
||||||
V_PREDICTION_CONTINUOUS = 7
|
V_PREDICTION_CONTINUOUS = 7
|
||||||
|
FLUX = 8
|
||||||
|
|
||||||
|
|
||||||
from .model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, CONST, ModelSamplingDiscreteFlow, ModelSamplingContinuousV
|
from .model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, CONST, ModelSamplingDiscreteFlow, ModelSamplingContinuousV, ModelSamplingFlux
|
||||||
|
|
||||||
|
|
||||||
def model_sampling(model_config, model_type):
|
def model_sampling(model_config, model_type):
|
||||||
@ -56,6 +58,9 @@ def model_sampling(model_config, model_type):
|
|||||||
elif model_type == ModelType.V_PREDICTION_CONTINUOUS:
|
elif model_type == ModelType.V_PREDICTION_CONTINUOUS:
|
||||||
c = V_PREDICTION
|
c = V_PREDICTION
|
||||||
s = ModelSamplingContinuousV
|
s = ModelSamplingContinuousV
|
||||||
|
elif model_type == ModelType.FLUX:
|
||||||
|
c = CONST
|
||||||
|
s = ModelSamplingFlux
|
||||||
|
|
||||||
class ModelSampling(s, c):
|
class ModelSampling(s, c):
|
||||||
pass
|
pass
|
||||||
@ -255,7 +260,7 @@ class BaseModel(torch.nn.Module):
|
|||||||
else:
|
else:
|
||||||
# TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
|
# TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
|
||||||
area = input_shape[0] * math.prod(input_shape[2:])
|
area = input_shape[0] * math.prod(input_shape[2:])
|
||||||
return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
|
return (area * 0.3) * (1024 * 1024)
|
||||||
|
|
||||||
|
|
||||||
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
|
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
|
||||||
@ -702,3 +707,30 @@ class HunyuanDiT(BaseModel):
|
|||||||
|
|
||||||
out['image_meta_size'] = conds.CONDRegular(torch.FloatTensor([[height, width, target_height, target_width, 0, 0]]))
|
out['image_meta_size'] = conds.CONDRegular(torch.FloatTensor([[height, width, target_height, target_width, 0, 0]]))
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
class Flux(BaseModel):
|
||||||
|
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
|
||||||
|
super().__init__(model_config, model_type, device=device, unet_model=flux_model.Flux)
|
||||||
|
|
||||||
|
def encode_adm(self, **kwargs):
|
||||||
|
return kwargs["pooled_output"]
|
||||||
|
|
||||||
|
def extra_conds(self, **kwargs):
|
||||||
|
out = super().extra_conds(**kwargs)
|
||||||
|
cross_attn = kwargs.get("cross_attn", None)
|
||||||
|
if cross_attn is not None:
|
||||||
|
out['c_crossattn'] = conds.CONDRegular(cross_attn)
|
||||||
|
out['guidance'] = conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 3.5)]))
|
||||||
|
return out
|
||||||
|
|
||||||
|
def memory_required(self, input_shape):
|
||||||
|
if model_management.xformers_enabled() or model_management.pytorch_attention_flash_attention():
|
||||||
|
dtype = self.get_dtype()
|
||||||
|
if self.manual_cast_dtype is not None:
|
||||||
|
dtype = self.manual_cast_dtype
|
||||||
|
#TODO: this probably needs to be tweaked
|
||||||
|
area = input_shape[0] * input_shape[2] * input_shape[3]
|
||||||
|
return (area * model_management.dtype_size(dtype) * 0.020) * (1024 * 1024)
|
||||||
|
else:
|
||||||
|
area = input_shape[0] * input_shape[2] * input_shape[3]
|
||||||
|
return (area * 0.3) * (1024 * 1024)
|
||||||
|
|||||||
@ -127,6 +127,23 @@ def detect_unet_config(state_dict, key_prefix):
|
|||||||
unet_config["image_model"] = "hydit1"
|
unet_config["image_model"] = "hydit1"
|
||||||
return unet_config
|
return unet_config
|
||||||
|
|
||||||
|
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys: #Flux
|
||||||
|
dit_config = {}
|
||||||
|
dit_config["image_model"] = "flux"
|
||||||
|
dit_config["in_channels"] = 64
|
||||||
|
dit_config["vec_in_dim"] = 768
|
||||||
|
dit_config["context_in_dim"] = 4096
|
||||||
|
dit_config["hidden_size"] = 3072
|
||||||
|
dit_config["mlp_ratio"] = 4.0
|
||||||
|
dit_config["num_heads"] = 24
|
||||||
|
dit_config["depth"] = 19
|
||||||
|
dit_config["depth_single_blocks"] = 38
|
||||||
|
dit_config["axes_dim"] = [16, 56, 56]
|
||||||
|
dit_config["theta"] = 10000
|
||||||
|
dit_config["qkv_bias"] = True
|
||||||
|
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||||
|
return dit_config
|
||||||
|
|
||||||
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
|
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|||||||
@ -367,7 +367,7 @@ class LoadedModel:
|
|||||||
|
|
||||||
|
|
||||||
def minimum_inference_memory():
|
def minimum_inference_memory():
|
||||||
return (1024 * 1024 * 1024)
|
return (1024 * 1024 * 1024) * 1.2
|
||||||
|
|
||||||
|
|
||||||
def unload_model_clones(model, unload_weights_only=True, force_unload=True) -> bool | Literal[None]:
|
def unload_model_clones(model, unload_weights_only=True, force_unload=True) -> bool | Literal[None]:
|
||||||
@ -440,7 +440,7 @@ def free_memory(memory_required, device, keep_loaded=[]) -> List[LoadedModel]:
|
|||||||
|
|
||||||
|
|
||||||
@tracer.start_as_current_span("Load Models GPU")
|
@tracer.start_as_current_span("Load Models GPU")
|
||||||
def load_models_gpu(models: Sequence[ModelManageable], memory_required: int = 0, force_patch_weights=False) -> None:
|
def load_models_gpu(models: Sequence[ModelManageable], memory_required: int = 0, force_patch_weights=False, minimum_memory_required=None) -> None:
|
||||||
global vram_state
|
global vram_state
|
||||||
span = get_current_span()
|
span = get_current_span()
|
||||||
if memory_required != 0:
|
if memory_required != 0:
|
||||||
@ -448,6 +448,10 @@ def load_models_gpu(models: Sequence[ModelManageable], memory_required: int = 0,
|
|||||||
with model_management_lock:
|
with model_management_lock:
|
||||||
inference_memory = minimum_inference_memory()
|
inference_memory = minimum_inference_memory()
|
||||||
extra_mem = max(inference_memory, memory_required)
|
extra_mem = max(inference_memory, memory_required)
|
||||||
|
if minimum_memory_required is None:
|
||||||
|
minimum_memory_required = extra_mem
|
||||||
|
else:
|
||||||
|
minimum_memory_required = max(inference_memory, minimum_memory_required)
|
||||||
|
|
||||||
models = set(models)
|
models = set(models)
|
||||||
models_to_load = []
|
models_to_load = []
|
||||||
@ -507,8 +511,8 @@ def load_models_gpu(models: Sequence[ModelManageable], memory_required: int = 0,
|
|||||||
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
|
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
|
||||||
model_size = loaded_model.model_memory_required(torch_dev)
|
model_size = loaded_model.model_memory_required(torch_dev)
|
||||||
current_free_mem = get_free_memory(torch_dev)
|
current_free_mem = get_free_memory(torch_dev)
|
||||||
lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3))
|
lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - minimum_memory_required)))
|
||||||
if model_size <= (current_free_mem - inference_memory): # only switch to lowvram if really necessary
|
if model_size <= lowvram_model_memory: # only switch to lowvram if really necessary
|
||||||
|
|
||||||
lowvram_model_memory = 0
|
lowvram_model_memory = 0
|
||||||
|
|
||||||
@ -735,12 +739,12 @@ def supports_cast(device, dtype): # TODO
|
|||||||
return True
|
return True
|
||||||
if dtype == torch.float16:
|
if dtype == torch.float16:
|
||||||
return True
|
return True
|
||||||
if is_device_mps(device):
|
|
||||||
return False
|
|
||||||
if directml_device: # TODO: test this
|
if directml_device: # TODO: test this
|
||||||
return False
|
return False
|
||||||
if dtype == torch.bfloat16:
|
if dtype == torch.bfloat16:
|
||||||
return True
|
return True
|
||||||
|
if is_device_mps(device):
|
||||||
|
return False
|
||||||
if dtype == torch.float8_e4m3fn:
|
if dtype == torch.float8_e4m3fn:
|
||||||
return True
|
return True
|
||||||
if dtype == torch.float8_e5m2:
|
if dtype == torch.float8_e5m2:
|
||||||
@ -748,6 +752,18 @@ def supports_cast(device, dtype): # TODO
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def pick_weight_dtype(dtype, fallback_dtype, device=None):
|
||||||
|
if dtype is None:
|
||||||
|
dtype = fallback_dtype
|
||||||
|
elif dtype_size(dtype) > dtype_size(fallback_dtype):
|
||||||
|
dtype = fallback_dtype
|
||||||
|
|
||||||
|
if not supports_cast(device, dtype):
|
||||||
|
dtype = fallback_dtype
|
||||||
|
|
||||||
|
return dtype
|
||||||
|
|
||||||
|
|
||||||
def device_supports_non_blocking(device):
|
def device_supports_non_blocking(device):
|
||||||
if is_device_mps(device):
|
if is_device_mps(device):
|
||||||
return False # pytorch bug? mps doesn't support non blocking
|
return False # pytorch bug? mps doesn't support non blocking
|
||||||
@ -982,9 +998,9 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
|
|||||||
if is_device_cpu(device): # TODO ? bf16 works on CPU but is extremely slow
|
if is_device_cpu(device): # TODO ? bf16 works on CPU but is extremely slow
|
||||||
return False
|
return False
|
||||||
|
|
||||||
if device is not None: # TODO not sure about mps bf16 support
|
if device is not None:
|
||||||
if is_device_mps(device):
|
if is_device_mps(device):
|
||||||
return False
|
return True
|
||||||
|
|
||||||
if FORCE_FP32:
|
if FORCE_FP32:
|
||||||
return False
|
return False
|
||||||
@ -992,7 +1008,10 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
|
|||||||
if directml_device:
|
if directml_device:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
if cpu_mode() or mps_mode():
|
if mps_mode():
|
||||||
|
return True
|
||||||
|
|
||||||
|
if cpu_mode():
|
||||||
return False
|
return False
|
||||||
|
|
||||||
if is_intel_xpu():
|
if is_intel_xpu():
|
||||||
|
|||||||
@ -274,3 +274,43 @@ class StableCascadeSampling(ModelSamplingDiscrete):
|
|||||||
|
|
||||||
percent = 1.0 - percent
|
percent = 1.0 - percent
|
||||||
return self.sigma(torch.tensor(percent))
|
return self.sigma(torch.tensor(percent))
|
||||||
|
|
||||||
|
|
||||||
|
def flux_time_shift(mu: float, sigma: float, t):
|
||||||
|
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
||||||
|
|
||||||
|
class ModelSamplingFlux(torch.nn.Module):
|
||||||
|
def __init__(self, model_config=None):
|
||||||
|
super().__init__()
|
||||||
|
if model_config is not None:
|
||||||
|
sampling_settings = model_config.sampling_settings
|
||||||
|
else:
|
||||||
|
sampling_settings = {}
|
||||||
|
|
||||||
|
self.set_parameters(shift=sampling_settings.get("shift", 1.15))
|
||||||
|
|
||||||
|
def set_parameters(self, shift=1.15, timesteps=10000):
|
||||||
|
self.shift = shift
|
||||||
|
ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps))
|
||||||
|
self.register_buffer('sigmas', ts)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def sigma_min(self):
|
||||||
|
return self.sigmas[0]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def sigma_max(self):
|
||||||
|
return self.sigmas[-1]
|
||||||
|
|
||||||
|
def timestep(self, sigma):
|
||||||
|
return sigma
|
||||||
|
|
||||||
|
def sigma(self, timestep):
|
||||||
|
return flux_time_shift(self.shift, 1.0, timestep)
|
||||||
|
|
||||||
|
def percent_to_sigma(self, percent):
|
||||||
|
if percent <= 0.0:
|
||||||
|
return 1.0
|
||||||
|
if percent >= 1.0:
|
||||||
|
return 0.0
|
||||||
|
return 1.0 - percent
|
||||||
|
|||||||
@ -815,15 +815,17 @@ class UNETLoader:
|
|||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def INPUT_TYPES(s):
|
||||||
return {"required": { "unet_name": (get_filename_list_with_downloadable("unet", KNOWN_UNET_MODELS),),
|
return {"required": { "unet_name": (get_filename_list_with_downloadable("unet", KNOWN_UNET_MODELS),),
|
||||||
|
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e5m2"],)
|
||||||
}}
|
}}
|
||||||
RETURN_TYPES = ("MODEL",)
|
RETURN_TYPES = ("MODEL",)
|
||||||
FUNCTION = "load_unet"
|
FUNCTION = "load_unet"
|
||||||
|
|
||||||
CATEGORY = "advanced/loaders"
|
CATEGORY = "advanced/loaders"
|
||||||
|
|
||||||
def load_unet(self, unet_name):
|
def load_unet(self, unet_name, weight_dtype):
|
||||||
|
weight_dtype = {"default":None, "fp8_e4m3fn":torch.float8_e4m3fn, "fp8_e5m2":torch.float8_e4m3fn}[weight_dtype]
|
||||||
unet_path = get_or_download("unet", unet_name, KNOWN_UNET_MODELS)
|
unet_path = get_or_download("unet", unet_name, KNOWN_UNET_MODELS)
|
||||||
model = sd.load_unet(unet_path)
|
model = sd.load_unet(unet_path, dtype=weight_dtype)
|
||||||
return (model,)
|
return (model,)
|
||||||
|
|
||||||
class CLIPLoader:
|
class CLIPLoader:
|
||||||
@ -857,7 +859,7 @@ class DualCLIPLoader:
|
|||||||
def INPUT_TYPES(s):
|
def INPUT_TYPES(s):
|
||||||
return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"),), "clip_name2": (
|
return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"),), "clip_name2": (
|
||||||
folder_paths.get_filename_list("clip"),),
|
folder_paths.get_filename_list("clip"),),
|
||||||
"type": (["sdxl", "sd3"], ),
|
"type": (["sdxl", "sd3", "flux"], ),
|
||||||
}}
|
}}
|
||||||
RETURN_TYPES = ("CLIP",)
|
RETURN_TYPES = ("CLIP",)
|
||||||
FUNCTION = "load_clip"
|
FUNCTION = "load_clip"
|
||||||
@ -871,6 +873,8 @@ class DualCLIPLoader:
|
|||||||
clip_type = sd.CLIPType.STABLE_DIFFUSION
|
clip_type = sd.CLIPType.STABLE_DIFFUSION
|
||||||
elif type == "sd3":
|
elif type == "sd3":
|
||||||
clip_type = sd.CLIPType.SD3
|
clip_type = sd.CLIPType.SD3
|
||||||
|
elif type == "flux":
|
||||||
|
clip_type = sd.CLIPType.FLUX
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown clip type argument passed: {type} for model {clip_name1} and {clip_name2}")
|
raise ValueError(f"Unknown clip type argument passed: {type} for model {clip_name1} and {clip_name2}")
|
||||||
|
|
||||||
@ -1856,6 +1860,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
|||||||
"StyleModelLoader": "Load Style Model",
|
"StyleModelLoader": "Load Style Model",
|
||||||
"CLIPVisionLoader": "Load CLIP Vision",
|
"CLIPVisionLoader": "Load CLIP Vision",
|
||||||
"UpscaleModelLoader": "Load Upscale Model",
|
"UpscaleModelLoader": "Load Upscale Model",
|
||||||
|
"UNETLoader": "Load Diffusion Model",
|
||||||
# Conditioning
|
# Conditioning
|
||||||
"CLIPVisionEncode": "CLIP Vision Encode",
|
"CLIPVisionEncode": "CLIP Vision Encode",
|
||||||
"StyleModelApply": "Apply Style Model",
|
"StyleModelApply": "Apply Style Model",
|
||||||
|
|||||||
50
comfy/ops.py
50
comfy/ops.py
@ -17,25 +17,43 @@
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from . import model_management
|
from . import model_management
|
||||||
|
|
||||||
def cast_bias_weight(s, input):
|
|
||||||
|
def cast_to(weight, dtype=None, device=None, non_blocking=False):
|
||||||
|
return weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||||
|
|
||||||
|
|
||||||
|
def cast_to_input(weight, input, non_blocking=False):
|
||||||
|
return cast_to(weight, input.dtype, input.device, non_blocking=non_blocking)
|
||||||
|
|
||||||
|
|
||||||
|
def cast_bias_weight(s, input=None, dtype=None, device=None):
|
||||||
|
if input is not None:
|
||||||
|
if dtype is None:
|
||||||
|
dtype = input.dtype
|
||||||
|
if device is None:
|
||||||
|
device = input.device
|
||||||
|
|
||||||
bias = None
|
bias = None
|
||||||
non_blocking = model_management.device_should_use_non_blocking(input.device)
|
non_blocking = model_management.device_should_use_non_blocking(device)
|
||||||
if s.bias is not None:
|
if s.bias is not None:
|
||||||
bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
|
bias = cast_to(s.bias, dtype, device, non_blocking=non_blocking)
|
||||||
if s.bias_function is not None:
|
if s.bias_function is not None:
|
||||||
bias = s.bias_function(bias)
|
bias = s.bias_function(bias)
|
||||||
weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
|
weight = cast_to(s.weight, dtype, device, non_blocking=non_blocking)
|
||||||
if s.weight_function is not None:
|
if s.weight_function is not None:
|
||||||
weight = s.weight_function(weight)
|
weight = s.weight_function(weight)
|
||||||
return weight, bias
|
return weight, bias
|
||||||
|
|
||||||
|
|
||||||
class CastWeightBiasOp:
|
class CastWeightBiasOp:
|
||||||
comfy_cast_weights = False
|
comfy_cast_weights = False
|
||||||
weight_function = None
|
weight_function = None
|
||||||
bias_function = None
|
bias_function = None
|
||||||
|
|
||||||
|
|
||||||
class disable_weight_init:
|
class disable_weight_init:
|
||||||
class Linear(torch.nn.Linear, CastWeightBiasOp):
|
class Linear(torch.nn.Linear, CastWeightBiasOp):
|
||||||
def reset_parameters(self):
|
def reset_parameters(self):
|
||||||
@ -107,7 +125,6 @@ class disable_weight_init:
|
|||||||
else:
|
else:
|
||||||
return super().forward(*args, **kwargs)
|
return super().forward(*args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp):
|
class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp):
|
||||||
def reset_parameters(self):
|
def reset_parameters(self):
|
||||||
return None
|
return None
|
||||||
@ -168,6 +185,26 @@ class disable_weight_init:
|
|||||||
else:
|
else:
|
||||||
return super().forward(*args, **kwargs)
|
return super().forward(*args, **kwargs)
|
||||||
|
|
||||||
|
class Embedding(torch.nn.Embedding, CastWeightBiasOp):
|
||||||
|
def reset_parameters(self):
|
||||||
|
self.bias = None
|
||||||
|
return None
|
||||||
|
|
||||||
|
def forward_comfy_cast_weights(self, input, out_dtype=None):
|
||||||
|
output_dtype = out_dtype
|
||||||
|
if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16:
|
||||||
|
out_dtype = None
|
||||||
|
weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype)
|
||||||
|
return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
|
||||||
|
|
||||||
|
def forward(self, *args, **kwargs):
|
||||||
|
if self.comfy_cast_weights:
|
||||||
|
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||||
|
else:
|
||||||
|
if "out_dtype" in kwargs:
|
||||||
|
kwargs.pop("out_dtype")
|
||||||
|
return super().forward(*args, **kwargs)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def conv_nd(s, dims, *args, **kwargs):
|
def conv_nd(s, dims, *args, **kwargs):
|
||||||
if dims == 2:
|
if dims == 2:
|
||||||
@ -202,3 +239,6 @@ class manual_cast(disable_weight_init):
|
|||||||
|
|
||||||
class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
|
class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
|
||||||
comfy_cast_weights = True
|
comfy_cast_weights = True
|
||||||
|
|
||||||
|
class Embedding(disable_weight_init.Embedding):
|
||||||
|
comfy_cast_weights = True
|
||||||
|
|||||||
@ -1,7 +1,7 @@
|
|||||||
import torch
|
import torch
|
||||||
from comfy import model_management
|
from . import model_management
|
||||||
from comfy import utils
|
from . import utils
|
||||||
from comfy import conds
|
from . import conds
|
||||||
|
|
||||||
def prepare_mask(noise_mask, shape, device):
|
def prepare_mask(noise_mask, shape, device):
|
||||||
"""ensures noise mask is of proper dimensions"""
|
"""ensures noise mask is of proper dimensions"""
|
||||||
@ -62,7 +62,9 @@ def prepare_sampling(model, noise_shape, conds):
|
|||||||
device = model.load_device
|
device = model.load_device
|
||||||
real_model = None
|
real_model = None
|
||||||
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
||||||
model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory)
|
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
|
||||||
|
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
|
||||||
|
model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
|
||||||
real_model = model.model
|
real_model = model.model
|
||||||
|
|
||||||
return real_model, conds, models
|
return real_model, conds, models
|
||||||
|
|||||||
24
comfy/sd.py
24
comfy/sd.py
@ -27,6 +27,7 @@ from .text_encoders import sd3_clip
|
|||||||
from .text_encoders import hydit
|
from .text_encoders import hydit
|
||||||
from .text_encoders import sa_t5
|
from .text_encoders import sa_t5
|
||||||
from .text_encoders import aura_t5
|
from .text_encoders import aura_t5
|
||||||
|
from .text_encoders import flux
|
||||||
|
|
||||||
from .ldm.audio.autoencoder import AudioOobleckVAE
|
from .ldm.audio.autoencoder import AudioOobleckVAE
|
||||||
from .ldm.cascade.stage_a import StageA
|
from .ldm.cascade.stage_a import StageA
|
||||||
@ -401,6 +402,7 @@ class CLIPType(Enum):
|
|||||||
SD3 = 3
|
SD3 = 3
|
||||||
STABLE_AUDIO = 4
|
STABLE_AUDIO = 4
|
||||||
HUNYUAN_DIT = 5
|
HUNYUAN_DIT = 5
|
||||||
|
FLUX = 6
|
||||||
|
|
||||||
|
|
||||||
@dataclasses.dataclass
|
@dataclasses.dataclass
|
||||||
@ -458,6 +460,15 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI
|
|||||||
elif clip_type == CLIPType.HUNYUAN_DIT:
|
elif clip_type == CLIPType.HUNYUAN_DIT:
|
||||||
clip_target.clip = hydit.HyditModel
|
clip_target.clip = hydit.HyditModel
|
||||||
clip_target.tokenizer = hydit.HyditTokenizer
|
clip_target.tokenizer = hydit.HyditTokenizer
|
||||||
|
elif clip_type == CLIPType.FLUX:
|
||||||
|
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
|
||||||
|
weight = clip_data[0].get(weight_name, clip_data[1].get(weight_name, None))
|
||||||
|
dtype_t5 = None
|
||||||
|
if weight is not None:
|
||||||
|
dtype_t5 = weight.dtype
|
||||||
|
|
||||||
|
clip_target.clip = flux.flux_clip(dtype_t5=dtype_t5)
|
||||||
|
clip_target.tokenizer = flux.FluxTokenizer
|
||||||
else:
|
else:
|
||||||
clip_target.clip = sdxl_clip.SDXLClipModel
|
clip_target.clip = sdxl_clip.SDXLClipModel
|
||||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||||
@ -580,7 +591,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
|||||||
return (_model_patcher, clip, vae, clipvision)
|
return (_model_patcher, clip, vae, clipvision)
|
||||||
|
|
||||||
|
|
||||||
def load_unet_state_dict(sd): # load unet in diffusers or regular format
|
def load_unet_state_dict(sd, dtype=None): # load unet in diffusers or regular format
|
||||||
|
|
||||||
# Allow loading unets from checkpoint files
|
# Allow loading unets from checkpoint files
|
||||||
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
|
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
|
||||||
@ -589,7 +600,6 @@ def load_unet_state_dict(sd): # load unet in diffusers or regular format
|
|||||||
sd = temp_sd
|
sd = temp_sd
|
||||||
|
|
||||||
parameters = utils.calculate_parameters(sd)
|
parameters = utils.calculate_parameters(sd)
|
||||||
unet_dtype = model_management.unet_dtype(model_params=parameters)
|
|
||||||
load_device = model_management.get_torch_device()
|
load_device = model_management.get_torch_device()
|
||||||
model_config = model_detection.model_config_from_unet(sd, "")
|
model_config = model_detection.model_config_from_unet(sd, "")
|
||||||
|
|
||||||
@ -616,7 +626,11 @@ def load_unet_state_dict(sd): # load unet in diffusers or regular format
|
|||||||
logging.warning("{} {}".format(diffusers_keys[k], k))
|
logging.warning("{} {}".format(diffusers_keys[k], k))
|
||||||
|
|
||||||
offload_device = model_management.unet_offload_device()
|
offload_device = model_management.unet_offload_device()
|
||||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
|
if dtype is None:
|
||||||
|
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
|
||||||
|
else:
|
||||||
|
unet_dtype = dtype
|
||||||
|
|
||||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
||||||
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
||||||
model = model_config.get_model(new_sd, "")
|
model = model_config.get_model(new_sd, "")
|
||||||
@ -628,9 +642,9 @@ def load_unet_state_dict(sd): # load unet in diffusers or regular format
|
|||||||
return model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
|
return model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
|
||||||
|
|
||||||
|
|
||||||
def load_unet(unet_path):
|
def load_unet(unet_path, dtype=None):
|
||||||
sd = utils.load_torch_file(unet_path)
|
sd = utils.load_torch_file(unet_path)
|
||||||
model = load_unet_state_dict(sd)
|
model = load_unet_state_dict(sd, dtype=dtype)
|
||||||
if model is None:
|
if model is None:
|
||||||
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
|
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
|
||||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
|
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
|
||||||
|
|||||||
@ -111,7 +111,10 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
|||||||
assert layer in self.LAYERS
|
assert layer in self.LAYERS
|
||||||
|
|
||||||
config = get_path_as_dict(textmodel_json_config, "sd1_clip_config.json", package=__package__)
|
config = get_path_as_dict(textmodel_json_config, "sd1_clip_config.json", package=__package__)
|
||||||
self.transformer = model_class(config, dtype, device, ops.manual_cast)
|
|
||||||
|
|
||||||
|
self.operations = ops.manual_cast
|
||||||
|
self.transformer = model_class(config, dtype, device, self.operations)
|
||||||
self.num_layers = self.transformer.num_layers
|
self.num_layers = self.transformer.num_layers
|
||||||
|
|
||||||
self.max_length = max_length
|
self.max_length = max_length
|
||||||
@ -157,15 +160,13 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
|||||||
|
|
||||||
def set_up_textual_embeddings(self, tokens, current_embeds):
|
def set_up_textual_embeddings(self, tokens, current_embeds):
|
||||||
out_tokens = []
|
out_tokens = []
|
||||||
next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
|
next_new_token = token_dict_size = current_embeds.weight.shape[0]
|
||||||
embedding_weights = []
|
embedding_weights = []
|
||||||
|
|
||||||
for x in tokens:
|
for x in tokens:
|
||||||
tokens_temp = []
|
tokens_temp = []
|
||||||
for y in x:
|
for y in x:
|
||||||
if isinstance(y, numbers.Integral):
|
if isinstance(y, numbers.Integral):
|
||||||
if y == token_dict_size: # EOS token
|
|
||||||
y = -1
|
|
||||||
tokens_temp += [int(y)]
|
tokens_temp += [int(y)]
|
||||||
else:
|
else:
|
||||||
if y.shape[0] == current_embeds.weight.shape[1]:
|
if y.shape[0] == current_embeds.weight.shape[1]:
|
||||||
@ -180,12 +181,11 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
|||||||
|
|
||||||
n = token_dict_size
|
n = token_dict_size
|
||||||
if len(embedding_weights) > 0:
|
if len(embedding_weights) > 0:
|
||||||
new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
|
new_embedding = self.operations.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
|
||||||
new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
|
new_embedding.weight[:token_dict_size] = current_embeds.weight
|
||||||
for x in embedding_weights:
|
for x in embedding_weights:
|
||||||
new_embedding.weight[n] = x
|
new_embedding.weight[n] = x
|
||||||
n += 1
|
n += 1
|
||||||
new_embedding.weight[n] = current_embeds.weight[-1] # EOS embedding
|
|
||||||
self.transformer.set_input_embeddings(new_embedding)
|
self.transformer.set_input_embeddings(new_embedding)
|
||||||
|
|
||||||
processed_tokens = []
|
processed_tokens = []
|
||||||
@ -214,7 +214,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
|||||||
if self.enable_attention_masks:
|
if self.enable_attention_masks:
|
||||||
attention_mask_model = attention_mask
|
attention_mask_model = attention_mask
|
||||||
|
|
||||||
outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
|
outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
|
||||||
self.transformer.set_input_embeddings(backup_embeds)
|
self.transformer.set_input_embeddings(backup_embeds)
|
||||||
|
|
||||||
if self.layer == "last":
|
if self.layer == "last":
|
||||||
|
|||||||
@ -6,7 +6,7 @@
|
|||||||
"attention_dropout": 0.0,
|
"attention_dropout": 0.0,
|
||||||
"bos_token_id": 0,
|
"bos_token_id": 0,
|
||||||
"dropout": 0.0,
|
"dropout": 0.0,
|
||||||
"eos_token_id": 2,
|
"eos_token_id": 49407,
|
||||||
"hidden_act": "quick_gelu",
|
"hidden_act": "quick_gelu",
|
||||||
"hidden_size": 768,
|
"hidden_size": 768,
|
||||||
"initializer_factor": 1.0,
|
"initializer_factor": 1.0,
|
||||||
|
|||||||
@ -9,6 +9,7 @@ from .text_encoders import sd3_clip
|
|||||||
from .text_encoders import sa_t5
|
from .text_encoders import sa_t5
|
||||||
from .text_encoders import aura_t5
|
from .text_encoders import aura_t5
|
||||||
from .text_encoders import hydit
|
from .text_encoders import hydit
|
||||||
|
from .text_encoders import flux
|
||||||
|
|
||||||
from . import supported_models_base
|
from . import supported_models_base
|
||||||
from . import latent_formats
|
from . import latent_formats
|
||||||
@ -619,7 +620,45 @@ class HunyuanDiT1(HunyuanDiT):
|
|||||||
"linear_end" : 0.03,
|
"linear_end" : 0.03,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
class Flux(supported_models_base.BASE):
|
||||||
|
unet_config = {
|
||||||
|
"image_model": "flux",
|
||||||
|
"guidance_embed": True,
|
||||||
|
}
|
||||||
|
|
||||||
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1]
|
sampling_settings = {
|
||||||
|
}
|
||||||
|
|
||||||
|
unet_extra_config = {}
|
||||||
|
latent_format = latent_formats.Flux
|
||||||
|
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||||
|
|
||||||
|
vae_key_prefix = ["vae."]
|
||||||
|
text_encoder_key_prefix = ["text_encoders."]
|
||||||
|
|
||||||
|
def get_model(self, state_dict, prefix="", device=None):
|
||||||
|
out = model_base.Flux(self, device=device)
|
||||||
|
return out
|
||||||
|
|
||||||
|
def clip_target(self, state_dict={}):
|
||||||
|
return supported_models_base.ClipTarget(flux.FluxTokenizer, flux.FluxClipModel)
|
||||||
|
|
||||||
|
class FluxSchnell(Flux):
|
||||||
|
unet_config = {
|
||||||
|
"image_model": "flux",
|
||||||
|
"guidance_embed": False,
|
||||||
|
}
|
||||||
|
|
||||||
|
sampling_settings = {
|
||||||
|
"multiplier": 1.0,
|
||||||
|
"shift": 1.0,
|
||||||
|
}
|
||||||
|
|
||||||
|
def get_model(self, state_dict, prefix="", device=None):
|
||||||
|
out = model_base.Flux(self, model_type=model_base.ModelType.FLOW, device=device)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, Flux, FluxSchnell]
|
||||||
|
|
||||||
models += [SVD_img2vid]
|
models += [SVD_img2vid]
|
||||||
|
|||||||
@ -1,6 +1,6 @@
|
|||||||
from importlib import resources
|
from importlib import resources
|
||||||
|
|
||||||
from comfy import sd1_clip
|
from .. import sd1_clip
|
||||||
from .spiece_tokenizer import SPieceTokenizer
|
from .spiece_tokenizer import SPieceTokenizer
|
||||||
from ..text_encoders import t5
|
from ..text_encoders import t5
|
||||||
from ..component_model.files import get_path_as_dict
|
from ..component_model.files import get_path_as_dict
|
||||||
|
|||||||
@ -1,5 +1,8 @@
|
|||||||
import torch
|
import torch
|
||||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
|
||||||
|
from .. import ops
|
||||||
|
from ..ldm.modules.attention import optimized_attention_for_device
|
||||||
|
|
||||||
|
|
||||||
class BertAttention(torch.nn.Module):
|
class BertAttention(torch.nn.Module):
|
||||||
def __init__(self, embed_dim, heads, dtype, device, operations):
|
def __init__(self, embed_dim, heads, dtype, device, operations):
|
||||||
@ -86,19 +89,19 @@ class BertEncoder(torch.nn.Module):
|
|||||||
class BertEmbeddings(torch.nn.Module):
|
class BertEmbeddings(torch.nn.Module):
|
||||||
def __init__(self, vocab_size, max_position_embeddings, type_vocab_size, pad_token_id, embed_dim, layer_norm_eps, dtype, device, operations):
|
def __init__(self, vocab_size, max_position_embeddings, type_vocab_size, pad_token_id, embed_dim, layer_norm_eps, dtype, device, operations):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.word_embeddings = torch.nn.Embedding(vocab_size, embed_dim, padding_idx=pad_token_id, dtype=dtype, device=device)
|
self.word_embeddings = operations.Embedding(vocab_size, embed_dim, padding_idx=pad_token_id, dtype=dtype, device=device)
|
||||||
self.position_embeddings = torch.nn.Embedding(max_position_embeddings, embed_dim, dtype=dtype, device=device)
|
self.position_embeddings = operations.Embedding(max_position_embeddings, embed_dim, dtype=dtype, device=device)
|
||||||
self.token_type_embeddings = torch.nn.Embedding(type_vocab_size, embed_dim, dtype=dtype, device=device)
|
self.token_type_embeddings = operations.Embedding(type_vocab_size, embed_dim, dtype=dtype, device=device)
|
||||||
|
|
||||||
self.LayerNorm = operations.LayerNorm(embed_dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
self.LayerNorm = operations.LayerNorm(embed_dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||||
|
|
||||||
def forward(self, input_tokens, token_type_ids=None):
|
def forward(self, input_tokens, token_type_ids=None, dtype=None):
|
||||||
x = self.word_embeddings(input_tokens)
|
x = self.word_embeddings(input_tokens, out_dtype=dtype)
|
||||||
x += self.position_embeddings.weight[:x.shape[1]]
|
x += ops.cast_to_input(self.position_embeddings.weight[:x.shape[1]], x)
|
||||||
if token_type_ids is not None:
|
if token_type_ids is not None:
|
||||||
x += self.token_type_embeddings(token_type_ids)
|
x += self.token_type_embeddings(token_type_ids, out_dtype=x.dtype)
|
||||||
else:
|
else:
|
||||||
x += self.token_type_embeddings.weight[0]
|
x += ops.cast_to_input(self.token_type_embeddings.weight[0], x)
|
||||||
x = self.LayerNorm(x)
|
x = self.LayerNorm(x)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
@ -112,8 +115,8 @@ class BertModel_(torch.nn.Module):
|
|||||||
self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations)
|
self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations)
|
||||||
self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations)
|
self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations)
|
||||||
|
|
||||||
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
|
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
|
||||||
x = self.embeddings(input_tokens)
|
x = self.embeddings(input_tokens, dtype=dtype)
|
||||||
mask = None
|
mask = None
|
||||||
if attention_mask is not None:
|
if attention_mask is not None:
|
||||||
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
||||||
|
|||||||
77
comfy/text_encoders/flux.py
Normal file
77
comfy/text_encoders/flux.py
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
import torch
|
||||||
|
from transformers import T5TokenizerFast
|
||||||
|
|
||||||
|
from .t5 import T5
|
||||||
|
from .. import sd1_clip, model_management
|
||||||
|
from ..component_model import files
|
||||||
|
|
||||||
|
|
||||||
|
class T5XXLModel(sd1_clip.SDClipModel):
|
||||||
|
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, textmodel_json_config=None):
|
||||||
|
textmodel_json_config = files.get_path_as_dict(textmodel_json_config, "t5_config_xxl.json", package=__package__)
|
||||||
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5)
|
||||||
|
|
||||||
|
|
||||||
|
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||||
|
def __init__(self, embedding_directory=None, tokenizer_data=None):
|
||||||
|
if tokenizer_data is None:
|
||||||
|
tokenizer_data = dict()
|
||||||
|
tokenizer_path = files.get_package_as_path("comfy.text_encoders.t5_tokenizer")
|
||||||
|
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||||||
|
|
||||||
|
|
||||||
|
class FluxTokenizer:
|
||||||
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||||
|
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory)
|
||||||
|
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
|
||||||
|
|
||||||
|
def tokenize_with_weights(self, text: str, return_word_ids=False):
|
||||||
|
out = {}
|
||||||
|
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||||
|
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
|
||||||
|
return out
|
||||||
|
|
||||||
|
def untokenize(self, token_weight_pair):
|
||||||
|
return self.clip_g.untokenize(token_weight_pair)
|
||||||
|
|
||||||
|
def state_dict(self):
|
||||||
|
return {}
|
||||||
|
|
||||||
|
|
||||||
|
class FluxClipModel(torch.nn.Module):
|
||||||
|
def __init__(self, dtype_t5=None, device="cpu", dtype=None):
|
||||||
|
super().__init__()
|
||||||
|
dtype_t5 = model_management.pick_weight_dtype(dtype_t5, dtype, device)
|
||||||
|
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False)
|
||||||
|
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5)
|
||||||
|
self.dtypes = set([dtype, dtype_t5])
|
||||||
|
|
||||||
|
def set_clip_options(self, options):
|
||||||
|
self.clip_l.set_clip_options(options)
|
||||||
|
self.t5xxl.set_clip_options(options)
|
||||||
|
|
||||||
|
def reset_clip_options(self):
|
||||||
|
self.clip_l.reset_clip_options()
|
||||||
|
self.t5xxl.reset_clip_options()
|
||||||
|
|
||||||
|
def encode_token_weights(self, token_weight_pairs):
|
||||||
|
token_weight_pairs_l = token_weight_pairs["l"]
|
||||||
|
token_weight_pars_t5 = token_weight_pairs["t5xxl"]
|
||||||
|
|
||||||
|
t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pars_t5)
|
||||||
|
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
||||||
|
return t5_out, l_pooled
|
||||||
|
|
||||||
|
def load_sd(self, sd):
|
||||||
|
if "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
|
||||||
|
return self.clip_l.load_sd(sd)
|
||||||
|
else:
|
||||||
|
return self.t5xxl.load_sd(sd)
|
||||||
|
|
||||||
|
|
||||||
|
def flux_clip(dtype_t5=None):
|
||||||
|
class FluxClipModel_(FluxClipModel):
|
||||||
|
def __init__(self, device="cpu", dtype=None):
|
||||||
|
super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype)
|
||||||
|
|
||||||
|
return FluxClipModel_
|
||||||
@ -1,12 +1,10 @@
|
|||||||
from importlib import resources
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from transformers import BertTokenizer
|
from transformers import BertTokenizer
|
||||||
|
|
||||||
import comfy.text_encoders.t5
|
|
||||||
from comfy import sd1_clip
|
|
||||||
from .bert import BertModel
|
from .bert import BertModel
|
||||||
from .spiece_tokenizer import SPieceTokenizer
|
from .spiece_tokenizer import SPieceTokenizer
|
||||||
|
from .t5 import T5
|
||||||
|
from .. import sd1_clip
|
||||||
from ..component_model.files import get_path_as_dict, get_package_as_path
|
from ..component_model.files import get_path_as_dict, get_package_as_path
|
||||||
|
|
||||||
|
|
||||||
@ -25,7 +23,7 @@ class HyditBertTokenizer(sd1_clip.SDTokenizer):
|
|||||||
class MT5XLModel(sd1_clip.SDClipModel):
|
class MT5XLModel(sd1_clip.SDClipModel):
|
||||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, textmodel_json_config=None):
|
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, textmodel_json_config=None):
|
||||||
textmodel_json_config = get_path_as_dict(textmodel_json_config, "mt5_config_xl.json", package=__package__)
|
textmodel_json_config = get_path_as_dict(textmodel_json_config, "mt5_config_xl.json", package=__package__)
|
||||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True)
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5, enable_attention_masks=True, return_attention_masks=True)
|
||||||
|
|
||||||
|
|
||||||
class MT5XLTokenizer(sd1_clip.SDTokenizer):
|
class MT5XLTokenizer(sd1_clip.SDTokenizer):
|
||||||
@ -65,8 +63,8 @@ class HyditTokenizer:
|
|||||||
class HyditModel(torch.nn.Module):
|
class HyditModel(torch.nn.Module):
|
||||||
def __init__(self, device="cpu", dtype=None):
|
def __init__(self, device="cpu", dtype=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.hydit_clip = HyditBertModel()
|
self.hydit_clip = HyditBertModel(dtype=dtype)
|
||||||
self.mt5xl = MT5XLModel()
|
self.mt5xl = MT5XLModel(dtype=dtype)
|
||||||
|
|
||||||
self.dtypes = set()
|
self.dtypes = set()
|
||||||
if dtype is not None:
|
if dtype is not None:
|
||||||
|
|||||||
@ -1,14 +1,14 @@
|
|||||||
from transformers import T5TokenizerFast
|
from transformers import T5TokenizerFast
|
||||||
|
|
||||||
import comfy.text_encoders.t5
|
from .t5 import T5
|
||||||
from comfy import sd1_clip
|
from .. import sd1_clip
|
||||||
from comfy.component_model import files
|
from ..component_model import files
|
||||||
|
|
||||||
|
|
||||||
class T5BaseModel(sd1_clip.SDClipModel):
|
class T5BaseModel(sd1_clip.SDClipModel):
|
||||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, textmodel_json_config=None):
|
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, textmodel_json_config=None):
|
||||||
textmodel_json_config = files.get_path_as_dict(textmodel_json_config, "t5_config_base.json", package=__package__)
|
textmodel_json_config = files.get_path_as_dict(textmodel_json_config, "t5_config_base.json", package=__package__)
|
||||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=True)
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5, enable_attention_masks=True, zero_out_masked=True)
|
||||||
|
|
||||||
|
|
||||||
class T5BaseTokenizer(sd1_clip.SDTokenizer):
|
class T5BaseTokenizer(sd1_clip.SDTokenizer):
|
||||||
|
|||||||
@ -5,7 +5,7 @@
|
|||||||
"attention_dropout": 0.0,
|
"attention_dropout": 0.0,
|
||||||
"bos_token_id": 0,
|
"bos_token_id": 0,
|
||||||
"dropout": 0.0,
|
"dropout": 0.0,
|
||||||
"eos_token_id": 2,
|
"eos_token_id": 49407,
|
||||||
"hidden_act": "gelu",
|
"hidden_act": "gelu",
|
||||||
"hidden_size": 1024,
|
"hidden_size": 1024,
|
||||||
"initializer_factor": 1.0,
|
"initializer_factor": 1.0,
|
||||||
|
|||||||
@ -3,17 +3,16 @@ import logging
|
|||||||
import torch
|
import torch
|
||||||
from transformers import T5TokenizerFast
|
from transformers import T5TokenizerFast
|
||||||
|
|
||||||
import comfy.model_management
|
from .t5 import T5
|
||||||
import comfy.text_encoders.t5
|
from .. import sd1_clip, model_management
|
||||||
from comfy import sd1_clip
|
from .. import sdxl_clip
|
||||||
from comfy import sdxl_clip
|
from ..component_model import files
|
||||||
from comfy.component_model import files
|
|
||||||
|
|
||||||
|
|
||||||
class T5XXLModel(sd1_clip.SDClipModel):
|
class T5XXLModel(sd1_clip.SDClipModel):
|
||||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, textmodel_json_config=None):
|
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, textmodel_json_config=None):
|
||||||
textmodel_json_config = files.get_path_as_dict(textmodel_json_config, "t5_config_xxl.json", package=__package__)
|
textmodel_json_config = files.get_path_as_dict(textmodel_json_config, "t5_config_xxl.json", package=__package__)
|
||||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5)
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5)
|
||||||
|
|
||||||
|
|
||||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||||
@ -24,8 +23,6 @@ class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
|||||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
|
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class SD3Tokenizer:
|
class SD3Tokenizer:
|
||||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory)
|
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory)
|
||||||
@ -45,6 +42,7 @@ class SD3Tokenizer:
|
|||||||
def state_dict(self):
|
def state_dict(self):
|
||||||
return dict()
|
return dict()
|
||||||
|
|
||||||
|
|
||||||
class SD3ClipModel(torch.nn.Module):
|
class SD3ClipModel(torch.nn.Module):
|
||||||
def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, device="cpu", dtype=None):
|
def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, device="cpu", dtype=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -62,14 +60,7 @@ class SD3ClipModel(torch.nn.Module):
|
|||||||
self.clip_g = None
|
self.clip_g = None
|
||||||
|
|
||||||
if t5:
|
if t5:
|
||||||
if dtype_t5 is None:
|
dtype_t5 = model_management.pick_weight_dtype(dtype_t5, dtype, device)
|
||||||
dtype_t5 = dtype
|
|
||||||
elif comfy.model_management.dtype_size(dtype_t5) > comfy.model_management.dtype_size(dtype):
|
|
||||||
dtype_t5 = dtype
|
|
||||||
|
|
||||||
if not comfy.model_management.supports_cast(device, dtype_t5):
|
|
||||||
dtype_t5 = dtype
|
|
||||||
|
|
||||||
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5)
|
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5)
|
||||||
self.dtypes.add(dtype_t5)
|
self.dtypes.add(dtype_t5)
|
||||||
else:
|
else:
|
||||||
@ -105,7 +96,7 @@ class SD3ClipModel(torch.nn.Module):
|
|||||||
if self.clip_l is not None:
|
if self.clip_l is not None:
|
||||||
lg_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
lg_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
||||||
else:
|
else:
|
||||||
l_pooled = torch.zeros((1, 768), device=comfy.model_management.intermediate_device())
|
l_pooled = torch.zeros((1, 768), device=model_management.intermediate_device())
|
||||||
|
|
||||||
if self.clip_g is not None:
|
if self.clip_g is not None:
|
||||||
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
|
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
|
||||||
@ -115,7 +106,7 @@ class SD3ClipModel(torch.nn.Module):
|
|||||||
lg_out = torch.nn.functional.pad(g_out, (768, 0))
|
lg_out = torch.nn.functional.pad(g_out, (768, 0))
|
||||||
else:
|
else:
|
||||||
g_out = None
|
g_out = None
|
||||||
g_pooled = torch.zeros((1, 1280), device=comfy.model_management.intermediate_device())
|
g_pooled = torch.zeros((1, 1280), device=model_management.intermediate_device())
|
||||||
|
|
||||||
if lg_out is not None:
|
if lg_out is not None:
|
||||||
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
|
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
|
||||||
@ -130,10 +121,10 @@ class SD3ClipModel(torch.nn.Module):
|
|||||||
out = t5_out
|
out = t5_out
|
||||||
|
|
||||||
if out is None:
|
if out is None:
|
||||||
out = torch.zeros((1, 77, 4096), device=comfy.model_management.intermediate_device())
|
out = torch.zeros((1, 77, 4096), device=model_management.intermediate_device())
|
||||||
|
|
||||||
if pooled is None:
|
if pooled is None:
|
||||||
pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device())
|
pooled = torch.zeros((1, 768 + 1280), device=model_management.intermediate_device())
|
||||||
|
|
||||||
return out, pooled
|
return out, pooled
|
||||||
|
|
||||||
|
|||||||
@ -1,6 +1,10 @@
|
|||||||
import torch
|
|
||||||
import math
|
import math
|
||||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from .. import ops
|
||||||
|
from ..ldm.modules.attention import optimized_attention_for_device
|
||||||
|
|
||||||
|
|
||||||
class T5LayerNorm(torch.nn.Module):
|
class T5LayerNorm(torch.nn.Module):
|
||||||
def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None, operations=None):
|
def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None, operations=None):
|
||||||
@ -11,13 +15,15 @@ class T5LayerNorm(torch.nn.Module):
|
|||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
variance = x.pow(2).mean(-1, keepdim=True)
|
variance = x.pow(2).mean(-1, keepdim=True)
|
||||||
x = x * torch.rsqrt(variance + self.variance_epsilon)
|
x = x * torch.rsqrt(variance + self.variance_epsilon)
|
||||||
return self.weight.to(device=x.device, dtype=x.dtype) * x
|
return ops.cast_to_input(self.weight, x) * x
|
||||||
|
|
||||||
|
|
||||||
activations = {
|
activations = {
|
||||||
"gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
|
"gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
|
||||||
"relu": torch.nn.functional.relu,
|
"relu": torch.nn.functional.relu,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
class T5DenseActDense(torch.nn.Module):
|
class T5DenseActDense(torch.nn.Module):
|
||||||
def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations):
|
def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -32,6 +38,7 @@ class T5DenseActDense(torch.nn.Module):
|
|||||||
x = self.wo(x)
|
x = self.wo(x)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
class T5DenseGatedActDense(torch.nn.Module):
|
class T5DenseGatedActDense(torch.nn.Module):
|
||||||
def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations):
|
def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -49,6 +56,7 @@ class T5DenseGatedActDense(torch.nn.Module):
|
|||||||
x = self.wo(x)
|
x = self.wo(x)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
class T5LayerFF(torch.nn.Module):
|
class T5LayerFF(torch.nn.Module):
|
||||||
def __init__(self, model_dim, ff_dim, ff_activation, gated_act, dtype, device, operations):
|
def __init__(self, model_dim, ff_dim, ff_activation, gated_act, dtype, device, operations):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -67,6 +75,7 @@ class T5LayerFF(torch.nn.Module):
|
|||||||
x += forwarded_states
|
x += forwarded_states
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
class T5Attention(torch.nn.Module):
|
class T5Attention(torch.nn.Module):
|
||||||
def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations):
|
def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -82,7 +91,7 @@ class T5Attention(torch.nn.Module):
|
|||||||
if relative_attention_bias:
|
if relative_attention_bias:
|
||||||
self.relative_attention_num_buckets = 32
|
self.relative_attention_num_buckets = 32
|
||||||
self.relative_attention_max_distance = 128
|
self.relative_attention_max_distance = 128
|
||||||
self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device)
|
self.relative_attention_bias = operations.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device, dtype=dtype)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
||||||
@ -121,9 +130,9 @@ class T5Attention(torch.nn.Module):
|
|||||||
|
|
||||||
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
||||||
relative_position_if_large = max_exact + (
|
relative_position_if_large = max_exact + (
|
||||||
torch.log(relative_position.float() / max_exact)
|
torch.log(relative_position.float() / max_exact)
|
||||||
/ math.log(max_distance / max_exact)
|
/ math.log(max_distance / max_exact)
|
||||||
* (num_buckets - max_exact)
|
* (num_buckets - max_exact)
|
||||||
).to(torch.long)
|
).to(torch.long)
|
||||||
relative_position_if_large = torch.min(
|
relative_position_if_large = torch.min(
|
||||||
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
|
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
|
||||||
@ -132,7 +141,7 @@ class T5Attention(torch.nn.Module):
|
|||||||
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
|
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
|
||||||
return relative_buckets
|
return relative_buckets
|
||||||
|
|
||||||
def compute_bias(self, query_length, key_length, device):
|
def compute_bias(self, query_length, key_length, device, dtype):
|
||||||
"""Compute binned relative position bias"""
|
"""Compute binned relative position bias"""
|
||||||
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
|
||||||
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
|
||||||
@ -143,7 +152,7 @@ class T5Attention(torch.nn.Module):
|
|||||||
num_buckets=self.relative_attention_num_buckets,
|
num_buckets=self.relative_attention_num_buckets,
|
||||||
max_distance=self.relative_attention_max_distance,
|
max_distance=self.relative_attention_max_distance,
|
||||||
)
|
)
|
||||||
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
values = self.relative_attention_bias(relative_position_bucket, out_dtype=dtype) # shape (query_length, key_length, num_heads)
|
||||||
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
||||||
return values
|
return values
|
||||||
|
|
||||||
@ -152,7 +161,7 @@ class T5Attention(torch.nn.Module):
|
|||||||
k = self.k(x)
|
k = self.k(x)
|
||||||
v = self.v(x)
|
v = self.v(x)
|
||||||
if self.relative_attention_bias is not None:
|
if self.relative_attention_bias is not None:
|
||||||
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device)
|
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device, x.dtype)
|
||||||
|
|
||||||
if past_bias is not None:
|
if past_bias is not None:
|
||||||
if mask is not None:
|
if mask is not None:
|
||||||
@ -163,6 +172,7 @@ class T5Attention(torch.nn.Module):
|
|||||||
out = optimized_attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask)
|
out = optimized_attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask)
|
||||||
return self.o(out), past_bias
|
return self.o(out), past_bias
|
||||||
|
|
||||||
|
|
||||||
class T5LayerSelfAttention(torch.nn.Module):
|
class T5LayerSelfAttention(torch.nn.Module):
|
||||||
def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations):
|
def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -177,6 +187,7 @@ class T5LayerSelfAttention(torch.nn.Module):
|
|||||||
x += output
|
x += output
|
||||||
return x, past_bias
|
return x, past_bias
|
||||||
|
|
||||||
|
|
||||||
class T5Block(torch.nn.Module):
|
class T5Block(torch.nn.Module):
|
||||||
def __init__(self, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias, dtype, device, operations):
|
def __init__(self, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias, dtype, device, operations):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -189,6 +200,7 @@ class T5Block(torch.nn.Module):
|
|||||||
x = self.layer[-1](x)
|
x = self.layer[-1](x)
|
||||||
return x, past_bias
|
return x, past_bias
|
||||||
|
|
||||||
|
|
||||||
class T5Stack(torch.nn.Module):
|
class T5Stack(torch.nn.Module):
|
||||||
def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention, dtype, device, operations):
|
def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention, dtype, device, operations):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -199,7 +211,7 @@ class T5Stack(torch.nn.Module):
|
|||||||
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
|
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
|
||||||
# self.dropout = nn.Dropout(config.dropout_rate)
|
# self.dropout = nn.Dropout(config.dropout_rate)
|
||||||
|
|
||||||
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
|
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
|
||||||
mask = None
|
mask = None
|
||||||
if attention_mask is not None:
|
if attention_mask is not None:
|
||||||
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
||||||
@ -217,6 +229,7 @@ class T5Stack(torch.nn.Module):
|
|||||||
intermediate = self.final_layer_norm(intermediate)
|
intermediate = self.final_layer_norm(intermediate)
|
||||||
return x, intermediate
|
return x, intermediate
|
||||||
|
|
||||||
|
|
||||||
class T5(torch.nn.Module):
|
class T5(torch.nn.Module):
|
||||||
def __init__(self, config_dict, dtype, device, operations):
|
def __init__(self, config_dict, dtype, device, operations):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -225,7 +238,7 @@ class T5(torch.nn.Module):
|
|||||||
|
|
||||||
self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["is_gated_act"], config_dict["num_heads"], config_dict["model_type"] != "umt5", dtype, device, operations)
|
self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["is_gated_act"], config_dict["num_heads"], config_dict["model_type"] != "umt5", dtype, device, operations)
|
||||||
self.dtype = dtype
|
self.dtype = dtype
|
||||||
self.shared = torch.nn.Embedding(config_dict["vocab_size"], model_dim, device=device)
|
self.shared = operations.Embedding(config_dict["vocab_size"], model_dim, device=device, dtype=dtype)
|
||||||
|
|
||||||
def get_input_embeddings(self):
|
def get_input_embeddings(self):
|
||||||
return self.shared
|
return self.shared
|
||||||
@ -234,5 +247,7 @@ class T5(torch.nn.Module):
|
|||||||
self.shared = embeddings
|
self.shared = embeddings
|
||||||
|
|
||||||
def forward(self, input_ids, *args, **kwargs):
|
def forward(self, input_ids, *args, **kwargs):
|
||||||
x = self.shared(input_ids)
|
x = self.shared(input_ids, out_dtype=kwargs.get("dtype", torch.float32))
|
||||||
|
if self.dtype not in [torch.float32, torch.float16, torch.bfloat16]:
|
||||||
|
x = torch.nan_to_num(x) # Fix for fp8 T5 base
|
||||||
return self.encoder(x, *args, **kwargs)
|
return self.encoder(x, *args, **kwargs)
|
||||||
|
|||||||
@ -4,8 +4,6 @@ import contextlib
|
|||||||
import itertools
|
import itertools
|
||||||
import logging
|
import logging
|
||||||
import math
|
import math
|
||||||
import os
|
|
||||||
import os.path
|
|
||||||
import random
|
import random
|
||||||
import struct
|
import struct
|
||||||
import sys
|
import sys
|
||||||
@ -45,7 +43,7 @@ def load_torch_file(ckpt, safe_load=False, device=None):
|
|||||||
device = torch.device("cpu")
|
device = torch.device("cpu")
|
||||||
if ckpt is None:
|
if ckpt is None:
|
||||||
raise FileNotFoundError("the checkpoint was not found")
|
raise FileNotFoundError("the checkpoint was not found")
|
||||||
if ckpt.lower().endswith(".safetensors"):
|
if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"):
|
||||||
sd = safetensors.torch.load_file(ckpt, device=device.type)
|
sd = safetensors.torch.load_file(ckpt, device=device.type)
|
||||||
else:
|
else:
|
||||||
if safe_load:
|
if safe_load:
|
||||||
|
|||||||
27
comfy_extras/nodes_flux.py
Normal file
27
comfy_extras/nodes_flux.py
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
|
||||||
|
class CLIPTextEncodeFlux:
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(s):
|
||||||
|
return {"required": {
|
||||||
|
"clip": ("CLIP", ),
|
||||||
|
"clip_l": ("STRING", {"multiline": True, "dynamicPrompts": True}),
|
||||||
|
"t5xxl": ("STRING", {"multiline": True, "dynamicPrompts": True}),
|
||||||
|
"guidance": ("FLOAT", {"default": 3.5, "min": 0.0, "max": 100.0, "step": 0.1}),
|
||||||
|
}}
|
||||||
|
RETURN_TYPES = ("CONDITIONING",)
|
||||||
|
FUNCTION = "encode"
|
||||||
|
|
||||||
|
CATEGORY = "advanced/conditioning"
|
||||||
|
|
||||||
|
def encode(self, clip, clip_l, t5xxl, guidance):
|
||||||
|
tokens = clip.tokenize(clip_l)
|
||||||
|
tokens["t5xxl"] = clip.tokenize(t5xxl)["t5xxl"]
|
||||||
|
|
||||||
|
output = clip.encode_from_tokens(tokens, return_pooled=True, return_dict=True)
|
||||||
|
cond = output.pop("cond")
|
||||||
|
output["guidance"] = guidance
|
||||||
|
return ([[cond, output]], )
|
||||||
|
|
||||||
|
NODE_CLASS_MAPPINGS = {
|
||||||
|
"CLIPTextEncodeFlux": CLIPTextEncodeFlux,
|
||||||
|
}
|
||||||
0
folder_paths.py
Normal file
0
folder_paths.py
Normal file
Loading…
Reference in New Issue
Block a user