mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-10 06:10:50 +08:00
Merge branch 'master' into patch-5
This commit is contained in:
commit
4916544c8d
@ -53,6 +53,16 @@ try:
|
||||
repo.stash(ident)
|
||||
except KeyError:
|
||||
print("nothing to stash") # noqa: T201
|
||||
except:
|
||||
print("Could not stash, cleaning index and trying again.") # noqa: T201
|
||||
repo.state_cleanup()
|
||||
repo.index.read_tree(repo.head.peel().tree)
|
||||
repo.index.write()
|
||||
try:
|
||||
repo.stash(ident)
|
||||
except KeyError:
|
||||
print("nothing to stash.") # noqa: T201
|
||||
|
||||
backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S'))
|
||||
print("creating backup branch: {}".format(backup_branch_name)) # noqa: T201
|
||||
try:
|
||||
@ -66,8 +76,10 @@ if branch is None:
|
||||
try:
|
||||
ref = repo.lookup_reference('refs/remotes/origin/master')
|
||||
except:
|
||||
print("pulling.") # noqa: T201
|
||||
pull(repo)
|
||||
print("fetching.") # noqa: T201
|
||||
for remote in repo.remotes:
|
||||
if remote.name == "origin":
|
||||
remote.fetch()
|
||||
ref = repo.lookup_reference('refs/remotes/origin/master')
|
||||
repo.checkout(ref)
|
||||
branch = repo.lookup_branch('master')
|
||||
@ -149,3 +161,4 @@ try:
|
||||
shutil.copy(stable_update_script, stable_update_script_to)
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
As of the time of writing this you need this preview driver for best results:
|
||||
https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-PREVIEW.html
|
||||
As of the time of writing this you need this driver for best results:
|
||||
https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-7-1-1.html
|
||||
|
||||
HOW TO RUN:
|
||||
|
||||
@ -25,3 +25,4 @@ In the ComfyUI directory you will find a file: extra_model_paths.yaml.example
|
||||
Rename this file to: extra_model_paths.yaml and edit it with your favorite text editor.
|
||||
|
||||
|
||||
|
||||
|
||||
@ -0,0 +1,3 @@
|
||||
..\python_embeded\python.exe -s ..\ComfyUI\main.py --windows-standalone-build --disable-api-nodes
|
||||
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
|
||||
pause
|
||||
@ -1,2 +1,3 @@
|
||||
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build
|
||||
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
|
||||
pause
|
||||
|
||||
@ -1,2 +1,3 @@
|
||||
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
|
||||
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
|
||||
pause
|
||||
|
||||
8
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
8
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@ -8,13 +8,15 @@ body:
|
||||
Before submitting a **Bug Report**, please ensure the following:
|
||||
|
||||
- **1:** You are running the latest version of ComfyUI.
|
||||
- **2:** You have looked at the existing bug reports and made sure this isn't already reported.
|
||||
- **2:** You have your ComfyUI logs and relevant workflow on hand and will post them in this bug report.
|
||||
- **3:** You confirmed that the bug is not caused by a custom node. You can disable all custom nodes by passing
|
||||
`--disable-all-custom-nodes` command line argument.
|
||||
`--disable-all-custom-nodes` command line argument. If you have custom node try updating them to the latest version.
|
||||
- **4:** This is an actual bug in ComfyUI, not just a support question. A bug is when you can specify exact
|
||||
steps to replicate what went wrong and others will be able to repeat your steps and see the same issue happen.
|
||||
|
||||
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
|
||||
## Very Important
|
||||
|
||||
Please make sure that you post ALL your ComfyUI logs in the bug report. A bug report without logs will likely be ignored.
|
||||
- type: checkboxes
|
||||
id: custom-nodes-test
|
||||
attributes:
|
||||
|
||||
21
.github/PULL_REQUEST_TEMPLATE/api-node.md
vendored
Normal file
21
.github/PULL_REQUEST_TEMPLATE/api-node.md
vendored
Normal file
@ -0,0 +1,21 @@
|
||||
<!-- API_NODE_PR_CHECKLIST: do not remove -->
|
||||
|
||||
## API Node PR Checklist
|
||||
|
||||
### Scope
|
||||
- [ ] **Is API Node Change**
|
||||
|
||||
### Pricing & Billing
|
||||
- [ ] **Need pricing update**
|
||||
- [ ] **No pricing update**
|
||||
|
||||
If **Need pricing update**:
|
||||
- [ ] Metronome rate cards updated
|
||||
- [ ] Auto‑billing tests updated and passing
|
||||
|
||||
### QA
|
||||
- [ ] **QA done**
|
||||
- [ ] **QA not required**
|
||||
|
||||
### Comms
|
||||
- [ ] Informed **Kosinkadink**
|
||||
58
.github/workflows/api-node-template.yml
vendored
Normal file
58
.github/workflows/api-node-template.yml
vendored
Normal file
@ -0,0 +1,58 @@
|
||||
name: Append API Node PR template
|
||||
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [opened, reopened, synchronize, ready_for_review]
|
||||
paths:
|
||||
- 'comfy_api_nodes/**' # only run if these files changed
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
pull-requests: write
|
||||
|
||||
jobs:
|
||||
inject:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Ensure template exists and append to PR body
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
const { owner, repo } = context.repo;
|
||||
const number = context.payload.pull_request.number;
|
||||
const templatePath = '.github/PULL_REQUEST_TEMPLATE/api-node.md';
|
||||
const marker = '<!-- API_NODE_PR_CHECKLIST: do not remove -->';
|
||||
|
||||
const { data: pr } = await github.rest.pulls.get({ owner, repo, pull_number: number });
|
||||
|
||||
let templateText;
|
||||
try {
|
||||
const res = await github.rest.repos.getContent({
|
||||
owner,
|
||||
repo,
|
||||
path: templatePath,
|
||||
ref: pr.base.ref
|
||||
});
|
||||
const buf = Buffer.from(res.data.content, res.data.encoding || 'base64');
|
||||
templateText = buf.toString('utf8');
|
||||
} catch (e) {
|
||||
core.setFailed(`Required PR template not found at "${templatePath}" on ${pr.base.ref}. Please add it to the repo.`);
|
||||
return;
|
||||
}
|
||||
|
||||
// Enforce the presence of the marker inside the template (for idempotence)
|
||||
if (!templateText.includes(marker)) {
|
||||
core.setFailed(`Template at "${templatePath}" does not contain the required marker:\n${marker}\nAdd it so we can detect duplicates safely.`);
|
||||
return;
|
||||
}
|
||||
|
||||
// If the PR already contains the marker, do not append again.
|
||||
const body = pr.body || '';
|
||||
if (body.includes(marker)) {
|
||||
core.info('Template already present in PR body; nothing to inject.');
|
||||
return;
|
||||
}
|
||||
|
||||
const newBody = (body ? body + '\n\n' : '') + templateText + '\n';
|
||||
await github.rest.pulls.update({ owner, repo, pull_number: number, body: newBody });
|
||||
core.notice('API Node template appended to PR description.');
|
||||
27
.github/workflows/release-stable-all.yml
vendored
27
.github/workflows/release-stable-all.yml
vendored
@ -14,13 +14,13 @@ jobs:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
name: "Release NVIDIA Default (cu129)"
|
||||
name: "Release NVIDIA Default (cu130)"
|
||||
uses: ./.github/workflows/stable-release.yml
|
||||
with:
|
||||
git_tag: ${{ inputs.git_tag }}
|
||||
cache_tag: "cu129"
|
||||
cache_tag: "cu130"
|
||||
python_minor: "13"
|
||||
python_patch: "6"
|
||||
python_patch: "9"
|
||||
rel_name: "nvidia"
|
||||
rel_extra_name: ""
|
||||
test_release: true
|
||||
@ -43,16 +43,33 @@ jobs:
|
||||
test_release: true
|
||||
secrets: inherit
|
||||
|
||||
release_nvidia_cu126:
|
||||
permissions:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
name: "Release NVIDIA cu126"
|
||||
uses: ./.github/workflows/stable-release.yml
|
||||
with:
|
||||
git_tag: ${{ inputs.git_tag }}
|
||||
cache_tag: "cu126"
|
||||
python_minor: "12"
|
||||
python_patch: "10"
|
||||
rel_name: "nvidia"
|
||||
rel_extra_name: "_cu126"
|
||||
test_release: true
|
||||
secrets: inherit
|
||||
|
||||
release_amd_rocm:
|
||||
permissions:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
name: "Release AMD ROCm 6.4.4"
|
||||
name: "Release AMD ROCm 7.1.1"
|
||||
uses: ./.github/workflows/stable-release.yml
|
||||
with:
|
||||
git_tag: ${{ inputs.git_tag }}
|
||||
cache_tag: "rocm644"
|
||||
cache_tag: "rocm711"
|
||||
python_minor: "12"
|
||||
python_patch: "10"
|
||||
rel_name: "amd"
|
||||
|
||||
21
.github/workflows/test-ci.yml
vendored
21
.github/workflows/test-ci.yml
vendored
@ -5,6 +5,7 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
- release/**
|
||||
paths-ignore:
|
||||
- 'app/**'
|
||||
- 'input/**'
|
||||
@ -21,14 +22,15 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
# os: [macos, linux, windows]
|
||||
os: [macos, linux]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12"]
|
||||
# os: [macos, linux]
|
||||
os: [linux]
|
||||
python_version: ["3.10", "3.11", "3.12"]
|
||||
cuda_version: ["12.1"]
|
||||
torch_version: ["stable"]
|
||||
include:
|
||||
- os: macos
|
||||
runner_label: [self-hosted, macOS]
|
||||
flags: "--use-pytorch-cross-attention"
|
||||
# - os: macos
|
||||
# runner_label: [self-hosted, macOS]
|
||||
# flags: "--use-pytorch-cross-attention"
|
||||
- os: linux
|
||||
runner_label: [self-hosted, Linux]
|
||||
flags: ""
|
||||
@ -73,14 +75,15 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [macos, linux]
|
||||
# os: [macos, linux]
|
||||
os: [linux]
|
||||
python_version: ["3.11"]
|
||||
cuda_version: ["12.1"]
|
||||
torch_version: ["nightly"]
|
||||
include:
|
||||
- os: macos
|
||||
runner_label: [self-hosted, macOS]
|
||||
flags: "--use-pytorch-cross-attention"
|
||||
# - os: macos
|
||||
# runner_label: [self-hosted, macOS]
|
||||
# flags: "--use-pytorch-cross-attention"
|
||||
- os: linux
|
||||
runner_label: [self-hosted, Linux]
|
||||
flags: ""
|
||||
|
||||
4
.github/workflows/test-execution.yml
vendored
4
.github/workflows/test-execution.yml
vendored
@ -2,9 +2,9 @@ name: Execution Tests
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main, master ]
|
||||
branches: [ main, master, release/** ]
|
||||
pull_request:
|
||||
branches: [ main, master ]
|
||||
branches: [ main, master, release/** ]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
|
||||
4
.github/workflows/test-launch.yml
vendored
4
.github/workflows/test-launch.yml
vendored
@ -2,9 +2,9 @@ name: Test server launches without errors
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main, master ]
|
||||
branches: [ main, master, release/** ]
|
||||
pull_request:
|
||||
branches: [ main, master ]
|
||||
branches: [ main, master, release/** ]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
|
||||
4
.github/workflows/test-unit.yml
vendored
4
.github/workflows/test-unit.yml
vendored
@ -2,9 +2,9 @@ name: Unit Tests
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main, master ]
|
||||
branches: [ main, master, release/** ]
|
||||
pull_request:
|
||||
branches: [ main, master ]
|
||||
branches: [ main, master, release/** ]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
|
||||
1
.github/workflows/update-version.yml
vendored
1
.github/workflows/update-version.yml
vendored
@ -6,6 +6,7 @@ on:
|
||||
- "pyproject.toml"
|
||||
branches:
|
||||
- master
|
||||
- release/**
|
||||
|
||||
jobs:
|
||||
update-version:
|
||||
|
||||
@ -17,7 +17,7 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "129"
|
||||
default: "130"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
@ -29,7 +29,7 @@ on:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "6"
|
||||
default: "9"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
|
||||
@ -1,3 +1,2 @@
|
||||
# Admins
|
||||
* @comfyanonymous
|
||||
* @kosinkadink
|
||||
* @comfyanonymous @kosinkadink @guill
|
||||
|
||||
168
QUANTIZATION.md
Normal file
168
QUANTIZATION.md
Normal file
@ -0,0 +1,168 @@
|
||||
# The Comfy guide to Quantization
|
||||
|
||||
|
||||
## How does quantization work?
|
||||
|
||||
Quantization aims to map a high-precision value x_f to a lower precision format with minimal loss in accuracy. These smaller formats then serve to reduce the models memory footprint and increase throughput by using specialized hardware.
|
||||
|
||||
When simply converting a value from FP16 to FP8 using the round-nearest method we might hit two issues:
|
||||
- The dynamic range of FP16 (-65,504, 65,504) far exceeds FP8 formats like E4M3 (-448, 448) or E5M2 (-57,344, 57,344), potentially resulting in clipped values
|
||||
- The original values are concentrated in a small range (e.g. -1,1) leaving many FP8-bits "unused"
|
||||
|
||||
By using a scaling factor, we aim to map these values into the quantized-dtype range, making use of the full spectrum. One of the easiest approaches, and common, is using per-tensor absolute-maximum scaling.
|
||||
|
||||
```
|
||||
absmax = max(abs(tensor))
|
||||
scale = amax / max_dynamic_range_low_precision
|
||||
|
||||
# Quantization
|
||||
tensor_q = (tensor / scale).to(low_precision_dtype)
|
||||
|
||||
# De-Quantization
|
||||
tensor_dq = tensor_q.to(fp16) * scale
|
||||
|
||||
tensor_dq ~ tensor
|
||||
```
|
||||
|
||||
Given that additional information (scaling factor) is needed to "interpret" the quantized values, we describe those as derived datatypes.
|
||||
|
||||
|
||||
## Quantization in Comfy
|
||||
|
||||
```
|
||||
QuantizedTensor (torch.Tensor subclass)
|
||||
↓ __torch_dispatch__
|
||||
Two-Level Registry (generic + layout handlers)
|
||||
↓
|
||||
MixedPrecisionOps + Metadata Detection
|
||||
```
|
||||
|
||||
### Representation
|
||||
|
||||
To represent these derived datatypes, ComfyUI uses a subclass of torch.Tensor to implements these using the `QuantizedTensor` class found in `comfy/quant_ops.py`
|
||||
|
||||
A `Layout` class defines how a specific quantization format behaves:
|
||||
- Required parameters
|
||||
- Quantize method
|
||||
- De-Quantize method
|
||||
|
||||
```python
|
||||
from comfy.quant_ops import QuantizedLayout
|
||||
|
||||
class MyLayout(QuantizedLayout):
|
||||
@classmethod
|
||||
def quantize(cls, tensor, **kwargs):
|
||||
# Convert to quantized format
|
||||
qdata = ...
|
||||
params = {'scale': ..., 'orig_dtype': tensor.dtype}
|
||||
return qdata, params
|
||||
|
||||
@staticmethod
|
||||
def dequantize(qdata, scale, orig_dtype, **kwargs):
|
||||
return qdata.to(orig_dtype) * scale
|
||||
```
|
||||
|
||||
To then run operations using these QuantizedTensors we use two registry systems to define supported operations.
|
||||
The first is a **generic registry** that handles operations common to all quantized formats (e.g., `.to()`, `.clone()`, `.reshape()`).
|
||||
|
||||
The second registry is layout-specific and allows to implement fast-paths like nn.Linear.
|
||||
```python
|
||||
from comfy.quant_ops import register_layout_op
|
||||
|
||||
@register_layout_op(torch.ops.aten.linear.default, MyLayout)
|
||||
def my_linear(func, args, kwargs):
|
||||
# Extract tensors, call optimized kernel
|
||||
...
|
||||
```
|
||||
When `torch.nn.functional.linear()` is called with QuantizedTensor arguments, `__torch_dispatch__` automatically routes to the registered implementation.
|
||||
For any unsupported operation, QuantizedTensor will fallback to call `dequantize` and dispatch using the high-precision implementation.
|
||||
|
||||
|
||||
### Mixed Precision
|
||||
|
||||
The `MixedPrecisionOps` class (lines 542-648 in `comfy/ops.py`) enables per-layer quantization decisions, allowing different layers in a model to use different precisions. This is activated when a model config contains a `layer_quant_config` dictionary that specifies which layers should be quantized and how.
|
||||
|
||||
**Architecture:**
|
||||
|
||||
```python
|
||||
class MixedPrecisionOps(disable_weight_init):
|
||||
_layer_quant_config = {} # Maps layer names to quantization configs
|
||||
_compute_dtype = torch.bfloat16 # Default compute / dequantize precision
|
||||
```
|
||||
|
||||
**Key mechanism:**
|
||||
|
||||
The custom `Linear._load_from_state_dict()` method inspects each layer during model loading:
|
||||
- If the layer name is **not** in `_layer_quant_config`: load weight as regular tensor in `_compute_dtype`
|
||||
- If the layer name **is** in `_layer_quant_config`:
|
||||
- Load weight as `QuantizedTensor` with the specified layout (e.g., `TensorCoreFP8Layout`)
|
||||
- Load associated quantization parameters (scales, block_size, etc.)
|
||||
|
||||
**Why it's needed:**
|
||||
|
||||
Not all layers tolerate quantization equally. Sensitive operations like final projections can be kept in higher precision, while compute-heavy matmuls are quantized. This provides most of the performance benefits while maintaining quality.
|
||||
|
||||
The system is selected in `pick_operations()` when `model_config.layer_quant_config` is present, making it the highest-priority operation mode.
|
||||
|
||||
|
||||
## Checkpoint Format
|
||||
|
||||
Quantized checkpoints are stored as standard safetensors files with quantized weight tensors and associated scaling parameters, plus a `_quantization_metadata` JSON entry describing the quantization scheme.
|
||||
|
||||
The quantized checkpoint will contain the same layers as the original checkpoint but:
|
||||
- The weights are stored as quantized values, sometimes using a different storage datatype. E.g. uint8 container for fp8.
|
||||
- For each quantized weight a number of additional scaling parameters are stored alongside depending on the recipe.
|
||||
- We store a metadata.json in the metadata of the final safetensor containing the `_quantization_metadata` describing which layers are quantized and what layout has been used.
|
||||
|
||||
### Scaling Parameters details
|
||||
We define 4 possible scaling parameters that should cover most recipes in the near-future:
|
||||
- **weight_scale**: quantization scalers for the weights
|
||||
- **weight_scale_2**: global scalers in the context of double scaling
|
||||
- **pre_quant_scale**: scalers used for smoothing salient weights
|
||||
- **input_scale**: quantization scalers for the activations
|
||||
|
||||
| Format | Storage dtype | weight_scale | weight_scale_2 | pre_quant_scale | input_scale |
|
||||
|--------|---------------|--------------|----------------|-----------------|-------------|
|
||||
| float8_e4m3fn | float32 | float32 (scalar) | - | - | float32 (scalar) |
|
||||
|
||||
You can find the defined formats in `comfy/quant_ops.py` (QUANT_ALGOS).
|
||||
|
||||
### Quantization Metadata
|
||||
|
||||
The metadata stored alongside the checkpoint contains:
|
||||
- **format_version**: String to define a version of the standard
|
||||
- **layers**: A dictionary mapping layer names to their quantization format. The format string maps to the definitions found in `QUANT_ALGOS`.
|
||||
|
||||
Example:
|
||||
```json
|
||||
{
|
||||
"_quantization_metadata": {
|
||||
"format_version": "1.0",
|
||||
"layers": {
|
||||
"model.layers.0.mlp.up_proj": "float8_e4m3fn",
|
||||
"model.layers.0.mlp.down_proj": "float8_e4m3fn",
|
||||
"model.layers.1.mlp.up_proj": "float8_e4m3fn"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## Creating Quantized Checkpoints
|
||||
|
||||
To create compatible checkpoints, use any quantization tool provided the output follows the checkpoint format described above and uses a layout defined in `QUANT_ALGOS`.
|
||||
|
||||
### Weight Quantization
|
||||
|
||||
Weight quantization is straightforward - compute the scaling factor directly from the weight tensor using the absolute maximum method described earlier. Each layer's weights are quantized independently and stored with their corresponding `weight_scale` parameter.
|
||||
|
||||
### Calibration (for Activation Quantization)
|
||||
|
||||
Activation quantization (e.g., for FP8 Tensor Core operations) requires `input_scale` parameters that cannot be determined from static weights alone. Since activation values depend on actual inputs, we use **post-training calibration (PTQ)**:
|
||||
|
||||
1. **Collect statistics**: Run inference on N representative samples
|
||||
2. **Track activations**: Record the absolute maximum (`amax`) of inputs to each quantized layer
|
||||
3. **Compute scales**: Derive `input_scale` from collected statistics
|
||||
4. **Store in checkpoint**: Save `input_scale` parameters alongside weights
|
||||
|
||||
The calibration dataset should be representative of your target use case. For diffusion models, this typically means a diverse set of prompts and generation parameters.
|
||||
63
README.md
63
README.md
@ -67,6 +67,8 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
|
||||
- [Qwen Image](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/)
|
||||
- [Hunyuan Image 2.1](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_image/)
|
||||
- [Flux 2](https://comfyanonymous.github.io/ComfyUI_examples/flux2/)
|
||||
- [Z Image](https://comfyanonymous.github.io/ComfyUI_examples/z_image/)
|
||||
- Image Editing Models
|
||||
- [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/)
|
||||
- [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model)
|
||||
@ -79,6 +81,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
|
||||
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
|
||||
- [Wan 2.2](https://comfyanonymous.github.io/ComfyUI_examples/wan22/)
|
||||
- [Hunyuan Video 1.5](https://docs.comfy.org/tutorials/video/hunyuan/hunyuan-video-1-5)
|
||||
- Audio Models
|
||||
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||
- [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||
@ -112,10 +115,14 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
|
||||
|
||||
## Release Process
|
||||
|
||||
ComfyUI follows a weekly release cycle targeting Friday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
|
||||
ComfyUI follows a weekly release cycle targeting Monday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
|
||||
|
||||
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
|
||||
- Releases a new stable version (e.g., v0.7.0)
|
||||
- Releases a new stable version (e.g., v0.7.0) roughly every week.
|
||||
- Starting from v0.4.0 patch versions will be used for fixes backported onto the current stable release.
|
||||
- Minor versions will be used for releases off the master branch.
|
||||
- Patch versions may still be used for releases on the master branch in cases where a backport would not make sense.
|
||||
- Commits outside of the stable release tags may be very unstable and break many custom nodes.
|
||||
- Serves as the foundation for the desktop release
|
||||
|
||||
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
|
||||
@ -172,15 +179,19 @@ There is a portable standalone build for Windows that should work for running on
|
||||
|
||||
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia.7z)
|
||||
|
||||
Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints
|
||||
Simply download, extract with [7-Zip](https://7-zip.org) or with the windows explorer on recent windows versions and run. For smaller models you normally only need to put the checkpoints (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints but many of the larger models have multiple files. Make sure to follow the instructions to know which subfolder to put them in ComfyUI\models\
|
||||
|
||||
If you have trouble extracting it, right click the file -> properties -> unblock
|
||||
|
||||
Update your Nvidia drivers if it doesn't start.
|
||||
|
||||
#### Alternative Downloads:
|
||||
|
||||
[Experimental portable for AMD GPUs](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_amd.7z)
|
||||
|
||||
[Portable with pytorch cuda 12.8 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu128.7z) (Supports Nvidia 10 series and older GPUs).
|
||||
[Portable with pytorch cuda 12.8 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu128.7z).
|
||||
|
||||
[Portable with pytorch cuda 12.6 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu126.7z) (Supports Nvidia 10 series and older GPUs).
|
||||
|
||||
#### How do I share models between another UI and ComfyUI?
|
||||
|
||||
@ -197,7 +208,13 @@ comfy install
|
||||
|
||||
## Manual Install (Windows, Linux)
|
||||
|
||||
Python 3.13 is very well supported. If you have trouble with some custom node dependencies you can try 3.12
|
||||
Python 3.14 works but you may encounter issues with the torch compile node. The free threaded variant is still missing some dependencies.
|
||||
|
||||
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12
|
||||
|
||||
torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch unless it is less than 2 weeks old.
|
||||
|
||||
### Instructions:
|
||||
|
||||
Git clone this repo.
|
||||
|
||||
@ -214,7 +231,7 @@ AMD users can install rocm and pytorch with pip if you don't have it already ins
|
||||
|
||||
This is the command to install the nightly with ROCm 7.0 which might have some performance improvements:
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm7.0```
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm7.1```
|
||||
|
||||
|
||||
### AMD GPUs (Experimental: Windows and Linux), RDNA 3, 3.5 and 4 only.
|
||||
@ -235,7 +252,7 @@ RDNA 4 (RX 9000 series):
|
||||
|
||||
### Intel GPUs (Windows and Linux)
|
||||
|
||||
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
|
||||
Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
|
||||
|
||||
1. To install PyTorch xpu, use the following command:
|
||||
|
||||
@ -245,15 +262,11 @@ This is the command to install the Pytorch xpu nightly which might have some per
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu```
|
||||
|
||||
(Option 2) Alternatively, Intel GPUs supported by Intel Extension for PyTorch (IPEX) can leverage IPEX for improved performance.
|
||||
|
||||
1. visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
|
||||
|
||||
### NVIDIA
|
||||
|
||||
Nvidia users should install stable pytorch using this command:
|
||||
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu129```
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu130```
|
||||
|
||||
This is the command to install pytorch nightly instead which might have performance improvements.
|
||||
|
||||
@ -312,6 +325,32 @@ For models compatible with Iluvatar Extension for PyTorch. Here's a step-by-step
|
||||
1. Install the Iluvatar Corex Toolkit by adhering to the platform-specific instructions on the [Installation](https://support.iluvatar.com/#/DocumentCentre?id=1&nameCenter=2&productId=520117912052801536)
|
||||
2. Launch ComfyUI by running `python main.py`
|
||||
|
||||
|
||||
## [ComfyUI-Manager](https://github.com/Comfy-Org/ComfyUI-Manager/tree/manager-v4)
|
||||
|
||||
**ComfyUI-Manager** is an extension that allows you to easily install, update, and manage custom nodes for ComfyUI.
|
||||
|
||||
### Setup
|
||||
|
||||
1. Install the manager dependencies:
|
||||
```bash
|
||||
pip install -r manager_requirements.txt
|
||||
```
|
||||
|
||||
2. Enable the manager with the `--enable-manager` flag when running ComfyUI:
|
||||
```bash
|
||||
python main.py --enable-manager
|
||||
```
|
||||
|
||||
### Command Line Options
|
||||
|
||||
| Flag | Description |
|
||||
|------|-------------|
|
||||
| `--enable-manager` | Enable ComfyUI-Manager |
|
||||
| `--enable-manager-legacy-ui` | Use the legacy manager UI instead of the new UI (requires `--enable-manager`) |
|
||||
| `--disable-manager-ui` | Disable the manager UI and endpoints while keeping background features like security checks and scheduled installation completion (requires `--enable-manager`) |
|
||||
|
||||
|
||||
# Running
|
||||
|
||||
```python main.py```
|
||||
|
||||
@ -58,8 +58,13 @@ class InternalRoutes:
|
||||
return web.json_response({"error": "Invalid directory type"}, status=400)
|
||||
|
||||
directory = get_directory_by_type(directory_type)
|
||||
|
||||
def is_visible_file(entry: os.DirEntry) -> bool:
|
||||
"""Filter out hidden files (e.g., .DS_Store on macOS)."""
|
||||
return entry.is_file() and not entry.name.startswith('.')
|
||||
|
||||
sorted_files = sorted(
|
||||
(entry for entry in os.scandir(directory) if entry.is_file()),
|
||||
(entry for entry in os.scandir(directory) if is_visible_file(entry)),
|
||||
key=lambda entry: -entry.stat().st_mtime
|
||||
)
|
||||
return web.json_response([entry.name for entry in sorted_files], status=200)
|
||||
|
||||
@ -10,7 +10,8 @@ import importlib
|
||||
from dataclasses import dataclass
|
||||
from functools import cached_property
|
||||
from pathlib import Path
|
||||
from typing import TypedDict, Optional
|
||||
from typing import Dict, TypedDict, Optional
|
||||
from aiohttp import web
|
||||
from importlib.metadata import version
|
||||
|
||||
import requests
|
||||
@ -257,7 +258,54 @@ comfyui-frontend-package is not installed.
|
||||
sys.exit(-1)
|
||||
|
||||
@classmethod
|
||||
def templates_path(cls) -> str:
|
||||
def template_asset_map(cls) -> Optional[Dict[str, str]]:
|
||||
"""Return a mapping of template asset names to their absolute paths."""
|
||||
try:
|
||||
from comfyui_workflow_templates import (
|
||||
get_asset_path,
|
||||
iter_templates,
|
||||
)
|
||||
except ImportError:
|
||||
logging.error(
|
||||
f"""
|
||||
********** ERROR ***********
|
||||
|
||||
comfyui-workflow-templates is not installed.
|
||||
|
||||
{frontend_install_warning_message()}
|
||||
|
||||
********** ERROR ***********
|
||||
""".strip()
|
||||
)
|
||||
return None
|
||||
|
||||
try:
|
||||
template_entries = list(iter_templates())
|
||||
except Exception as exc:
|
||||
logging.error(f"Failed to enumerate workflow templates: {exc}")
|
||||
return None
|
||||
|
||||
asset_map: Dict[str, str] = {}
|
||||
try:
|
||||
for entry in template_entries:
|
||||
for asset in entry.assets:
|
||||
asset_map[asset.filename] = get_asset_path(
|
||||
entry.template_id, asset.filename
|
||||
)
|
||||
except Exception as exc:
|
||||
logging.error(f"Failed to resolve template asset paths: {exc}")
|
||||
return None
|
||||
|
||||
if not asset_map:
|
||||
logging.error("No workflow template assets found. Did the packages install correctly?")
|
||||
return None
|
||||
|
||||
return asset_map
|
||||
|
||||
|
||||
@classmethod
|
||||
def legacy_templates_path(cls) -> Optional[str]:
|
||||
"""Return the legacy templates directory shipped inside the meta package."""
|
||||
try:
|
||||
import comfyui_workflow_templates
|
||||
|
||||
@ -276,6 +324,7 @@ comfyui-workflow-templates is not installed.
|
||||
********** ERROR ***********
|
||||
""".strip()
|
||||
)
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def embedded_docs_path(cls) -> str:
|
||||
@ -392,3 +441,17 @@ comfyui-workflow-templates is not installed.
|
||||
logging.info("Falling back to the default frontend.")
|
||||
check_frontend_version()
|
||||
return cls.default_frontend_path()
|
||||
@classmethod
|
||||
def template_asset_handler(cls):
|
||||
assets = cls.template_asset_map()
|
||||
if not assets:
|
||||
return None
|
||||
|
||||
async def serve_template(request: web.Request) -> web.StreamResponse:
|
||||
rel_path = request.match_info.get("path", "")
|
||||
target = assets.get(rel_path)
|
||||
if target is None:
|
||||
raise web.HTTPNotFound()
|
||||
return web.FileResponse(target)
|
||||
|
||||
return serve_template
|
||||
|
||||
112
app/subgraph_manager.py
Normal file
112
app/subgraph_manager.py
Normal file
@ -0,0 +1,112 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TypedDict
|
||||
import os
|
||||
import folder_paths
|
||||
import glob
|
||||
from aiohttp import web
|
||||
import hashlib
|
||||
|
||||
|
||||
class Source:
|
||||
custom_node = "custom_node"
|
||||
|
||||
class SubgraphEntry(TypedDict):
|
||||
source: str
|
||||
"""
|
||||
Source of subgraph - custom_nodes vs templates.
|
||||
"""
|
||||
path: str
|
||||
"""
|
||||
Relative path of the subgraph file.
|
||||
For custom nodes, will be the relative directory like <custom_node_dir>/subgraphs/<name>.json
|
||||
"""
|
||||
name: str
|
||||
"""
|
||||
Name of subgraph file.
|
||||
"""
|
||||
info: CustomNodeSubgraphEntryInfo
|
||||
"""
|
||||
Additional info about subgraph; in the case of custom_nodes, will contain nodepack name
|
||||
"""
|
||||
data: str
|
||||
|
||||
class CustomNodeSubgraphEntryInfo(TypedDict):
|
||||
node_pack: str
|
||||
"""Node pack name."""
|
||||
|
||||
class SubgraphManager:
|
||||
def __init__(self):
|
||||
self.cached_custom_node_subgraphs: dict[SubgraphEntry] | None = None
|
||||
|
||||
async def load_entry_data(self, entry: SubgraphEntry):
|
||||
with open(entry['path'], 'r') as f:
|
||||
entry['data'] = f.read()
|
||||
return entry
|
||||
|
||||
async def sanitize_entry(self, entry: SubgraphEntry | None, remove_data=False) -> SubgraphEntry | None:
|
||||
if entry is None:
|
||||
return None
|
||||
entry = entry.copy()
|
||||
entry.pop('path', None)
|
||||
if remove_data:
|
||||
entry.pop('data', None)
|
||||
return entry
|
||||
|
||||
async def sanitize_entries(self, entries: dict[str, SubgraphEntry], remove_data=False) -> dict[str, SubgraphEntry]:
|
||||
entries = entries.copy()
|
||||
for key in list(entries.keys()):
|
||||
entries[key] = await self.sanitize_entry(entries[key], remove_data)
|
||||
return entries
|
||||
|
||||
async def get_custom_node_subgraphs(self, loadedModules, force_reload=False):
|
||||
# if not forced to reload and cached, return cache
|
||||
if not force_reload and self.cached_custom_node_subgraphs is not None:
|
||||
return self.cached_custom_node_subgraphs
|
||||
# Load subgraphs from custom nodes
|
||||
subfolder = "subgraphs"
|
||||
subgraphs_dict: dict[SubgraphEntry] = {}
|
||||
|
||||
for folder in folder_paths.get_folder_paths("custom_nodes"):
|
||||
pattern = os.path.join(folder, f"*/{subfolder}/*.json")
|
||||
matched_files = glob.glob(pattern)
|
||||
for file in matched_files:
|
||||
# replace backslashes with forward slashes
|
||||
file = file.replace('\\', '/')
|
||||
info: CustomNodeSubgraphEntryInfo = {
|
||||
"node_pack": "custom_nodes." + file.split('/')[-3]
|
||||
}
|
||||
source = Source.custom_node
|
||||
# hash source + path to make sure id will be as unique as possible, but
|
||||
# reproducible across backend reloads
|
||||
id = hashlib.sha256(f"{source}{file}".encode()).hexdigest()
|
||||
entry: SubgraphEntry = {
|
||||
"source": Source.custom_node,
|
||||
"name": os.path.splitext(os.path.basename(file))[0],
|
||||
"path": file,
|
||||
"info": info,
|
||||
}
|
||||
subgraphs_dict[id] = entry
|
||||
self.cached_custom_node_subgraphs = subgraphs_dict
|
||||
return subgraphs_dict
|
||||
|
||||
async def get_custom_node_subgraph(self, id: str, loadedModules):
|
||||
subgraphs = await self.get_custom_node_subgraphs(loadedModules)
|
||||
entry: SubgraphEntry = subgraphs.get(id, None)
|
||||
if entry is not None and entry.get('data', None) is None:
|
||||
await self.load_entry_data(entry)
|
||||
return entry
|
||||
|
||||
def add_routes(self, routes, loadedModules):
|
||||
@routes.get("/global_subgraphs")
|
||||
async def get_global_subgraphs(request):
|
||||
subgraphs_dict = await self.get_custom_node_subgraphs(loadedModules)
|
||||
# NOTE: we may want to include other sources of global subgraphs such as templates in the future;
|
||||
# that's the reasoning for the current implementation
|
||||
return web.json_response(await self.sanitize_entries(subgraphs_dict, remove_data=True))
|
||||
|
||||
@routes.get("/global_subgraphs/{id}")
|
||||
async def get_global_subgraph(request):
|
||||
id = request.match_info.get("id", None)
|
||||
subgraph = await self.get_custom_node_subgraph(id, loadedModules)
|
||||
return web.json_response(await self.sanitize_entry(subgraph))
|
||||
@ -59,6 +59,9 @@ class UserManager():
|
||||
user = "default"
|
||||
if args.multi_user and "comfy-user" in request.headers:
|
||||
user = request.headers["comfy-user"]
|
||||
# Block System Users (use same error message to prevent probing)
|
||||
if user.startswith(folder_paths.SYSTEM_USER_PREFIX):
|
||||
raise KeyError("Unknown user: " + user)
|
||||
|
||||
if user not in self.users:
|
||||
raise KeyError("Unknown user: " + user)
|
||||
@ -66,15 +69,16 @@ class UserManager():
|
||||
return user
|
||||
|
||||
def get_request_user_filepath(self, request, file, type="userdata", create_dir=True):
|
||||
user_directory = folder_paths.get_user_directory()
|
||||
|
||||
if type == "userdata":
|
||||
root_dir = user_directory
|
||||
root_dir = folder_paths.get_user_directory()
|
||||
else:
|
||||
raise KeyError("Unknown filepath type:" + type)
|
||||
|
||||
user = self.get_request_user_id(request)
|
||||
path = user_root = os.path.abspath(os.path.join(root_dir, user))
|
||||
user_root = folder_paths.get_public_user_directory(user)
|
||||
if user_root is None:
|
||||
return None
|
||||
path = user_root
|
||||
|
||||
# prevent leaving /{type}
|
||||
if os.path.commonpath((root_dir, user_root)) != root_dir:
|
||||
@ -101,7 +105,11 @@ class UserManager():
|
||||
name = name.strip()
|
||||
if not name:
|
||||
raise ValueError("username not provided")
|
||||
if name.startswith(folder_paths.SYSTEM_USER_PREFIX):
|
||||
raise ValueError("System User prefix not allowed")
|
||||
user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name)
|
||||
if user_id.startswith(folder_paths.SYSTEM_USER_PREFIX):
|
||||
raise ValueError("System User prefix not allowed")
|
||||
user_id = user_id + "_" + str(uuid.uuid4())
|
||||
|
||||
self.users[user_id] = name
|
||||
@ -132,7 +140,10 @@ class UserManager():
|
||||
if username in self.users.values():
|
||||
return web.json_response({"error": "Duplicate username."}, status=400)
|
||||
|
||||
user_id = self.add_user(username)
|
||||
try:
|
||||
user_id = self.add_user(username)
|
||||
except ValueError as e:
|
||||
return web.json_response({"error": str(e)}, status=400)
|
||||
return web.json_response(user_id)
|
||||
|
||||
@routes.get("/userdata")
|
||||
@ -424,7 +435,7 @@ class UserManager():
|
||||
return source
|
||||
|
||||
dest = get_user_data_path(request, check_exists=False, param="dest")
|
||||
if not isinstance(source, str):
|
||||
if not isinstance(dest, str):
|
||||
return dest
|
||||
|
||||
overwrite = request.query.get("overwrite", 'true') != "false"
|
||||
|
||||
@ -413,7 +413,8 @@ class ControlNet(nn.Module):
|
||||
out_middle = []
|
||||
|
||||
if self.num_classes is not None:
|
||||
assert y.shape[0] == x.shape[0]
|
||||
if y is None:
|
||||
raise ValueError("y is None, did you try using a controlnet for SDXL on SD1?")
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
h = x
|
||||
|
||||
@ -97,6 +97,13 @@ class LatentPreviewMethod(enum.Enum):
|
||||
Latent2RGB = "latent2rgb"
|
||||
TAESD = "taesd"
|
||||
|
||||
@classmethod
|
||||
def from_string(cls, value: str):
|
||||
for member in cls:
|
||||
if member.value == value:
|
||||
return member
|
||||
return None
|
||||
|
||||
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
|
||||
|
||||
parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
|
||||
@ -105,6 +112,7 @@ cache_group = parser.add_mutually_exclusive_group()
|
||||
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
|
||||
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
|
||||
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
|
||||
cache_group.add_argument("--cache-ram", nargs='?', const=4.0, type=float, default=0, help="Use RAM pressure caching with the specified headroom threshold. If available RAM drops below the threhold the cache remove large items to free RAM. Default 4GB")
|
||||
|
||||
attn_group = parser.add_mutually_exclusive_group()
|
||||
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
||||
@ -120,6 +128,12 @@ upcast.add_argument("--force-upcast-attention", action="store_true", help="Force
|
||||
upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
|
||||
|
||||
|
||||
parser.add_argument("--enable-manager", action="store_true", help="Enable the ComfyUI-Manager feature.")
|
||||
manager_group = parser.add_mutually_exclusive_group()
|
||||
manager_group.add_argument("--disable-manager-ui", action="store_true", help="Disables only the ComfyUI-Manager UI and endpoints. Scheduled installations and similar background tasks will still operate.")
|
||||
manager_group.add_argument("--enable-manager-legacy-ui", action="store_true", help="Enables the legacy UI of ComfyUI-Manager")
|
||||
|
||||
|
||||
vram_group = parser.add_mutually_exclusive_group()
|
||||
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
|
||||
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
|
||||
@ -130,7 +144,8 @@ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for e
|
||||
|
||||
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
|
||||
|
||||
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
|
||||
parser.add_argument("--async-offload", nargs='?', const=2, type=int, default=None, metavar="NUM_STREAMS", help="Use async weight offloading. An optional argument controls the amount of offload streams. Default is 2. Enabled by default on Nvidia.")
|
||||
parser.add_argument("--disable-async-offload", action="store_true", help="Disable async weight offloading.")
|
||||
|
||||
parser.add_argument("--force-non-blocking", action="store_true", help="Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.")
|
||||
|
||||
@ -145,7 +160,9 @@ class PerformanceFeature(enum.Enum):
|
||||
CublasOps = "cublas_ops"
|
||||
AutoTune = "autotune"
|
||||
|
||||
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
|
||||
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. This is used to test new features so using it might crash your comfyui. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
|
||||
|
||||
parser.add_argument("--disable-pinned-memory", action="store_true", help="Disable pinned memory use.")
|
||||
|
||||
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
|
||||
parser.add_argument("--disable-mmap", action="store_true", help="Don't use mmap when loading safetensors.")
|
||||
@ -157,13 +174,14 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win
|
||||
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
|
||||
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
|
||||
parser.add_argument("--whitelist-custom-nodes", type=str, nargs='+', default=[], help="Specify custom node folders to load even when --disable-all-custom-nodes is enabled.")
|
||||
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
|
||||
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes. Also prevents the frontend from communicating with the internet.")
|
||||
|
||||
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
||||
|
||||
parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
|
||||
parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).")
|
||||
|
||||
|
||||
# The default built-in provider hosted under web/
|
||||
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
|
||||
|
||||
|
||||
@ -2,6 +2,25 @@ import torch
|
||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
||||
import comfy.ops
|
||||
|
||||
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
|
||||
image = image[:, :, :, :3] if image.shape[3] > 3 else image
|
||||
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
|
||||
std = torch.tensor(std, device=image.device, dtype=image.dtype)
|
||||
image = image.movedim(-1, 1)
|
||||
if not (image.shape[2] == size and image.shape[3] == size):
|
||||
if crop:
|
||||
scale = (size / min(image.shape[2], image.shape[3]))
|
||||
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
|
||||
else:
|
||||
scale_size = (size, size)
|
||||
|
||||
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
|
||||
h = (image.shape[2] - size)//2
|
||||
w = (image.shape[3] - size)//2
|
||||
image = image[:,:,h:h+size,w:w+size]
|
||||
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
||||
return (image - mean.view([3,1,1])) / std.view([3,1,1])
|
||||
|
||||
class CLIPAttention(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, dtype, device, operations):
|
||||
super().__init__()
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
|
||||
import os
|
||||
import torch
|
||||
import json
|
||||
import logging
|
||||
|
||||
@ -17,24 +16,7 @@ class Output:
|
||||
def __setitem__(self, key, item):
|
||||
setattr(self, key, item)
|
||||
|
||||
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
|
||||
image = image[:, :, :, :3] if image.shape[3] > 3 else image
|
||||
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
|
||||
std = torch.tensor(std, device=image.device, dtype=image.dtype)
|
||||
image = image.movedim(-1, 1)
|
||||
if not (image.shape[2] == size and image.shape[3] == size):
|
||||
if crop:
|
||||
scale = (size / min(image.shape[2], image.shape[3]))
|
||||
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
|
||||
else:
|
||||
scale_size = (size, size)
|
||||
|
||||
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
|
||||
h = (image.shape[2] - size)//2
|
||||
w = (image.shape[3] - size)//2
|
||||
image = image[:,:,h:h+size,w:w+size]
|
||||
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
||||
return (image - mean.view([3,1,1])) / std.view([3,1,1])
|
||||
clip_preprocess = comfy.clip_model.clip_preprocess # Prevent some stuff from breaking, TODO: remove eventually
|
||||
|
||||
IMAGE_ENCODERS = {
|
||||
"clip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
|
||||
@ -73,7 +55,7 @@ class ClipVisionModel():
|
||||
|
||||
def encode_image(self, image, crop=True):
|
||||
comfy.model_management.load_model_gpu(self.patcher)
|
||||
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
|
||||
pixel_values = comfy.clip_model.clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
|
||||
out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2)
|
||||
|
||||
outputs = Output()
|
||||
|
||||
@ -51,32 +51,43 @@ class ContextHandlerABC(ABC):
|
||||
|
||||
|
||||
class IndexListContextWindow(ContextWindowABC):
|
||||
def __init__(self, index_list: list[int], dim: int=0):
|
||||
def __init__(self, index_list: list[int], dim: int=0, total_frames: int=0):
|
||||
self.index_list = index_list
|
||||
self.context_length = len(index_list)
|
||||
self.dim = dim
|
||||
self.total_frames = total_frames
|
||||
self.center_ratio = (min(index_list) + max(index_list)) / (2 * total_frames)
|
||||
|
||||
def get_tensor(self, full: torch.Tensor, device=None, dim=None) -> torch.Tensor:
|
||||
def get_tensor(self, full: torch.Tensor, device=None, dim=None, retain_index_list=[]) -> torch.Tensor:
|
||||
if dim is None:
|
||||
dim = self.dim
|
||||
if dim == 0 and full.shape[dim] == 1:
|
||||
return full
|
||||
idx = [slice(None)] * dim + [self.index_list]
|
||||
return full[idx].to(device)
|
||||
idx = tuple([slice(None)] * dim + [self.index_list])
|
||||
window = full[idx]
|
||||
if retain_index_list:
|
||||
idx = tuple([slice(None)] * dim + [retain_index_list])
|
||||
window[idx] = full[idx]
|
||||
return window.to(device)
|
||||
|
||||
def add_window(self, full: torch.Tensor, to_add: torch.Tensor, dim=None) -> torch.Tensor:
|
||||
if dim is None:
|
||||
dim = self.dim
|
||||
idx = [slice(None)] * dim + [self.index_list]
|
||||
idx = tuple([slice(None)] * dim + [self.index_list])
|
||||
full[idx] += to_add
|
||||
return full
|
||||
|
||||
def get_region_index(self, num_regions: int) -> int:
|
||||
region_idx = int(self.center_ratio * num_regions)
|
||||
return min(max(region_idx, 0), num_regions - 1)
|
||||
|
||||
|
||||
class IndexListCallbacks:
|
||||
EVALUATE_CONTEXT_WINDOWS = "evaluate_context_windows"
|
||||
COMBINE_CONTEXT_WINDOW_RESULTS = "combine_context_window_results"
|
||||
EXECUTE_START = "execute_start"
|
||||
EXECUTE_CLEANUP = "execute_cleanup"
|
||||
RESIZE_COND_ITEM = "resize_cond_item"
|
||||
|
||||
def init_callbacks(self):
|
||||
return {}
|
||||
@ -94,7 +105,8 @@ class ContextFuseMethod:
|
||||
|
||||
ContextResults = collections.namedtuple("ContextResults", ['window_idx', 'sub_conds_out', 'sub_conds', 'window'])
|
||||
class IndexListContextHandler(ContextHandlerABC):
|
||||
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, closed_loop=False, dim=0):
|
||||
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1,
|
||||
closed_loop: bool=False, dim:int=0, freenoise: bool=False, cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False):
|
||||
self.context_schedule = context_schedule
|
||||
self.fuse_method = fuse_method
|
||||
self.context_length = context_length
|
||||
@ -103,13 +115,18 @@ class IndexListContextHandler(ContextHandlerABC):
|
||||
self.closed_loop = closed_loop
|
||||
self.dim = dim
|
||||
self._step = 0
|
||||
self.freenoise = freenoise
|
||||
self.cond_retain_index_list = [int(x.strip()) for x in cond_retain_index_list.split(",")] if cond_retain_index_list else []
|
||||
self.split_conds_to_windows = split_conds_to_windows
|
||||
|
||||
self.callbacks = {}
|
||||
|
||||
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
|
||||
# for now, assume first dim is batch - should have stored on BaseModel in actual implementation
|
||||
if x_in.size(self.dim) > self.context_length:
|
||||
logging.info(f"Using context windows {self.context_length} for {x_in.size(self.dim)} frames.")
|
||||
logging.info(f"Using context windows {self.context_length} with overlap {self.context_overlap} for {x_in.size(self.dim)} frames.")
|
||||
if self.cond_retain_index_list:
|
||||
logging.info(f"Retaining original cond for indexes: {self.cond_retain_index_list}")
|
||||
return True
|
||||
return False
|
||||
|
||||
@ -123,6 +140,11 @@ class IndexListContextHandler(ContextHandlerABC):
|
||||
return None
|
||||
# reuse or resize cond items to match context requirements
|
||||
resized_cond = []
|
||||
# if multiple conds, split based on primary region
|
||||
if self.split_conds_to_windows and len(cond_in) > 1:
|
||||
region = window.get_region_index(len(cond_in))
|
||||
logging.info(f"Splitting conds to windows; using region {region} for window {window.index_list[0]}-{window.index_list[-1]} with center ratio {window.center_ratio:.3f}")
|
||||
cond_in = [cond_in[region]]
|
||||
# cond object is a list containing a dict - outer list is irrelevant, so just loop through it
|
||||
for actual_cond in cond_in:
|
||||
resized_actual_cond = actual_cond.copy()
|
||||
@ -145,13 +167,38 @@ class IndexListContextHandler(ContextHandlerABC):
|
||||
new_cond_item = cond_item.copy()
|
||||
# when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor)
|
||||
for cond_key, cond_value in new_cond_item.items():
|
||||
# Allow callbacks to handle custom conditioning items
|
||||
handled = False
|
||||
for callback in comfy.patcher_extension.get_all_callbacks(
|
||||
IndexListCallbacks.RESIZE_COND_ITEM, self.callbacks
|
||||
):
|
||||
result = callback(cond_key, cond_value, window, x_in, device, new_cond_item)
|
||||
if result is not None:
|
||||
new_cond_item[cond_key] = result
|
||||
handled = True
|
||||
break
|
||||
if handled:
|
||||
continue
|
||||
if isinstance(cond_value, torch.Tensor):
|
||||
if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim):
|
||||
if (self.dim < cond_value.ndim and cond_value(self.dim) == x_in.size(self.dim)) or \
|
||||
(cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim)):
|
||||
new_cond_item[cond_key] = window.get_tensor(cond_value, device)
|
||||
# Handle audio_embed (temporal dim is 1)
|
||||
elif cond_key == "audio_embed" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
|
||||
audio_cond = cond_value.cond
|
||||
if audio_cond.ndim > 1 and audio_cond.size(1) == x_in.size(self.dim):
|
||||
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(audio_cond, device, dim=1))
|
||||
# Handle vace_context (temporal dim is 3)
|
||||
elif cond_key == "vace_context" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
|
||||
vace_cond = cond_value.cond
|
||||
if vace_cond.ndim >= 4 and vace_cond.size(3) == x_in.size(self.dim):
|
||||
sliced_vace = window.get_tensor(vace_cond, device, dim=3, retain_index_list=self.cond_retain_index_list)
|
||||
new_cond_item[cond_key] = cond_value._copy_with(sliced_vace)
|
||||
# if has cond that is a Tensor, check if needs to be subset
|
||||
elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
|
||||
if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim):
|
||||
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device))
|
||||
if (self.dim < cond_value.cond.ndim and cond_value.cond.size(self.dim) == x_in.size(self.dim)) or \
|
||||
(cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim)):
|
||||
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device, retain_index_list=self.cond_retain_index_list))
|
||||
elif cond_key == "num_video_frames": # for SVD
|
||||
new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond)
|
||||
new_cond_item[cond_key].cond = window.context_length
|
||||
@ -164,7 +211,7 @@ class IndexListContextHandler(ContextHandlerABC):
|
||||
return resized_cond
|
||||
|
||||
def set_step(self, timestep: torch.Tensor, model_options: dict[str]):
|
||||
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep, rtol=0.0001)
|
||||
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep[0], rtol=0.0001)
|
||||
matches = torch.nonzero(mask)
|
||||
if torch.numel(matches) == 0:
|
||||
raise Exception("No sample_sigmas matched current timestep; something went wrong.")
|
||||
@ -173,7 +220,7 @@ class IndexListContextHandler(ContextHandlerABC):
|
||||
def get_context_windows(self, model: BaseModel, x_in: torch.Tensor, model_options: dict[str]) -> list[IndexListContextWindow]:
|
||||
full_length = x_in.size(self.dim) # TODO: choose dim based on model
|
||||
context_windows = self.context_schedule.func(full_length, self, model_options)
|
||||
context_windows = [IndexListContextWindow(window, dim=self.dim) for window in context_windows]
|
||||
context_windows = [IndexListContextWindow(window, dim=self.dim, total_frames=full_length) for window in context_windows]
|
||||
return context_windows
|
||||
|
||||
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
|
||||
@ -250,8 +297,8 @@ class IndexListContextHandler(ContextHandlerABC):
|
||||
prev_weight = (bias_total / (bias_total + bias))
|
||||
new_weight = (bias / (bias_total + bias))
|
||||
# account for dims of tensors
|
||||
idx_window = [slice(None)] * self.dim + [idx]
|
||||
pos_window = [slice(None)] * self.dim + [pos]
|
||||
idx_window = tuple([slice(None)] * self.dim + [idx])
|
||||
pos_window = tuple([slice(None)] * self.dim + [pos])
|
||||
# apply new values
|
||||
conds_final[i][idx_window] = conds_final[i][idx_window] * prev_weight + sub_conds_out[i][pos_window] * new_weight
|
||||
biases_final[i][idx] = bias_total + bias
|
||||
@ -287,6 +334,28 @@ def create_prepare_sampling_wrapper(model: ModelPatcher):
|
||||
)
|
||||
|
||||
|
||||
def _sampler_sample_wrapper(executor, guider, sigmas, extra_args, callback, noise, *args, **kwargs):
|
||||
model_options = extra_args.get("model_options", None)
|
||||
if model_options is None:
|
||||
raise Exception("model_options not found in sampler_sample_wrapper; this should never happen, something went wrong.")
|
||||
handler: IndexListContextHandler = model_options.get("context_handler", None)
|
||||
if handler is None:
|
||||
raise Exception("context_handler not found in sampler_sample_wrapper; this should never happen, something went wrong.")
|
||||
if not handler.freenoise:
|
||||
return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs)
|
||||
noise = apply_freenoise(noise, handler.dim, handler.context_length, handler.context_overlap, extra_args["seed"])
|
||||
|
||||
return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs)
|
||||
|
||||
|
||||
def create_sampler_sample_wrapper(model: ModelPatcher):
|
||||
model.add_wrapper_with_key(
|
||||
comfy.patcher_extension.WrappersMP.SAMPLER_SAMPLE,
|
||||
"ContextWindows_sampler_sample",
|
||||
_sampler_sample_wrapper
|
||||
)
|
||||
|
||||
|
||||
def match_weights_to_dim(weights: list[float], x_in: torch.Tensor, dim: int, device=None) -> torch.Tensor:
|
||||
total_dims = len(x_in.shape)
|
||||
weights_tensor = torch.Tensor(weights).to(device=device)
|
||||
@ -538,3 +607,29 @@ def shift_window_to_end(window: list[int], num_frames: int):
|
||||
for i in range(len(window)):
|
||||
# 2) add end_delta to each val to slide windows to end
|
||||
window[i] = window[i] + end_delta
|
||||
|
||||
|
||||
# https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved/blob/90fb1331201a4b29488089e4fbffc0d82cc6d0a9/animatediff/sample_settings.py#L465
|
||||
def apply_freenoise(noise: torch.Tensor, dim: int, context_length: int, context_overlap: int, seed: int):
|
||||
logging.info("Context windows: Applying FreeNoise")
|
||||
generator = torch.Generator(device='cpu').manual_seed(seed)
|
||||
latent_video_length = noise.shape[dim]
|
||||
delta = context_length - context_overlap
|
||||
|
||||
for start_idx in range(0, latent_video_length - context_length, delta):
|
||||
place_idx = start_idx + context_length
|
||||
|
||||
actual_delta = min(delta, latent_video_length - place_idx)
|
||||
if actual_delta <= 0:
|
||||
break
|
||||
|
||||
list_idx = torch.randperm(actual_delta, generator=generator, device='cpu') + start_idx
|
||||
|
||||
source_slice = [slice(None)] * noise.ndim
|
||||
source_slice[dim] = list_idx
|
||||
target_slice = [slice(None)] * noise.ndim
|
||||
target_slice[dim] = slice(place_idx, place_idx + actual_delta)
|
||||
|
||||
noise[tuple(target_slice)] = noise[tuple(source_slice)]
|
||||
|
||||
return noise
|
||||
|
||||
@ -310,11 +310,13 @@ class ControlLoraOps:
|
||||
self.bias = None
|
||||
|
||||
def forward(self, input):
|
||||
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
||||
weight, bias, offload_stream = comfy.ops.cast_bias_weight(self, input, offloadable=True)
|
||||
if self.up is not None:
|
||||
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
|
||||
x = torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
|
||||
else:
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
x = torch.nn.functional.linear(input, weight, bias)
|
||||
comfy.ops.uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
|
||||
def __init__(
|
||||
@ -350,12 +352,13 @@ class ControlLoraOps:
|
||||
|
||||
|
||||
def forward(self, input):
|
||||
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
||||
weight, bias, offload_stream = comfy.ops.cast_bias_weight(self, input, offloadable=True)
|
||||
if self.up is not None:
|
||||
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
x = torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
else:
|
||||
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
|
||||
x = torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
comfy.ops.uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
class ControlLora(ControlNet):
|
||||
def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options
|
||||
|
||||
@ -74,6 +74,9 @@ def get_ancestral_step(sigma_from, sigma_to, eta=1.):
|
||||
|
||||
def default_noise_sampler(x, seed=None):
|
||||
if seed is not None:
|
||||
if x.device == torch.device("cpu"):
|
||||
seed += 1
|
||||
|
||||
generator = torch.Generator(device=x.device)
|
||||
generator.manual_seed(seed)
|
||||
else:
|
||||
@ -1557,10 +1560,13 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
|
||||
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5, solver_type="phi_1"):
|
||||
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
|
||||
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
|
||||
"""
|
||||
if solver_type not in {"phi_1", "phi_2"}:
|
||||
raise ValueError("solver_type must be 'phi_1' or 'phi_2'")
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
@ -1600,8 +1606,14 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
|
||||
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
|
||||
|
||||
# Step 2
|
||||
denoised_d = torch.lerp(denoised, denoised_2, fac)
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
|
||||
if solver_type == "phi_1":
|
||||
denoised_d = torch.lerp(denoised, denoised_2, fac)
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
|
||||
elif solver_type == "phi_2":
|
||||
b2 = ei_h_phi_2(-h_eta) / r
|
||||
b1 = ei_h_phi_1(-h_eta) - b2
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b2 * denoised_2)
|
||||
|
||||
if inject_noise:
|
||||
segment_factor = (r - 1) * h * eta
|
||||
sde_noise = sde_noise * segment_factor.exp()
|
||||
@ -1609,6 +1621,17 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
|
||||
x = x + sde_noise * sigmas[i + 1] * s_noise
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_exp_heun_2_x0(model, x, sigmas, extra_args=None, callback=None, disable=None, solver_type="phi_2"):
|
||||
"""Deterministic exponential Heun second order method in data prediction (x0) and logSNR time."""
|
||||
return sample_seeds_2(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=0.0, s_noise=0.0, noise_sampler=None, r=1.0, solver_type=solver_type)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_exp_heun_2_x0_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type="phi_2"):
|
||||
"""Stochastic exponential Heun second order method in data prediction (x0) and logSNR time."""
|
||||
return sample_seeds_2(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=1.0, solver_type=solver_type)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
|
||||
@ -1756,7 +1779,7 @@ def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=F
|
||||
# Predictor
|
||||
if sigmas[i + 1] == 0:
|
||||
# Denoising step
|
||||
x = denoised
|
||||
x_pred = denoised
|
||||
else:
|
||||
tau_t = tau_func(sigmas[i + 1])
|
||||
curr_lambdas = lambdas[i - predictor_order_used + 1:i + 1]
|
||||
@ -1777,7 +1800,7 @@ def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=F
|
||||
if tau_t > 0 and s_noise > 0:
|
||||
noise = noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * tau_t ** 2 * h).expm1().neg().sqrt() * s_noise
|
||||
x_pred = x_pred + noise
|
||||
return x
|
||||
return x_pred
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
|
||||
@ -6,6 +6,7 @@ class LatentFormat:
|
||||
latent_dimensions = 2
|
||||
latent_rgb_factors = None
|
||||
latent_rgb_factors_bias = None
|
||||
latent_rgb_factors_reshape = None
|
||||
taesd_decoder_name = None
|
||||
|
||||
def process_in(self, latent):
|
||||
@ -178,6 +179,54 @@ class Flux(SD3):
|
||||
def process_out(self, latent):
|
||||
return (latent / self.scale_factor) + self.shift_factor
|
||||
|
||||
class Flux2(LatentFormat):
|
||||
latent_channels = 128
|
||||
|
||||
def __init__(self):
|
||||
self.latent_rgb_factors =[
|
||||
[0.0058, 0.0113, 0.0073],
|
||||
[0.0495, 0.0443, 0.0836],
|
||||
[-0.0099, 0.0096, 0.0644],
|
||||
[0.2144, 0.3009, 0.3652],
|
||||
[0.0166, -0.0039, -0.0054],
|
||||
[0.0157, 0.0103, -0.0160],
|
||||
[-0.0398, 0.0902, -0.0235],
|
||||
[-0.0052, 0.0095, 0.0109],
|
||||
[-0.3527, -0.2712, -0.1666],
|
||||
[-0.0301, -0.0356, -0.0180],
|
||||
[-0.0107, 0.0078, 0.0013],
|
||||
[0.0746, 0.0090, -0.0941],
|
||||
[0.0156, 0.0169, 0.0070],
|
||||
[-0.0034, -0.0040, -0.0114],
|
||||
[0.0032, 0.0181, 0.0080],
|
||||
[-0.0939, -0.0008, 0.0186],
|
||||
[0.0018, 0.0043, 0.0104],
|
||||
[0.0284, 0.0056, -0.0127],
|
||||
[-0.0024, -0.0022, -0.0030],
|
||||
[0.1207, -0.0026, 0.0065],
|
||||
[0.0128, 0.0101, 0.0142],
|
||||
[0.0137, -0.0072, -0.0007],
|
||||
[0.0095, 0.0092, -0.0059],
|
||||
[0.0000, -0.0077, -0.0049],
|
||||
[-0.0465, -0.0204, -0.0312],
|
||||
[0.0095, 0.0012, -0.0066],
|
||||
[0.0290, -0.0034, 0.0025],
|
||||
[0.0220, 0.0169, -0.0048],
|
||||
[-0.0332, -0.0457, -0.0468],
|
||||
[-0.0085, 0.0389, 0.0609],
|
||||
[-0.0076, 0.0003, -0.0043],
|
||||
[-0.0111, -0.0460, -0.0614],
|
||||
]
|
||||
|
||||
self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
|
||||
self.latent_rgb_factors_reshape = lambda t: t.reshape(t.shape[0], 32, 2, 2, t.shape[-2], t.shape[-1]).permute(0, 1, 4, 2, 5, 3).reshape(t.shape[0], 32, t.shape[-2] * 2, t.shape[-1] * 2)
|
||||
|
||||
def process_in(self, latent):
|
||||
return latent
|
||||
|
||||
def process_out(self, latent):
|
||||
return latent
|
||||
|
||||
class Mochi(LatentFormat):
|
||||
latent_channels = 12
|
||||
latent_dimensions = 3
|
||||
@ -382,6 +431,7 @@ class HunyuanVideo(LatentFormat):
|
||||
]
|
||||
|
||||
latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761]
|
||||
taesd_decoder_name = "taehv"
|
||||
|
||||
class Cosmos1CV8x8x8(LatentFormat):
|
||||
latent_channels = 16
|
||||
@ -445,7 +495,7 @@ class Wan21(LatentFormat):
|
||||
]).view(1, self.latent_channels, 1, 1, 1)
|
||||
|
||||
|
||||
self.taesd_decoder_name = None #TODO
|
||||
self.taesd_decoder_name = "lighttaew2_1"
|
||||
|
||||
def process_in(self, latent):
|
||||
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
||||
@ -516,6 +566,7 @@ class Wan22(Wan21):
|
||||
|
||||
def __init__(self):
|
||||
self.scale_factor = 1.0
|
||||
self.taesd_decoder_name = "lighttaew2_2"
|
||||
self.latents_mean = torch.tensor([
|
||||
-0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557,
|
||||
-0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825,
|
||||
@ -611,6 +662,67 @@ class HunyuanImage21Refiner(LatentFormat):
|
||||
latent_dimensions = 3
|
||||
scale_factor = 1.03682
|
||||
|
||||
def process_in(self, latent):
|
||||
out = latent * self.scale_factor
|
||||
out = torch.cat((out[:, :, :1], out), dim=2)
|
||||
out = out.permute(0, 2, 1, 3, 4)
|
||||
b, f_times_2, c, h, w = out.shape
|
||||
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
|
||||
out = out.permute(0, 2, 1, 3, 4).contiguous()
|
||||
return out
|
||||
|
||||
def process_out(self, latent):
|
||||
z = latent / self.scale_factor
|
||||
z = z.permute(0, 2, 1, 3, 4)
|
||||
b, f, c, h, w = z.shape
|
||||
z = z.reshape(b, f, 2, c // 2, h, w)
|
||||
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
|
||||
z = z.permute(0, 2, 1, 3, 4)
|
||||
z = z[:, :, 1:]
|
||||
return z
|
||||
|
||||
class HunyuanVideo15(LatentFormat):
|
||||
latent_rgb_factors = [
|
||||
[ 0.0568, -0.0521, -0.0131],
|
||||
[ 0.0014, 0.0735, 0.0326],
|
||||
[ 0.0186, 0.0531, -0.0138],
|
||||
[-0.0031, 0.0051, 0.0288],
|
||||
[ 0.0110, 0.0556, 0.0432],
|
||||
[-0.0041, -0.0023, -0.0485],
|
||||
[ 0.0530, 0.0413, 0.0253],
|
||||
[ 0.0283, 0.0251, 0.0339],
|
||||
[ 0.0277, -0.0372, -0.0093],
|
||||
[ 0.0393, 0.0944, 0.1131],
|
||||
[ 0.0020, 0.0251, 0.0037],
|
||||
[-0.0017, 0.0012, 0.0234],
|
||||
[ 0.0468, 0.0436, 0.0203],
|
||||
[ 0.0354, 0.0439, -0.0233],
|
||||
[ 0.0090, 0.0123, 0.0346],
|
||||
[ 0.0382, 0.0029, 0.0217],
|
||||
[ 0.0261, -0.0300, 0.0030],
|
||||
[-0.0088, -0.0220, -0.0283],
|
||||
[-0.0272, -0.0121, -0.0363],
|
||||
[-0.0664, -0.0622, 0.0144],
|
||||
[ 0.0414, 0.0479, 0.0529],
|
||||
[ 0.0355, 0.0612, -0.0247],
|
||||
[ 0.0147, 0.0264, 0.0174],
|
||||
[ 0.0438, 0.0038, 0.0542],
|
||||
[ 0.0431, -0.0573, -0.0033],
|
||||
[-0.0162, -0.0211, -0.0406],
|
||||
[-0.0487, -0.0295, -0.0393],
|
||||
[ 0.0005, -0.0109, 0.0253],
|
||||
[ 0.0296, 0.0591, 0.0353],
|
||||
[ 0.0119, 0.0181, -0.0306],
|
||||
[-0.0085, -0.0362, 0.0229],
|
||||
[ 0.0005, -0.0106, 0.0242]
|
||||
]
|
||||
|
||||
latent_rgb_factors_bias = [ 0.0456, -0.0202, -0.0644]
|
||||
latent_channels = 32
|
||||
latent_dimensions = 3
|
||||
scale_factor = 1.03682
|
||||
taesd_decoder_name = "lighttaehy1_5"
|
||||
|
||||
class Hunyuan3Dv2(LatentFormat):
|
||||
latent_channels = 64
|
||||
latent_dimensions = 1
|
||||
|
||||
@ -23,8 +23,6 @@ class MusicDCAE(torch.nn.Module):
|
||||
else:
|
||||
self.source_sample_rate = source_sample_rate
|
||||
|
||||
# self.resampler = torchaudio.transforms.Resample(source_sample_rate, 44100)
|
||||
|
||||
self.transform = transforms.Compose([
|
||||
transforms.Normalize(0.5, 0.5),
|
||||
])
|
||||
@ -37,10 +35,6 @@ class MusicDCAE(torch.nn.Module):
|
||||
self.scale_factor = 0.1786
|
||||
self.shift_factor = -1.9091
|
||||
|
||||
def load_audio(self, audio_path):
|
||||
audio, sr = torchaudio.load(audio_path)
|
||||
return audio, sr
|
||||
|
||||
def forward_mel(self, audios):
|
||||
mels = []
|
||||
for i in range(len(audios)):
|
||||
@ -73,10 +67,8 @@ class MusicDCAE(torch.nn.Module):
|
||||
latent = self.dcae.encoder(mel.unsqueeze(0))
|
||||
latents.append(latent)
|
||||
latents = torch.cat(latents, dim=0)
|
||||
# latent_lengths = (audio_lengths / sr * 44100 / 512 / self.time_dimention_multiple).long()
|
||||
latents = (latents - self.shift_factor) * self.scale_factor
|
||||
return latents
|
||||
# return latents, latent_lengths
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(self, latents, audio_lengths=None, sr=None):
|
||||
@ -91,9 +83,7 @@ class MusicDCAE(torch.nn.Module):
|
||||
wav = self.vocoder.decode(mels[0]).squeeze(1)
|
||||
|
||||
if sr is not None:
|
||||
# resampler = torchaudio.transforms.Resample(44100, sr).to(latents.device).to(latents.dtype)
|
||||
wav = torchaudio.functional.resample(wav, 44100, sr)
|
||||
# wav = resampler(wav)
|
||||
else:
|
||||
sr = 44100
|
||||
pred_wavs.append(wav)
|
||||
@ -101,7 +91,6 @@ class MusicDCAE(torch.nn.Module):
|
||||
if audio_lengths is not None:
|
||||
pred_wavs = [wav[:, :length].cpu() for wav, length in zip(pred_wavs, audio_lengths)]
|
||||
return torch.stack(pred_wavs)
|
||||
# return sr, pred_wavs
|
||||
|
||||
def forward(self, audios, audio_lengths=None, sr=None):
|
||||
latents, latent_lengths = self.encode(audios=audios, audio_lengths=audio_lengths, sr=sr)
|
||||
|
||||
@ -1,15 +1,15 @@
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from comfy.ldm.flux.math import attention
|
||||
from comfy.ldm.flux.layers import (
|
||||
MLPEmbedder,
|
||||
RMSNorm,
|
||||
QKNorm,
|
||||
SelfAttention,
|
||||
ModulationOut,
|
||||
)
|
||||
|
||||
# TODO: remove this in a few months
|
||||
SingleStreamBlock = None
|
||||
DoubleStreamBlock = None
|
||||
|
||||
|
||||
class ChromaModulationOut(ModulationOut):
|
||||
@ -48,124 +48,6 @@ class Approximator(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}):
|
||||
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
|
||||
|
||||
# prepare image for attention
|
||||
img_modulated = torch.addcmul(img_mod1.shift, 1 + img_mod1.scale, self.img_norm1(img))
|
||||
img_qkv = self.img_attn.qkv(img_modulated)
|
||||
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||
|
||||
# prepare txt for attention
|
||||
txt_modulated = torch.addcmul(txt_mod1.shift, 1 + txt_mod1.scale, self.txt_norm1(txt))
|
||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
|
||||
# run actual attention
|
||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
||||
torch.cat((txt_k, img_k), dim=2),
|
||||
torch.cat((txt_v, img_v), dim=2),
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
||||
|
||||
# calculate the img bloks
|
||||
img.addcmul_(img_mod1.gate, self.img_attn.proj(img_attn))
|
||||
img.addcmul_(img_mod2.gate, self.img_mlp(torch.addcmul(img_mod2.shift, 1 + img_mod2.scale, self.img_norm2(img))))
|
||||
|
||||
# calculate the txt bloks
|
||||
txt.addcmul_(txt_mod1.gate, self.txt_attn.proj(txt_attn))
|
||||
txt.addcmul_(txt_mod2.gate, self.txt_mlp(torch.addcmul(txt_mod2.shift, 1 + txt_mod2.scale, self.txt_norm2(txt))))
|
||||
|
||||
if txt.dtype == torch.float16:
|
||||
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
|
||||
|
||||
return img, txt
|
||||
|
||||
|
||||
class SingleStreamBlock(nn.Module):
|
||||
"""
|
||||
A DiT block with parallel linear layers as described in
|
||||
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qk_scale: float = None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_size
|
||||
self.num_heads = num_heads
|
||||
head_dim = hidden_size // num_heads
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
# qkv and mlp_in
|
||||
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
|
||||
# proj and mlp_out
|
||||
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
|
||||
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}) -> Tensor:
|
||||
mod = vec
|
||||
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
|
||||
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k = self.norm(q, k, v)
|
||||
|
||||
# compute attention
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
x.addcmul_(mod.gate, output)
|
||||
if x.dtype == torch.float16:
|
||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
return x
|
||||
|
||||
|
||||
class LastLayer(nn.Module):
|
||||
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
@ -11,12 +11,12 @@ import comfy.ldm.common_dit
|
||||
from comfy.ldm.flux.layers import (
|
||||
EmbedND,
|
||||
timestep_embedding,
|
||||
DoubleStreamBlock,
|
||||
SingleStreamBlock,
|
||||
)
|
||||
|
||||
from .layers import (
|
||||
DoubleStreamBlock,
|
||||
LastLayer,
|
||||
SingleStreamBlock,
|
||||
Approximator,
|
||||
ChromaModulationOut,
|
||||
)
|
||||
@ -40,7 +40,8 @@ class ChromaParams:
|
||||
out_dim: int
|
||||
hidden_dim: int
|
||||
n_layers: int
|
||||
|
||||
txt_ids_dims: list
|
||||
vec_in_dim: int
|
||||
|
||||
|
||||
|
||||
@ -90,6 +91,7 @@ class Chroma(nn.Module):
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
modulation=False,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
@ -98,7 +100,7 @@ class Chroma(nn.Module):
|
||||
|
||||
self.single_blocks = nn.ModuleList(
|
||||
[
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=False, dtype=dtype, device=device, operations=operations)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
]
|
||||
)
|
||||
@ -178,7 +180,10 @@ class Chroma(nn.Module):
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.double_blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.double_blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if i not in self.skip_mmdit:
|
||||
double_mod = (
|
||||
self.get_modulations(mod_vectors, "double_img", idx=i),
|
||||
@ -221,7 +226,10 @@ class Chroma(nn.Module):
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
transformer_options["total_blocks"] = len(self.single_blocks)
|
||||
transformer_options["block_type"] = "single"
|
||||
for i, block in enumerate(self.single_blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if i not in self.skip_dit:
|
||||
single_mod = self.get_modulations(mod_vectors, "single", idx=i)
|
||||
if ("single_block", i) in blocks_replace:
|
||||
|
||||
@ -10,12 +10,10 @@ from torch import Tensor, nn
|
||||
from einops import repeat
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
from comfy.ldm.flux.layers import EmbedND, DoubleStreamBlock, SingleStreamBlock
|
||||
|
||||
from comfy.ldm.chroma.model import Chroma, ChromaParams
|
||||
from comfy.ldm.chroma.layers import (
|
||||
DoubleStreamBlock,
|
||||
SingleStreamBlock,
|
||||
Approximator,
|
||||
)
|
||||
from .layers import (
|
||||
@ -39,7 +37,7 @@ class ChromaRadianceParams(ChromaParams):
|
||||
nerf_final_head_type: str
|
||||
# None means use the same dtype as the model.
|
||||
nerf_embedder_dtype: Optional[torch.dtype]
|
||||
|
||||
use_x0: bool
|
||||
|
||||
class ChromaRadiance(Chroma):
|
||||
"""
|
||||
@ -89,7 +87,6 @@ class ChromaRadiance(Chroma):
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
|
||||
self.double_blocks = nn.ModuleList(
|
||||
[
|
||||
DoubleStreamBlock(
|
||||
@ -97,6 +94,7 @@ class ChromaRadiance(Chroma):
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
modulation=False,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
@ -109,6 +107,7 @@ class ChromaRadiance(Chroma):
|
||||
self.hidden_size,
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
modulation=False,
|
||||
dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
@ -160,6 +159,9 @@ class ChromaRadiance(Chroma):
|
||||
self.skip_dit = []
|
||||
self.lite = False
|
||||
|
||||
if params.use_x0:
|
||||
self.register_buffer("__x0__", torch.tensor([]))
|
||||
|
||||
@property
|
||||
def _nerf_final_layer(self) -> nn.Module:
|
||||
if self.params.nerf_final_head_type == "linear":
|
||||
@ -189,15 +191,15 @@ class ChromaRadiance(Chroma):
|
||||
nerf_pixels = nn.functional.unfold(img_orig, kernel_size=patch_size, stride=patch_size)
|
||||
nerf_pixels = nerf_pixels.transpose(1, 2) # -> [B, NumPatches, C * P * P]
|
||||
|
||||
# Reshape for per-patch processing
|
||||
nerf_hidden = img_out.reshape(B * num_patches, params.hidden_size)
|
||||
nerf_pixels = nerf_pixels.reshape(B * num_patches, C, patch_size**2).transpose(1, 2)
|
||||
|
||||
if params.nerf_tile_size > 0 and num_patches > params.nerf_tile_size:
|
||||
# Enable tiling if nerf_tile_size isn't 0 and we actually have more patches than
|
||||
# the tile size.
|
||||
img_dct = self.forward_tiled_nerf(img_out, nerf_pixels, B, C, num_patches, patch_size, params)
|
||||
img_dct = self.forward_tiled_nerf(nerf_hidden, nerf_pixels, B, C, num_patches, patch_size, params)
|
||||
else:
|
||||
# Reshape for per-patch processing
|
||||
nerf_hidden = img_out.reshape(B * num_patches, params.hidden_size)
|
||||
nerf_pixels = nerf_pixels.reshape(B * num_patches, C, patch_size**2).transpose(1, 2)
|
||||
|
||||
# Get DCT-encoded pixel embeddings [pixel-dct]
|
||||
img_dct = self.nerf_image_embedder(nerf_pixels)
|
||||
|
||||
@ -240,17 +242,8 @@ class ChromaRadiance(Chroma):
|
||||
end = min(i + tile_size, num_patches)
|
||||
|
||||
# Slice the current tile from the input tensors
|
||||
nerf_hidden_tile = nerf_hidden[:, i:end, :]
|
||||
nerf_pixels_tile = nerf_pixels[:, i:end, :]
|
||||
|
||||
# Get the actual number of patches in this tile (can be smaller for the last tile)
|
||||
num_patches_tile = nerf_hidden_tile.shape[1]
|
||||
|
||||
# Reshape the tile for per-patch processing
|
||||
# [B, NumPatches_tile, D] -> [B * NumPatches_tile, D]
|
||||
nerf_hidden_tile = nerf_hidden_tile.reshape(batch * num_patches_tile, params.hidden_size)
|
||||
# [B, NumPatches_tile, C*P*P] -> [B*NumPatches_tile, C, P*P] -> [B*NumPatches_tile, P*P, C]
|
||||
nerf_pixels_tile = nerf_pixels_tile.reshape(batch * num_patches_tile, channels, patch_size**2).transpose(1, 2)
|
||||
nerf_hidden_tile = nerf_hidden[i * batch:end * batch]
|
||||
nerf_pixels_tile = nerf_pixels[i * batch:end * batch]
|
||||
|
||||
# get DCT-encoded pixel embeddings [pixel-dct]
|
||||
img_dct_tile = self.nerf_image_embedder(nerf_pixels_tile)
|
||||
@ -286,6 +279,12 @@ class ChromaRadiance(Chroma):
|
||||
params_dict |= overrides
|
||||
return params.__class__(**params_dict)
|
||||
|
||||
def _apply_x0_residual(self, predicted, noisy, timesteps):
|
||||
|
||||
# non zero during training to prevent 0 div
|
||||
eps = 0.0
|
||||
return (noisy - predicted) / (timesteps.view(-1,1,1,1) + eps)
|
||||
|
||||
def _forward(
|
||||
self,
|
||||
x: Tensor,
|
||||
@ -326,4 +325,11 @@ class ChromaRadiance(Chroma):
|
||||
transformer_options,
|
||||
attn_mask=kwargs.get("attention_mask", None),
|
||||
)
|
||||
return self.forward_nerf(img, img_out, params)[:, :, :h, :w]
|
||||
|
||||
out = self.forward_nerf(img, img_out, params)[:, :, :h, :w]
|
||||
|
||||
# If x0 variant → v-pred, just return this instead
|
||||
if hasattr(self, "__x0__"):
|
||||
out = self._apply_x0_residual(out, img, timestep)
|
||||
return out
|
||||
|
||||
|
||||
@ -48,15 +48,44 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10
|
||||
return embedding
|
||||
|
||||
class MLPEmbedder(nn.Module):
|
||||
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
|
||||
def __init__(self, in_dim: int, hidden_dim: int, bias=True, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=bias, dtype=dtype, device=device)
|
||||
self.silu = nn.SiLU()
|
||||
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=bias, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return self.out_layer(self.silu(self.in_layer(x)))
|
||||
|
||||
class YakMLP(nn.Module):
|
||||
def __init__(self, hidden_size: int, intermediate_size: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.gate_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device)
|
||||
self.up_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device)
|
||||
self.down_proj = operations.Linear(self.intermediate_size, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
self.act_fn = nn.SiLU()
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
||||
return down_proj
|
||||
|
||||
def build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=False, yak_mlp=False, dtype=None, device=None, operations=None):
|
||||
if yak_mlp:
|
||||
return YakMLP(hidden_size, mlp_hidden_dim, dtype=dtype, device=device, operations=operations)
|
||||
if mlp_silu_act:
|
||||
return nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device),
|
||||
SiLUActivation(),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device),
|
||||
)
|
||||
else:
|
||||
return nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, dtype=None, device=None, operations=None):
|
||||
@ -80,14 +109,14 @@ class QKNorm(torch.nn.Module):
|
||||
|
||||
|
||||
class SelfAttention(nn.Module):
|
||||
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None):
|
||||
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
|
||||
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
|
||||
self.proj = operations.Linear(dim, dim, bias=proj_bias, dtype=dtype, device=device)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -98,11 +127,11 @@ class ModulationOut:
|
||||
|
||||
|
||||
class Modulation(nn.Module):
|
||||
def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None):
|
||||
def __init__(self, dim: int, double: bool, bias=True, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.is_double = double
|
||||
self.multiplier = 6 if double else 3
|
||||
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
|
||||
self.lin = operations.Linear(dim, self.multiplier * dim, bias=bias, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, vec: Tensor) -> tuple:
|
||||
if vec.ndim == 2:
|
||||
@ -129,77 +158,107 @@ def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
|
||||
return tensor
|
||||
|
||||
|
||||
class SiLUActivation(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.gate_fn = nn.SiLU()
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
x1, x2 = x.chunk(2, dim=-1)
|
||||
return self.gate_fn(x1) * x2
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||
self.modulation = modulation
|
||||
|
||||
if self.modulation:
|
||||
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||
self.img_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
if self.modulation:
|
||||
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.txt_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||
if self.modulation:
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||
else:
|
||||
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
|
||||
|
||||
# prepare image for attention
|
||||
img_modulated = self.img_norm1(img)
|
||||
img_modulated = apply_mod(img_modulated, (1 + img_mod1.scale), img_mod1.shift, modulation_dims_img)
|
||||
img_qkv = self.img_attn.qkv(img_modulated)
|
||||
del img_modulated
|
||||
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
del img_qkv
|
||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||
|
||||
# prepare txt for attention
|
||||
txt_modulated = self.txt_norm1(txt)
|
||||
txt_modulated = apply_mod(txt_modulated, (1 + txt_mod1.scale), txt_mod1.shift, modulation_dims_txt)
|
||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||
del txt_modulated
|
||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
del txt_qkv
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
|
||||
if self.flipped_img_txt:
|
||||
q = torch.cat((img_q, txt_q), dim=2)
|
||||
del img_q, txt_q
|
||||
k = torch.cat((img_k, txt_k), dim=2)
|
||||
del img_k, txt_k
|
||||
v = torch.cat((img_v, txt_v), dim=2)
|
||||
del img_v, txt_v
|
||||
# run actual attention
|
||||
attn = attention(torch.cat((img_q, txt_q), dim=2),
|
||||
torch.cat((img_k, txt_k), dim=2),
|
||||
torch.cat((img_v, txt_v), dim=2),
|
||||
attn = attention(q, k, v,
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
del q, k, v
|
||||
|
||||
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
|
||||
else:
|
||||
q = torch.cat((txt_q, img_q), dim=2)
|
||||
del txt_q, img_q
|
||||
k = torch.cat((txt_k, img_k), dim=2)
|
||||
del txt_k, img_k
|
||||
v = torch.cat((txt_v, img_v), dim=2)
|
||||
del txt_v, img_v
|
||||
# run actual attention
|
||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
||||
torch.cat((txt_k, img_k), dim=2),
|
||||
torch.cat((txt_v, img_v), dim=2),
|
||||
attn = attention(q, k, v,
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
del q, k, v
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
|
||||
|
||||
# calculate the img bloks
|
||||
img = img + apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
|
||||
img = img + apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
|
||||
img += apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
|
||||
del img_attn
|
||||
img += apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
|
||||
|
||||
# calculate the txt bloks
|
||||
txt += apply_mod(self.txt_attn.proj(txt_attn), txt_mod1.gate, None, modulation_dims_txt)
|
||||
del txt_attn
|
||||
txt += apply_mod(self.txt_mlp(apply_mod(self.txt_norm2(txt), (1 + txt_mod2.scale), txt_mod2.shift, modulation_dims_txt)), txt_mod2.gate, None, modulation_dims_txt)
|
||||
|
||||
if txt.dtype == torch.float16:
|
||||
@ -220,6 +279,10 @@ class SingleStreamBlock(nn.Module):
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qk_scale: float = None,
|
||||
modulation=True,
|
||||
mlp_silu_act=False,
|
||||
bias=True,
|
||||
yak_mlp=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
@ -231,30 +294,55 @@ class SingleStreamBlock(nn.Module):
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
|
||||
self.mlp_hidden_dim_first = self.mlp_hidden_dim
|
||||
self.yak_mlp = yak_mlp
|
||||
if mlp_silu_act:
|
||||
self.mlp_hidden_dim_first = int(hidden_size * mlp_ratio * 2)
|
||||
self.mlp_act = SiLUActivation()
|
||||
else:
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
|
||||
if self.yak_mlp:
|
||||
self.mlp_hidden_dim_first *= 2
|
||||
self.mlp_act = nn.SiLU()
|
||||
|
||||
# qkv and mlp_in
|
||||
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
|
||||
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim_first, bias=bias, dtype=dtype, device=device)
|
||||
# proj and mlp_out
|
||||
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
|
||||
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, bias=bias, dtype=dtype, device=device)
|
||||
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
|
||||
if modulation:
|
||||
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
self.modulation = None
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor:
|
||||
mod, _ = self.modulation(vec)
|
||||
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
if self.modulation:
|
||||
mod, _ = self.modulation(vec)
|
||||
else:
|
||||
mod = vec
|
||||
|
||||
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim_first], dim=-1)
|
||||
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
del qkv
|
||||
q, k = self.norm(q, k, v)
|
||||
|
||||
# compute attention
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
del q, k, v
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
if self.yak_mlp:
|
||||
mlp = self.mlp_act(mlp[..., self.mlp_hidden_dim_first // 2:]) * mlp[..., :self.mlp_hidden_dim_first // 2]
|
||||
else:
|
||||
mlp = self.mlp_act(mlp)
|
||||
output = self.linear2(torch.cat((attn, mlp), 2))
|
||||
x += apply_mod(output, mod.gate, None, modulation_dims)
|
||||
if x.dtype == torch.float16:
|
||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
@ -262,11 +350,11 @@ class SingleStreamBlock(nn.Module):
|
||||
|
||||
|
||||
class LastLayer(nn.Module):
|
||||
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
||||
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, bias=True, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
||||
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
|
||||
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=bias, dtype=dtype, device=device)
|
||||
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=bias, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor, modulation_dims=None) -> Tensor:
|
||||
if vec.ndim == 2:
|
||||
|
||||
@ -7,15 +7,8 @@ import comfy.model_management
|
||||
|
||||
|
||||
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor:
|
||||
q_shape = q.shape
|
||||
k_shape = k.shape
|
||||
|
||||
if pe is not None:
|
||||
q = q.to(dtype=pe.dtype).reshape(*q.shape[:-1], -1, 1, 2)
|
||||
k = k.to(dtype=pe.dtype).reshape(*k.shape[:-1], -1, 1, 2)
|
||||
q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v)
|
||||
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
|
||||
|
||||
q, k = apply_rope(q, k, pe)
|
||||
heads = q.shape[1]
|
||||
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options)
|
||||
return x
|
||||
|
||||
@ -15,6 +15,8 @@ from .layers import (
|
||||
MLPEmbedder,
|
||||
SingleStreamBlock,
|
||||
timestep_embedding,
|
||||
Modulation,
|
||||
RMSNorm
|
||||
)
|
||||
|
||||
@dataclass
|
||||
@ -33,6 +35,14 @@ class FluxParams:
|
||||
patch_size: int
|
||||
qkv_bias: bool
|
||||
guidance_embed: bool
|
||||
txt_ids_dims: list
|
||||
global_modulation: bool = False
|
||||
mlp_silu_act: bool = False
|
||||
ops_bias: bool = True
|
||||
default_ref_method: str = "offset"
|
||||
ref_index_scale: float = 1.0
|
||||
yak_mlp: bool = False
|
||||
txt_norm: bool = False
|
||||
|
||||
|
||||
class Flux(nn.Module):
|
||||
@ -58,13 +68,22 @@ class Flux(nn.Module):
|
||||
self.hidden_size = params.hidden_size
|
||||
self.num_heads = params.num_heads
|
||||
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
||||
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
|
||||
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device, operations=operations)
|
||||
if params.vec_in_dim is not None:
|
||||
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
self.vector_in = None
|
||||
|
||||
self.guidance_in = (
|
||||
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
|
||||
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
|
||||
)
|
||||
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
|
||||
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
|
||||
|
||||
if params.txt_norm:
|
||||
self.txt_norm = RMSNorm(params.context_in_dim, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
self.txt_norm = None
|
||||
|
||||
self.double_blocks = nn.ModuleList(
|
||||
[
|
||||
@ -73,6 +92,10 @@ class Flux(nn.Module):
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
modulation=params.global_modulation is False,
|
||||
mlp_silu_act=params.mlp_silu_act,
|
||||
proj_bias=params.ops_bias,
|
||||
yak_mlp=params.yak_mlp,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
@ -81,13 +104,30 @@ class Flux(nn.Module):
|
||||
|
||||
self.single_blocks = nn.ModuleList(
|
||||
[
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=params.global_modulation is False, mlp_silu_act=params.mlp_silu_act, bias=params.ops_bias, yak_mlp=params.yak_mlp, dtype=dtype, device=device, operations=operations)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
if final_layer:
|
||||
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, bias=params.ops_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
if params.global_modulation:
|
||||
self.double_stream_modulation_img = Modulation(
|
||||
self.hidden_size,
|
||||
double=True,
|
||||
bias=False,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.double_stream_modulation_txt = Modulation(
|
||||
self.hidden_size,
|
||||
double=True,
|
||||
bias=False,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.single_stream_modulation = Modulation(
|
||||
self.hidden_size, double=False, bias=False, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
@ -103,9 +143,6 @@ class Flux(nn.Module):
|
||||
attn_mask: Tensor = None,
|
||||
) -> Tensor:
|
||||
|
||||
if y is None:
|
||||
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
|
||||
|
||||
patches = transformer_options.get("patches", {})
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
@ -118,9 +155,19 @@ class Flux(nn.Module):
|
||||
if guidance is not None:
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
||||
|
||||
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
if self.vector_in is not None:
|
||||
if y is None:
|
||||
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
|
||||
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
|
||||
if self.txt_norm is not None:
|
||||
txt = self.txt_norm(txt)
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
vec_orig = vec
|
||||
if self.params.global_modulation:
|
||||
vec = (self.double_stream_modulation_img(vec_orig), self.double_stream_modulation_txt(vec_orig))
|
||||
|
||||
if "post_input" in patches:
|
||||
for p in patches["post_input"]:
|
||||
out = p({"img": img, "txt": txt, "img_ids": img_ids, "txt_ids": txt_ids})
|
||||
@ -136,7 +183,10 @@ class Flux(nn.Module):
|
||||
pe = None
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.double_blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.double_blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
@ -177,7 +227,13 @@ class Flux(nn.Module):
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
if self.params.global_modulation:
|
||||
vec, _ = self.single_stream_modulation(vec_orig)
|
||||
|
||||
transformer_options["total_blocks"] = len(self.single_blocks)
|
||||
transformer_options["block_type"] = "single"
|
||||
for i, block in enumerate(self.single_blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("single_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
@ -207,10 +263,10 @@ class Flux(nn.Module):
|
||||
|
||||
img = img[:, txt.shape[1] :, ...]
|
||||
|
||||
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
||||
img = self.final_layer(img, vec_orig) # (N, T, patch_size ** 2 * out_channels)
|
||||
return img
|
||||
|
||||
def process_img(self, x, index=0, h_offset=0, w_offset=0):
|
||||
def process_img(self, x, index=0, h_offset=0, w_offset=0, transformer_options={}):
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = self.patch_size
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
@ -222,10 +278,22 @@ class Flux(nn.Module):
|
||||
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
|
||||
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
|
||||
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
steps_h = h_len
|
||||
steps_w = w_len
|
||||
|
||||
rope_options = transformer_options.get("rope_options", None)
|
||||
if rope_options is not None:
|
||||
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
|
||||
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
|
||||
|
||||
index += rope_options.get("shift_t", 0.0)
|
||||
h_offset += rope_options.get("shift_y", 0.0)
|
||||
w_offset += rope_options.get("shift_x", 0.0)
|
||||
|
||||
img_ids = torch.zeros((steps_h, steps_w, len(self.params.axes_dim)), device=x.device, dtype=torch.float32)
|
||||
img_ids[:, :, 0] = img_ids[:, :, 1] + index
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=steps_h, device=x.device, dtype=torch.float32).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=steps_w, device=x.device, dtype=torch.float32).unsqueeze(0)
|
||||
return img, repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
|
||||
@ -241,16 +309,16 @@ class Flux(nn.Module):
|
||||
|
||||
h_len = ((h_orig + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w_orig + (patch_size // 2)) // patch_size)
|
||||
img, img_ids = self.process_img(x)
|
||||
img, img_ids = self.process_img(x, transformer_options=transformer_options)
|
||||
img_tokens = img.shape[1]
|
||||
if ref_latents is not None:
|
||||
h = 0
|
||||
w = 0
|
||||
index = 0
|
||||
ref_latents_method = kwargs.get("ref_latents_method", "offset")
|
||||
ref_latents_method = kwargs.get("ref_latents_method", self.params.default_ref_method)
|
||||
for ref in ref_latents:
|
||||
if ref_latents_method == "index":
|
||||
index += 1
|
||||
index += self.params.ref_index_scale
|
||||
h_offset = 0
|
||||
w_offset = 0
|
||||
elif ref_latents_method == "uxo":
|
||||
@ -274,7 +342,12 @@ class Flux(nn.Module):
|
||||
img = torch.cat([img, kontext], dim=1)
|
||||
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
txt_ids = torch.zeros((bs, context.shape[1], len(self.params.axes_dim)), device=x.device, dtype=torch.float32)
|
||||
|
||||
if len(self.params.txt_ids_dims) > 0:
|
||||
for i in self.params.txt_ids_dims:
|
||||
txt_ids[:, :, i] = torch.linspace(0, context.shape[1] - 1, steps=context.shape[1], device=x.device, dtype=torch.float32)
|
||||
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
|
||||
out = out[:, :img_tokens]
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h_orig,:w_orig]
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=self.patch_size, pw=self.patch_size)[:,:,:h_orig,:w_orig]
|
||||
|
||||
@ -6,7 +6,6 @@ import comfy.ldm.flux.layers
|
||||
import comfy.ldm.modules.diffusionmodules.mmdit
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
|
||||
from dataclasses import dataclass
|
||||
from einops import repeat
|
||||
|
||||
@ -42,6 +41,9 @@ class HunyuanVideoParams:
|
||||
guidance_embed: bool
|
||||
byt5: bool
|
||||
meanflow: bool
|
||||
use_cond_type_embedding: bool
|
||||
vision_in_dim: int
|
||||
meanflow_sum: bool
|
||||
|
||||
|
||||
class SelfAttentionRef(nn.Module):
|
||||
@ -157,7 +159,10 @@ class TokenRefiner(nn.Module):
|
||||
t = self.t_embedder(timestep_embedding(timesteps, 256, time_factor=1.0).to(x.dtype))
|
||||
# m = mask.float().unsqueeze(-1)
|
||||
# c = (x.float() * m).sum(dim=1) / m.sum(dim=1) #TODO: the following works when the x.shape is the same length as the tokens but might break otherwise
|
||||
c = x.sum(dim=1) / x.shape[1]
|
||||
if x.dtype == torch.float16:
|
||||
c = x.float().sum(dim=1) / x.shape[1]
|
||||
else:
|
||||
c = x.sum(dim=1) / x.shape[1]
|
||||
|
||||
c = t + self.c_embedder(c.to(x.dtype))
|
||||
x = self.input_embedder(x)
|
||||
@ -196,11 +201,15 @@ class HunyuanVideo(nn.Module):
|
||||
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
|
||||
|
||||
params = HunyuanVideoParams(**kwargs)
|
||||
self.params = params
|
||||
self.patch_size = params.patch_size
|
||||
self.in_channels = params.in_channels
|
||||
self.out_channels = params.out_channels
|
||||
self.use_cond_type_embedding = params.use_cond_type_embedding
|
||||
self.vision_in_dim = params.vision_in_dim
|
||||
if params.hidden_size % params.num_heads != 0:
|
||||
raise ValueError(
|
||||
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
||||
@ -266,6 +275,18 @@ class HunyuanVideo(nn.Module):
|
||||
if final_layer:
|
||||
self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# HunyuanVideo 1.5 specific modules
|
||||
if self.vision_in_dim is not None:
|
||||
from comfy.ldm.wan.model import MLPProj
|
||||
self.vision_in = MLPProj(in_dim=self.vision_in_dim, out_dim=self.hidden_size, operation_settings=operation_settings)
|
||||
else:
|
||||
self.vision_in = None
|
||||
if self.use_cond_type_embedding:
|
||||
# 0: text_encoder feature 1: byt5 feature 2: vision_encoder feature
|
||||
self.cond_type_embedding = nn.Embedding(3, self.hidden_size)
|
||||
else:
|
||||
self.cond_type_embedding = None
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
@ -276,6 +297,7 @@ class HunyuanVideo(nn.Module):
|
||||
timesteps: Tensor,
|
||||
y: Tensor = None,
|
||||
txt_byt5=None,
|
||||
clip_fea=None,
|
||||
guidance: Tensor = None,
|
||||
guiding_frame_index=None,
|
||||
ref_latent=None,
|
||||
@ -296,7 +318,7 @@ class HunyuanVideo(nn.Module):
|
||||
timesteps_r = transformer_options['sample_sigmas'][w[0] + 1]
|
||||
timesteps_r = timesteps_r.unsqueeze(0).to(device=timesteps.device, dtype=timesteps.dtype)
|
||||
vec_r = self.time_r_in(timestep_embedding(timesteps_r, 256, time_factor=1000.0).to(img.dtype))
|
||||
vec = (vec + vec_r) / 2
|
||||
vec = (vec + vec_r) if self.params.meanflow_sum else (vec + vec_r) / 2
|
||||
|
||||
if ref_latent is not None:
|
||||
ref_latent_ids = self.img_ids(ref_latent)
|
||||
@ -331,12 +353,31 @@ class HunyuanVideo(nn.Module):
|
||||
|
||||
txt = self.txt_in(txt, timesteps, txt_mask, transformer_options=transformer_options)
|
||||
|
||||
if self.cond_type_embedding is not None:
|
||||
self.cond_type_embedding.to(txt.device)
|
||||
cond_emb = self.cond_type_embedding(torch.zeros_like(txt[:, :, 0], device=txt.device, dtype=torch.long))
|
||||
txt = txt + cond_emb.to(txt.dtype)
|
||||
|
||||
if self.byt5_in is not None and txt_byt5 is not None:
|
||||
txt_byt5 = self.byt5_in(txt_byt5)
|
||||
if self.cond_type_embedding is not None:
|
||||
cond_emb = self.cond_type_embedding(torch.ones_like(txt_byt5[:, :, 0], device=txt_byt5.device, dtype=torch.long))
|
||||
txt_byt5 = txt_byt5 + cond_emb.to(txt_byt5.dtype)
|
||||
txt = torch.cat((txt_byt5, txt), dim=1) # byt5 first for HunyuanVideo1.5
|
||||
else:
|
||||
txt = torch.cat((txt, txt_byt5), dim=1)
|
||||
txt_byt5_ids = torch.zeros((txt_ids.shape[0], txt_byt5.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
|
||||
txt = torch.cat((txt, txt_byt5), dim=1)
|
||||
txt_ids = torch.cat((txt_ids, txt_byt5_ids), dim=1)
|
||||
|
||||
if clip_fea is not None:
|
||||
txt_vision_states = self.vision_in(clip_fea)
|
||||
if self.cond_type_embedding is not None:
|
||||
cond_emb = self.cond_type_embedding(2 * torch.ones_like(txt_vision_states[:, :, 0], dtype=torch.long, device=txt_vision_states.device))
|
||||
txt_vision_states = txt_vision_states + cond_emb
|
||||
txt = torch.cat((txt_vision_states.to(txt.dtype), txt), dim=1)
|
||||
extra_txt_ids = torch.zeros((txt_ids.shape[0], txt_vision_states.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
|
||||
txt_ids = torch.cat((txt_ids, extra_txt_ids), dim=1)
|
||||
|
||||
ids = torch.cat((img_ids, txt_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
@ -349,7 +390,10 @@ class HunyuanVideo(nn.Module):
|
||||
attn_mask = None
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.double_blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.double_blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
@ -371,7 +415,10 @@ class HunyuanVideo(nn.Module):
|
||||
|
||||
img = torch.cat((img, txt), 1)
|
||||
|
||||
transformer_options["total_blocks"] = len(self.single_blocks)
|
||||
transformer_options["block_type"] = "single"
|
||||
for i, block in enumerate(self.single_blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("single_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
@ -430,14 +477,14 @@ class HunyuanVideo(nn.Module):
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
return repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
def forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
|
||||
def forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, timestep, context, y, txt_byt5, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs)
|
||||
).execute(x, timestep, context, y, txt_byt5, clip_fea, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs)
|
||||
|
||||
def _forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
|
||||
def _forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
|
||||
bs = x.shape[0]
|
||||
if len(self.patch_size) == 3:
|
||||
img_ids = self.img_ids(x)
|
||||
@ -445,5 +492,5 @@ class HunyuanVideo(nn.Module):
|
||||
else:
|
||||
img_ids = self.img_ids_2d(x)
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 2), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options)
|
||||
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, clip_fea, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options)
|
||||
return out
|
||||
|
||||
121
comfy/ldm/hunyuan_video/upsampler.py
Normal file
121
comfy/ldm/hunyuan_video/upsampler.py
Normal file
@ -0,0 +1,121 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, VideoConv3d
|
||||
from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm
|
||||
import model_management, model_patcher
|
||||
|
||||
class SRResidualCausalBlock3D(nn.Module):
|
||||
def __init__(self, channels: int):
|
||||
super().__init__()
|
||||
self.block = nn.Sequential(
|
||||
VideoConv3d(channels, channels, kernel_size=3),
|
||||
nn.SiLU(inplace=True),
|
||||
VideoConv3d(channels, channels, kernel_size=3),
|
||||
nn.SiLU(inplace=True),
|
||||
VideoConv3d(channels, channels, kernel_size=3),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return x + self.block(x)
|
||||
|
||||
class SRModel3DV2(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
hidden_channels: int = 64,
|
||||
num_blocks: int = 6,
|
||||
global_residual: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_conv = VideoConv3d(in_channels, hidden_channels, kernel_size=3)
|
||||
self.blocks = nn.ModuleList([SRResidualCausalBlock3D(hidden_channels) for _ in range(num_blocks)])
|
||||
self.out_conv = VideoConv3d(hidden_channels, out_channels, kernel_size=3)
|
||||
self.global_residual = bool(global_residual)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
residual = x
|
||||
y = self.in_conv(x)
|
||||
for blk in self.blocks:
|
||||
y = blk(y)
|
||||
y = self.out_conv(y)
|
||||
if self.global_residual and (y.shape == residual.shape):
|
||||
y = y + residual
|
||||
return y
|
||||
|
||||
|
||||
class Upsampler(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
z_channels: int,
|
||||
out_channels: int,
|
||||
block_out_channels: tuple[int, ...],
|
||||
num_res_blocks: int = 2,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.block_out_channels = block_out_channels
|
||||
self.z_channels = z_channels
|
||||
|
||||
ch = block_out_channels[0]
|
||||
self.conv_in = VideoConv3d(z_channels, ch, kernel_size=3)
|
||||
|
||||
self.up = nn.ModuleList()
|
||||
|
||||
for i, tgt in enumerate(block_out_channels):
|
||||
stage = nn.Module()
|
||||
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
|
||||
out_channels=tgt,
|
||||
temb_channels=0,
|
||||
conv_shortcut=False,
|
||||
conv_op=VideoConv3d, norm_op=RMS_norm)
|
||||
for j in range(num_res_blocks + 1)])
|
||||
ch = tgt
|
||||
self.up.append(stage)
|
||||
|
||||
self.norm_out = RMS_norm(ch)
|
||||
self.conv_out = VideoConv3d(ch, out_channels, kernel_size=3)
|
||||
|
||||
def forward(self, z):
|
||||
"""
|
||||
Args:
|
||||
z: (B, C, T, H, W)
|
||||
target_shape: (H, W)
|
||||
"""
|
||||
# z to block_in
|
||||
repeats = self.block_out_channels[0] // (self.z_channels)
|
||||
x = self.conv_in(z) + z.repeat_interleave(repeats=repeats, dim=1)
|
||||
|
||||
# upsampling
|
||||
for stage in self.up:
|
||||
for blk in stage.block:
|
||||
x = blk(x)
|
||||
|
||||
out = self.conv_out(F.silu(self.norm_out(x)))
|
||||
return out
|
||||
|
||||
UPSAMPLERS = {
|
||||
"720p": SRModel3DV2,
|
||||
"1080p": Upsampler,
|
||||
}
|
||||
|
||||
class HunyuanVideo15SRModel():
|
||||
def __init__(self, model_type, config):
|
||||
self.load_device = model_management.vae_device()
|
||||
offload_device = model_management.vae_offload_device()
|
||||
self.dtype = model_management.vae_dtype(self.load_device)
|
||||
self.model_class = UPSAMPLERS.get(model_type)
|
||||
self.model = self.model_class(**config).eval()
|
||||
|
||||
self.patcher = model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
|
||||
def load_sd(self, sd):
|
||||
return self.model.load_state_dict(sd, strict=True)
|
||||
|
||||
def get_sd(self):
|
||||
return self.model.state_dict()
|
||||
|
||||
def resample_latent(self, latent):
|
||||
model_management.load_model_gpu(self.patcher)
|
||||
return self.model(latent.to(self.load_device))
|
||||
@ -1,11 +1,13 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d, Normalize
|
||||
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, CarriedConv3d, Normalize, conv_carry_causal_3d, torch_cat_if_needed
|
||||
import comfy.ops
|
||||
import comfy.ldm.models.autoencoder
|
||||
import comfy.model_management
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
|
||||
class RMS_norm(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
@ -14,10 +16,10 @@ class RMS_norm(nn.Module):
|
||||
self.gamma = nn.Parameter(torch.empty(shape))
|
||||
|
||||
def forward(self, x):
|
||||
return F.normalize(x, dim=1) * self.scale * self.gamma
|
||||
return F.normalize(x, dim=1) * self.scale * comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device)
|
||||
|
||||
class DnSmpl(nn.Module):
|
||||
def __init__(self, ic, oc, tds=True, refiner_vae=True, op=VideoConv3d):
|
||||
def __init__(self, ic, oc, tds, refiner_vae, op):
|
||||
super().__init__()
|
||||
fct = 2 * 2 * 2 if tds else 1 * 2 * 2
|
||||
assert oc % fct == 0
|
||||
@ -27,11 +29,12 @@ class DnSmpl(nn.Module):
|
||||
self.tds = tds
|
||||
self.gs = fct * ic // oc
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
|
||||
r1 = 2 if self.tds else 1
|
||||
h = self.conv(x)
|
||||
h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
|
||||
|
||||
if self.tds and self.refiner_vae and conv_carry_in is None:
|
||||
|
||||
if self.tds and self.refiner_vae:
|
||||
hf = h[:, :, :1, :, :]
|
||||
b, c, f, ht, wd = hf.shape
|
||||
hf = hf.reshape(b, c, f, ht // 2, 2, wd // 2, 2)
|
||||
@ -39,14 +42,7 @@ class DnSmpl(nn.Module):
|
||||
hf = hf.reshape(b, 2 * 2 * c, f, ht // 2, wd // 2)
|
||||
hf = torch.cat([hf, hf], dim=1)
|
||||
|
||||
hn = h[:, :, 1:, :, :]
|
||||
b, c, frms, ht, wd = hn.shape
|
||||
nf = frms // r1
|
||||
hn = hn.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
|
||||
hn = hn.permute(0, 3, 5, 7, 1, 2, 4, 6)
|
||||
hn = hn.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
|
||||
|
||||
h = torch.cat([hf, hn], dim=2)
|
||||
h = h[:, :, 1:, :, :]
|
||||
|
||||
xf = x[:, :, :1, :, :]
|
||||
b, ci, f, ht, wd = xf.shape
|
||||
@ -54,38 +50,36 @@ class DnSmpl(nn.Module):
|
||||
xf = xf.permute(0, 4, 6, 1, 2, 3, 5)
|
||||
xf = xf.reshape(b, 2 * 2 * ci, f, ht // 2, wd // 2)
|
||||
B, C, T, H, W = xf.shape
|
||||
xf = xf.view(B, h.shape[1], self.gs // 2, T, H, W).mean(dim=2)
|
||||
xf = xf.view(B, hf.shape[1], self.gs // 2, T, H, W).mean(dim=2)
|
||||
|
||||
xn = x[:, :, 1:, :, :]
|
||||
b, ci, frms, ht, wd = xn.shape
|
||||
nf = frms // r1
|
||||
xn = xn.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
|
||||
xn = xn.permute(0, 3, 5, 7, 1, 2, 4, 6)
|
||||
xn = xn.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
|
||||
B, C, T, H, W = xn.shape
|
||||
xn = xn.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
|
||||
sc = torch.cat([xf, xn], dim=2)
|
||||
else:
|
||||
b, c, frms, ht, wd = h.shape
|
||||
x = x[:, :, 1:, :, :]
|
||||
|
||||
nf = frms // r1
|
||||
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
|
||||
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
|
||||
h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
|
||||
if h.shape[2] == 0:
|
||||
return hf + xf
|
||||
|
||||
b, ci, frms, ht, wd = x.shape
|
||||
nf = frms // r1
|
||||
sc = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
|
||||
sc = sc.permute(0, 3, 5, 7, 1, 2, 4, 6)
|
||||
sc = sc.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
|
||||
B, C, T, H, W = sc.shape
|
||||
sc = sc.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
|
||||
b, c, frms, ht, wd = h.shape
|
||||
nf = frms // r1
|
||||
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
|
||||
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
|
||||
h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
|
||||
|
||||
return h + sc
|
||||
b, ci, frms, ht, wd = x.shape
|
||||
nf = frms // r1
|
||||
x = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
|
||||
x = x.permute(0, 3, 5, 7, 1, 2, 4, 6)
|
||||
x = x.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
|
||||
B, C, T, H, W = x.shape
|
||||
x = x.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
|
||||
|
||||
if self.tds and self.refiner_vae and conv_carry_in is None:
|
||||
h = torch.cat([hf, h], dim=2)
|
||||
x = torch.cat([xf, x], dim=2)
|
||||
|
||||
return h + x
|
||||
|
||||
|
||||
class UpSmpl(nn.Module):
|
||||
def __init__(self, ic, oc, tus=True, refiner_vae=True, op=VideoConv3d):
|
||||
def __init__(self, ic, oc, tus, refiner_vae, op):
|
||||
super().__init__()
|
||||
fct = 2 * 2 * 2 if tus else 1 * 2 * 2
|
||||
self.conv = op(ic, oc * fct, kernel_size=3, stride=1, padding=1)
|
||||
@ -94,11 +88,11 @@ class UpSmpl(nn.Module):
|
||||
self.tus = tus
|
||||
self.rp = fct * oc // ic
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
|
||||
r1 = 2 if self.tus else 1
|
||||
h = self.conv(x)
|
||||
h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
|
||||
|
||||
if self.tus and self.refiner_vae:
|
||||
if self.tus and self.refiner_vae and conv_carry_in is None:
|
||||
hf = h[:, :, :1, :, :]
|
||||
b, c, f, ht, wd = hf.shape
|
||||
nc = c // (2 * 2)
|
||||
@ -107,14 +101,7 @@ class UpSmpl(nn.Module):
|
||||
hf = hf.reshape(b, nc, f, ht * 2, wd * 2)
|
||||
hf = hf[:, : hf.shape[1] // 2]
|
||||
|
||||
hn = h[:, :, 1:, :, :]
|
||||
b, c, frms, ht, wd = hn.shape
|
||||
nc = c // (r1 * 2 * 2)
|
||||
hn = hn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
|
||||
hn = hn.permute(0, 4, 5, 1, 6, 2, 7, 3)
|
||||
hn = hn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
|
||||
|
||||
h = torch.cat([hf, hn], dim=2)
|
||||
h = h[:, :, 1:, :, :]
|
||||
|
||||
xf = x[:, :, :1, :, :]
|
||||
b, ci, f, ht, wd = xf.shape
|
||||
@ -125,29 +112,26 @@ class UpSmpl(nn.Module):
|
||||
xf = xf.permute(0, 3, 4, 5, 1, 6, 2)
|
||||
xf = xf.reshape(b, nc, f, ht * 2, wd * 2)
|
||||
|
||||
xn = x[:, :, 1:, :, :]
|
||||
xn = xn.repeat_interleave(repeats=self.rp, dim=1)
|
||||
b, c, frms, ht, wd = xn.shape
|
||||
nc = c // (r1 * 2 * 2)
|
||||
xn = xn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
|
||||
xn = xn.permute(0, 4, 5, 1, 6, 2, 7, 3)
|
||||
xn = xn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
|
||||
sc = torch.cat([xf, xn], dim=2)
|
||||
else:
|
||||
b, c, frms, ht, wd = h.shape
|
||||
nc = c // (r1 * 2 * 2)
|
||||
h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd)
|
||||
h = h.permute(0, 4, 5, 1, 6, 2, 7, 3)
|
||||
h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2)
|
||||
x = x[:, :, 1:, :, :]
|
||||
|
||||
sc = x.repeat_interleave(repeats=self.rp, dim=1)
|
||||
b, c, frms, ht, wd = sc.shape
|
||||
nc = c // (r1 * 2 * 2)
|
||||
sc = sc.reshape(b, r1, 2, 2, nc, frms, ht, wd)
|
||||
sc = sc.permute(0, 4, 5, 1, 6, 2, 7, 3)
|
||||
sc = sc.reshape(b, nc, frms * r1, ht * 2, wd * 2)
|
||||
b, c, frms, ht, wd = h.shape
|
||||
nc = c // (r1 * 2 * 2)
|
||||
h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd)
|
||||
h = h.permute(0, 4, 5, 1, 6, 2, 7, 3)
|
||||
h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2)
|
||||
|
||||
return h + sc
|
||||
x = x.repeat_interleave(repeats=self.rp, dim=1)
|
||||
b, c, frms, ht, wd = x.shape
|
||||
nc = c // (r1 * 2 * 2)
|
||||
x = x.reshape(b, r1, 2, 2, nc, frms, ht, wd)
|
||||
x = x.permute(0, 4, 5, 1, 6, 2, 7, 3)
|
||||
x = x.reshape(b, nc, frms * r1, ht * 2, wd * 2)
|
||||
|
||||
if self.tus and self.refiner_vae and conv_carry_in is None:
|
||||
h = torch.cat([hf, h], dim=2)
|
||||
x = torch.cat([xf, x], dim=2)
|
||||
|
||||
return h + x
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks,
|
||||
@ -160,7 +144,7 @@ class Encoder(nn.Module):
|
||||
|
||||
self.refiner_vae = refiner_vae
|
||||
if self.refiner_vae:
|
||||
conv_op = VideoConv3d
|
||||
conv_op = CarriedConv3d
|
||||
norm_op = RMS_norm
|
||||
else:
|
||||
conv_op = ops.Conv3d
|
||||
@ -188,9 +172,9 @@ class Encoder(nn.Module):
|
||||
self.down.append(stage)
|
||||
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
|
||||
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
|
||||
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
|
||||
|
||||
self.norm_out = norm_op(ch)
|
||||
self.conv_out = conv_op(ch, z_channels << 1, 3, 1, 1)
|
||||
@ -201,31 +185,48 @@ class Encoder(nn.Module):
|
||||
if not self.refiner_vae and x.shape[2] == 1:
|
||||
x = x.expand(-1, -1, self.ffactor_temporal, -1, -1)
|
||||
|
||||
x = self.conv_in(x)
|
||||
if self.refiner_vae:
|
||||
xl = [x[:, :, :1, :, :]]
|
||||
if x.shape[2] > self.ffactor_temporal:
|
||||
xl += torch.split(x[:, :, 1: 1 + ((x.shape[2] - 1) // self.ffactor_temporal) * self.ffactor_temporal, :, :], self.ffactor_temporal * 2, dim=2)
|
||||
x = xl
|
||||
else:
|
||||
x = [x]
|
||||
out = []
|
||||
|
||||
for stage in self.down:
|
||||
for blk in stage.block:
|
||||
x = blk(x)
|
||||
if hasattr(stage, 'downsample'):
|
||||
x = stage.downsample(x)
|
||||
conv_carry_in = None
|
||||
|
||||
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
|
||||
for i, x1 in enumerate(x):
|
||||
conv_carry_out = []
|
||||
if i == len(x) - 1:
|
||||
conv_carry_out = None
|
||||
|
||||
x1 = [ x1 ]
|
||||
x1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out)
|
||||
|
||||
for stage in self.down:
|
||||
for blk in stage.block:
|
||||
x1 = blk(x1, None, conv_carry_in, conv_carry_out)
|
||||
if hasattr(stage, 'downsample'):
|
||||
x1 = stage.downsample(x1, conv_carry_in, conv_carry_out)
|
||||
|
||||
out.append(x1)
|
||||
conv_carry_in = conv_carry_out
|
||||
|
||||
out = torch_cat_if_needed(out, dim=2)
|
||||
|
||||
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(out)))
|
||||
del out
|
||||
|
||||
b, c, t, h, w = x.shape
|
||||
grp = c // (self.z_channels << 1)
|
||||
skip = x.view(b, c // grp, grp, t, h, w).mean(2)
|
||||
|
||||
out = self.conv_out(F.silu(self.norm_out(x))) + skip
|
||||
out = conv_carry_causal_3d([F.silu(self.norm_out(x))], self.conv_out) + skip
|
||||
|
||||
if self.refiner_vae:
|
||||
out = self.regul(out)[0]
|
||||
|
||||
out = torch.cat((out[:, :, :1], out), dim=2)
|
||||
out = out.permute(0, 2, 1, 3, 4)
|
||||
b, f_times_2, c, h, w = out.shape
|
||||
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
|
||||
out = out.permute(0, 2, 1, 3, 4).contiguous()
|
||||
|
||||
return out
|
||||
|
||||
class Decoder(nn.Module):
|
||||
@ -239,7 +240,7 @@ class Decoder(nn.Module):
|
||||
|
||||
self.refiner_vae = refiner_vae
|
||||
if self.refiner_vae:
|
||||
conv_op = VideoConv3d
|
||||
conv_op = CarriedConv3d
|
||||
norm_op = RMS_norm
|
||||
else:
|
||||
conv_op = ops.Conv3d
|
||||
@ -249,9 +250,9 @@ class Decoder(nn.Module):
|
||||
self.conv_in = conv_op(z_channels, ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
|
||||
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
|
||||
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
|
||||
|
||||
self.up = nn.ModuleList()
|
||||
depth = (ffactor_spatial >> 1).bit_length()
|
||||
@ -275,27 +276,38 @@ class Decoder(nn.Module):
|
||||
self.conv_out = conv_op(ch, out_channels, 3, stride=1, padding=1)
|
||||
|
||||
def forward(self, z):
|
||||
if self.refiner_vae:
|
||||
z = z.permute(0, 2, 1, 3, 4)
|
||||
b, f, c, h, w = z.shape
|
||||
z = z.reshape(b, f, 2, c // 2, h, w)
|
||||
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
|
||||
z = z.permute(0, 2, 1, 3, 4)
|
||||
z = z[:, :, 1:]
|
||||
|
||||
x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
|
||||
x = conv_carry_causal_3d([z], self.conv_in) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
|
||||
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
|
||||
|
||||
for stage in self.up:
|
||||
for blk in stage.block:
|
||||
x = blk(x)
|
||||
if hasattr(stage, 'upsample'):
|
||||
x = stage.upsample(x)
|
||||
if self.refiner_vae:
|
||||
x = torch.split(x, 2, dim=2)
|
||||
else:
|
||||
x = [ x ]
|
||||
out = []
|
||||
|
||||
out = self.conv_out(F.silu(self.norm_out(x)))
|
||||
conv_carry_in = None
|
||||
|
||||
for i, x1 in enumerate(x):
|
||||
conv_carry_out = []
|
||||
if i == len(x) - 1:
|
||||
conv_carry_out = None
|
||||
for stage in self.up:
|
||||
for blk in stage.block:
|
||||
x1 = blk(x1, None, conv_carry_in, conv_carry_out)
|
||||
if hasattr(stage, 'upsample'):
|
||||
x1 = stage.upsample(x1, conv_carry_in, conv_carry_out)
|
||||
|
||||
x1 = [ F.silu(self.norm_out(x1)) ]
|
||||
x1 = conv_carry_causal_3d(x1, self.conv_out, conv_carry_in, conv_carry_out)
|
||||
out.append(x1)
|
||||
conv_carry_in = conv_carry_out
|
||||
del x
|
||||
|
||||
out = torch_cat_if_needed(out, dim=2)
|
||||
|
||||
if not self.refiner_vae:
|
||||
if z.shape[-3] == 1:
|
||||
out = out[:, :, -1:]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
413
comfy/ldm/kandinsky5/model.py
Normal file
413
comfy/ldm/kandinsky5/model.py
Normal file
@ -0,0 +1,413 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import math
|
||||
|
||||
import comfy.ldm.common_dit
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
from comfy.ldm.flux.math import apply_rope1
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
|
||||
def attention(q, k, v, heads, transformer_options={}):
|
||||
return optimized_attention(
|
||||
q.transpose(1, 2),
|
||||
k.transpose(1, 2),
|
||||
v.transpose(1, 2),
|
||||
heads=heads,
|
||||
skip_reshape=True,
|
||||
transformer_options=transformer_options
|
||||
)
|
||||
|
||||
def apply_scale_shift_norm(norm, x, scale, shift):
|
||||
return torch.addcmul(shift, norm(x), scale + 1.0)
|
||||
|
||||
def apply_gate_sum(x, out, gate):
|
||||
return torch.addcmul(x, gate, out)
|
||||
|
||||
def get_shift_scale_gate(params):
|
||||
shift, scale, gate = torch.chunk(params, 3, dim=-1)
|
||||
return tuple(x.unsqueeze(1) for x in (shift, scale, gate))
|
||||
|
||||
def get_freqs(dim, max_period=10000.0):
|
||||
return torch.exp(-math.log(max_period) * torch.arange(start=0, end=dim, dtype=torch.float32) / dim)
|
||||
|
||||
|
||||
class TimeEmbeddings(nn.Module):
|
||||
def __init__(self, model_dim, time_dim, max_period=10000.0, operation_settings=None):
|
||||
super().__init__()
|
||||
assert model_dim % 2 == 0
|
||||
self.model_dim = model_dim
|
||||
self.max_period = max_period
|
||||
self.register_buffer("freqs", get_freqs(model_dim // 2, max_period), persistent=False)
|
||||
operations = operation_settings.get("operations")
|
||||
self.in_layer = operations.Linear(model_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.activation = nn.SiLU()
|
||||
self.out_layer = operations.Linear(time_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, timestep, dtype):
|
||||
args = torch.outer(timestep, self.freqs.to(device=timestep.device))
|
||||
time_embed = torch.cat([torch.cos(args), torch.sin(args)], dim=-1).to(dtype)
|
||||
time_embed = self.out_layer(self.activation(self.in_layer(time_embed)))
|
||||
return time_embed
|
||||
|
||||
|
||||
class TextEmbeddings(nn.Module):
|
||||
def __init__(self, text_dim, model_dim, operation_settings=None):
|
||||
super().__init__()
|
||||
operations = operation_settings.get("operations")
|
||||
self.in_layer = operations.Linear(text_dim, model_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.norm = operations.LayerNorm(model_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, text_embed):
|
||||
text_embed = self.in_layer(text_embed)
|
||||
return self.norm(text_embed).type_as(text_embed)
|
||||
|
||||
|
||||
class VisualEmbeddings(nn.Module):
|
||||
def __init__(self, visual_dim, model_dim, patch_size, operation_settings=None):
|
||||
super().__init__()
|
||||
self.patch_size = patch_size
|
||||
operations = operation_settings.get("operations")
|
||||
self.in_layer = operations.Linear(visual_dim, model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.movedim(1, -1) # B C T H W -> B T H W C
|
||||
B, T, H, W, dim = x.shape
|
||||
pt, ph, pw = self.patch_size
|
||||
|
||||
x = x.view(
|
||||
B,
|
||||
T // pt, pt,
|
||||
H // ph, ph,
|
||||
W // pw, pw,
|
||||
dim,
|
||||
).permute(0, 1, 3, 5, 2, 4, 6, 7).flatten(4, 7)
|
||||
|
||||
return self.in_layer(x)
|
||||
|
||||
|
||||
class Modulation(nn.Module):
|
||||
def __init__(self, time_dim, model_dim, num_params, operation_settings=None):
|
||||
super().__init__()
|
||||
self.activation = nn.SiLU()
|
||||
self.out_layer = operation_settings.get("operations").Linear(time_dim, num_params * model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, x):
|
||||
return self.out_layer(self.activation(x))
|
||||
|
||||
|
||||
class SelfAttention(nn.Module):
|
||||
def __init__(self, num_channels, head_dim, operation_settings=None):
|
||||
super().__init__()
|
||||
assert num_channels % head_dim == 0
|
||||
self.num_heads = num_channels // head_dim
|
||||
self.head_dim = head_dim
|
||||
|
||||
operations = operation_settings.get("operations")
|
||||
self.to_query = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.to_key = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.to_value = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.query_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.key_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
self.out_layer = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.num_chunks = 2
|
||||
|
||||
def _compute_qk(self, x, freqs, proj_fn, norm_fn):
|
||||
result = proj_fn(x).view(*x.shape[:-1], self.num_heads, -1)
|
||||
return apply_rope1(norm_fn(result), freqs)
|
||||
|
||||
def _forward(self, x, freqs, transformer_options={}):
|
||||
q = self._compute_qk(x, freqs, self.to_query, self.query_norm)
|
||||
k = self._compute_qk(x, freqs, self.to_key, self.key_norm)
|
||||
v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1)
|
||||
out = attention(q, k, v, self.num_heads, transformer_options=transformer_options)
|
||||
return self.out_layer(out)
|
||||
|
||||
def _forward_chunked(self, x, freqs, transformer_options={}):
|
||||
def process_chunks(proj_fn, norm_fn):
|
||||
x_chunks = torch.chunk(x, self.num_chunks, dim=1)
|
||||
freqs_chunks = torch.chunk(freqs, self.num_chunks, dim=1)
|
||||
chunks = []
|
||||
for x_chunk, freqs_chunk in zip(x_chunks, freqs_chunks):
|
||||
chunks.append(self._compute_qk(x_chunk, freqs_chunk, proj_fn, norm_fn))
|
||||
return torch.cat(chunks, dim=1)
|
||||
|
||||
q = process_chunks(self.to_query, self.query_norm)
|
||||
k = process_chunks(self.to_key, self.key_norm)
|
||||
v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1)
|
||||
out = attention(q, k, v, self.num_heads, transformer_options=transformer_options)
|
||||
return self.out_layer(out)
|
||||
|
||||
def forward(self, x, freqs, transformer_options={}):
|
||||
if x.shape[1] > 8192:
|
||||
return self._forward_chunked(x, freqs, transformer_options=transformer_options)
|
||||
else:
|
||||
return self._forward(x, freqs, transformer_options=transformer_options)
|
||||
|
||||
|
||||
class CrossAttention(SelfAttention):
|
||||
def get_qkv(self, x, context):
|
||||
q = self.to_query(x).view(*x.shape[:-1], self.num_heads, -1)
|
||||
k = self.to_key(context).view(*context.shape[:-1], self.num_heads, -1)
|
||||
v = self.to_value(context).view(*context.shape[:-1], self.num_heads, -1)
|
||||
return q, k, v
|
||||
|
||||
def forward(self, x, context, transformer_options={}):
|
||||
q, k, v = self.get_qkv(x, context)
|
||||
out = attention(self.query_norm(q), self.key_norm(k), v, self.num_heads, transformer_options=transformer_options)
|
||||
return self.out_layer(out)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, ff_dim, operation_settings=None):
|
||||
super().__init__()
|
||||
operations = operation_settings.get("operations")
|
||||
self.in_layer = operations.Linear(dim, ff_dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.activation = nn.GELU()
|
||||
self.out_layer = operations.Linear(ff_dim, dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.num_chunks = 4
|
||||
|
||||
def _forward(self, x):
|
||||
return self.out_layer(self.activation(self.in_layer(x)))
|
||||
|
||||
def _forward_chunked(self, x):
|
||||
chunks = torch.chunk(x, self.num_chunks, dim=1)
|
||||
output_chunks = []
|
||||
for chunk in chunks:
|
||||
output_chunks.append(self._forward(chunk))
|
||||
return torch.cat(output_chunks, dim=1)
|
||||
|
||||
def forward(self, x):
|
||||
if x.shape[1] > 8192:
|
||||
return self._forward_chunked(x)
|
||||
else:
|
||||
return self._forward(x)
|
||||
|
||||
|
||||
class OutLayer(nn.Module):
|
||||
def __init__(self, model_dim, time_dim, visual_dim, patch_size, operation_settings=None):
|
||||
super().__init__()
|
||||
self.patch_size = patch_size
|
||||
self.modulation = Modulation(time_dim, model_dim, 2, operation_settings=operation_settings)
|
||||
operations = operation_settings.get("operations")
|
||||
self.norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.out_layer = operations.Linear(model_dim, math.prod(patch_size) * visual_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, visual_embed, time_embed):
|
||||
B, T, H, W, _ = visual_embed.shape
|
||||
shift, scale = torch.chunk(self.modulation(time_embed), 2, dim=-1)
|
||||
scale = scale[:, None, None, None, :]
|
||||
shift = shift[:, None, None, None, :]
|
||||
visual_embed = apply_scale_shift_norm(self.norm, visual_embed, scale, shift)
|
||||
x = self.out_layer(visual_embed)
|
||||
|
||||
out_dim = x.shape[-1] // (self.patch_size[0] * self.patch_size[1] * self.patch_size[2])
|
||||
x = x.view(
|
||||
B, T, H, W,
|
||||
out_dim,
|
||||
self.patch_size[0], self.patch_size[1], self.patch_size[2]
|
||||
)
|
||||
return x.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(2, 3).flatten(3, 4).flatten(4, 5)
|
||||
|
||||
|
||||
class TransformerEncoderBlock(nn.Module):
|
||||
def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None):
|
||||
super().__init__()
|
||||
self.text_modulation = Modulation(time_dim, model_dim, 6, operation_settings=operation_settings)
|
||||
operations = operation_settings.get("operations")
|
||||
|
||||
self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings)
|
||||
|
||||
self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings)
|
||||
|
||||
def forward(self, x, time_embed, freqs, transformer_options={}):
|
||||
self_attn_params, ff_params = torch.chunk(self.text_modulation(time_embed), 2, dim=-1)
|
||||
shift, scale, gate = get_shift_scale_gate(self_attn_params)
|
||||
out = apply_scale_shift_norm(self.self_attention_norm, x, scale, shift)
|
||||
out = self.self_attention(out, freqs, transformer_options=transformer_options)
|
||||
x = apply_gate_sum(x, out, gate)
|
||||
|
||||
shift, scale, gate = get_shift_scale_gate(ff_params)
|
||||
out = apply_scale_shift_norm(self.feed_forward_norm, x, scale, shift)
|
||||
out = self.feed_forward(out)
|
||||
x = apply_gate_sum(x, out, gate)
|
||||
return x
|
||||
|
||||
|
||||
class TransformerDecoderBlock(nn.Module):
|
||||
def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None):
|
||||
super().__init__()
|
||||
self.visual_modulation = Modulation(time_dim, model_dim, 9, operation_settings=operation_settings)
|
||||
|
||||
operations = operation_settings.get("operations")
|
||||
self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings)
|
||||
|
||||
self.cross_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.cross_attention = CrossAttention(model_dim, head_dim, operation_settings=operation_settings)
|
||||
|
||||
self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings)
|
||||
|
||||
def forward(self, visual_embed, text_embed, time_embed, freqs, transformer_options={}):
|
||||
self_attn_params, cross_attn_params, ff_params = torch.chunk(self.visual_modulation(time_embed), 3, dim=-1)
|
||||
# self attention
|
||||
shift, scale, gate = get_shift_scale_gate(self_attn_params)
|
||||
visual_out = apply_scale_shift_norm(self.self_attention_norm, visual_embed, scale, shift)
|
||||
visual_out = self.self_attention(visual_out, freqs, transformer_options=transformer_options)
|
||||
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
|
||||
# cross attention
|
||||
shift, scale, gate = get_shift_scale_gate(cross_attn_params)
|
||||
visual_out = apply_scale_shift_norm(self.cross_attention_norm, visual_embed, scale, shift)
|
||||
visual_out = self.cross_attention(visual_out, text_embed, transformer_options=transformer_options)
|
||||
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
|
||||
# feed forward
|
||||
shift, scale, gate = get_shift_scale_gate(ff_params)
|
||||
visual_out = apply_scale_shift_norm(self.feed_forward_norm, visual_embed, scale, shift)
|
||||
visual_out = self.feed_forward(visual_out)
|
||||
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
|
||||
return visual_embed
|
||||
|
||||
|
||||
class Kandinsky5(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_visual_dim=16, out_visual_dim=16, in_text_dim=3584, in_text_dim2=768, time_dim=512,
|
||||
model_dim=1792, ff_dim=7168, visual_embed_dim=132, patch_size=(1, 2, 2), num_text_blocks=2, num_visual_blocks=32,
|
||||
axes_dims=(16, 24, 24), rope_scale_factor=(1.0, 2.0, 2.0),
|
||||
dtype=None, device=None, operations=None, **kwargs
|
||||
):
|
||||
super().__init__()
|
||||
head_dim = sum(axes_dims)
|
||||
self.rope_scale_factor = rope_scale_factor
|
||||
self.in_visual_dim = in_visual_dim
|
||||
self.model_dim = model_dim
|
||||
self.patch_size = patch_size
|
||||
self.visual_embed_dim = visual_embed_dim
|
||||
self.dtype = dtype
|
||||
self.device = device
|
||||
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
|
||||
|
||||
self.time_embeddings = TimeEmbeddings(model_dim, time_dim, operation_settings=operation_settings)
|
||||
self.text_embeddings = TextEmbeddings(in_text_dim, model_dim, operation_settings=operation_settings)
|
||||
self.pooled_text_embeddings = TextEmbeddings(in_text_dim2, time_dim, operation_settings=operation_settings)
|
||||
self.visual_embeddings = VisualEmbeddings(visual_embed_dim, model_dim, patch_size, operation_settings=operation_settings)
|
||||
|
||||
self.text_transformer_blocks = nn.ModuleList(
|
||||
[TransformerEncoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_text_blocks)]
|
||||
)
|
||||
|
||||
self.visual_transformer_blocks = nn.ModuleList(
|
||||
[TransformerDecoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_visual_blocks)]
|
||||
)
|
||||
|
||||
self.out_layer = OutLayer(model_dim, time_dim, out_visual_dim, patch_size, operation_settings=operation_settings)
|
||||
|
||||
self.rope_embedder_3d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=axes_dims)
|
||||
self.rope_embedder_1d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=[head_dim])
|
||||
|
||||
def rope_encode_1d(self, seq_len, seq_start=0, steps=None, device=None, dtype=None, transformer_options={}):
|
||||
steps = seq_len if steps is None else steps
|
||||
seq_ids = torch.linspace(seq_start, seq_start + (seq_len - 1), steps=steps, device=device, dtype=dtype)
|
||||
seq_ids = seq_ids.reshape(-1, 1).unsqueeze(0) # Shape: (1, steps, 1)
|
||||
freqs = self.rope_embedder_1d(seq_ids).movedim(1, 2)
|
||||
return freqs
|
||||
|
||||
def rope_encode_3d(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None, transformer_options={}):
|
||||
|
||||
patch_size = self.patch_size
|
||||
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
||||
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
|
||||
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
|
||||
|
||||
if steps_t is None:
|
||||
steps_t = t_len
|
||||
if steps_h is None:
|
||||
steps_h = h_len
|
||||
if steps_w is None:
|
||||
steps_w = w_len
|
||||
|
||||
h_start = 0
|
||||
w_start = 0
|
||||
rope_options = transformer_options.get("rope_options", None)
|
||||
if rope_options is not None:
|
||||
t_len = (t_len - 1.0) * rope_options.get("scale_t", 1.0) + 1.0
|
||||
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
|
||||
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
|
||||
|
||||
t_start += rope_options.get("shift_t", 0.0)
|
||||
h_start += rope_options.get("shift_y", 0.0)
|
||||
w_start += rope_options.get("shift_x", 0.0)
|
||||
else:
|
||||
rope_scale_factor = self.rope_scale_factor
|
||||
if self.model_dim == 4096: # pro video model uses different rope scaling at higher resolutions
|
||||
if h * w >= 14080:
|
||||
rope_scale_factor = (1.0, 3.16, 3.16)
|
||||
|
||||
t_len = (t_len - 1.0) / rope_scale_factor[0] + 1.0
|
||||
h_len = (h_len - 1.0) / rope_scale_factor[1] + 1.0
|
||||
w_len = (w_len - 1.0) / rope_scale_factor[2] + 1.0
|
||||
|
||||
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
|
||||
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
|
||||
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_start, h_start + (h_len - 1), steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
|
||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_start, w_start + (w_len - 1), steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
|
||||
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
|
||||
|
||||
freqs = self.rope_embedder_3d(img_ids).movedim(1, 2)
|
||||
return freqs
|
||||
|
||||
def forward_orig(self, x, timestep, context, y, freqs, freqs_text, transformer_options={}, **kwargs):
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
context = self.text_embeddings(context)
|
||||
time_embed = self.time_embeddings(timestep, x.dtype) + self.pooled_text_embeddings(y)
|
||||
|
||||
for block in self.text_transformer_blocks:
|
||||
context = block(context, time_embed, freqs_text, transformer_options=transformer_options)
|
||||
|
||||
visual_embed = self.visual_embeddings(x)
|
||||
visual_shape = visual_embed.shape[:-1]
|
||||
visual_embed = visual_embed.flatten(1, -2)
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.visual_transformer_blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.visual_transformer_blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
return block(x=args["x"], context=args["context"], time_embed=args["time_embed"], freqs=args["freqs"], transformer_options=args.get("transformer_options"))
|
||||
visual_embed = blocks_replace[("double_block", i)]({"x": visual_embed, "context": context, "time_embed": time_embed, "freqs": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})["x"]
|
||||
else:
|
||||
visual_embed = block(visual_embed, context, time_embed, freqs=freqs, transformer_options=transformer_options)
|
||||
|
||||
visual_embed = visual_embed.reshape(*visual_shape, -1)
|
||||
return self.out_layer(visual_embed, time_embed)
|
||||
|
||||
def _forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs):
|
||||
original_dims = x.ndim
|
||||
if original_dims == 4:
|
||||
x = x.unsqueeze(2)
|
||||
bs, c, t_len, h, w = x.shape
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
|
||||
|
||||
if time_dim_replace is not None:
|
||||
time_dim_replace = comfy.ldm.common_dit.pad_to_patch_size(time_dim_replace, self.patch_size)
|
||||
x[:, :time_dim_replace.shape[1], :time_dim_replace.shape[2]] = time_dim_replace
|
||||
|
||||
freqs = self.rope_encode_3d(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options)
|
||||
freqs_text = self.rope_encode_1d(context.shape[1], device=x.device, dtype=x.dtype, transformer_options=transformer_options)
|
||||
|
||||
out = self.forward_orig(x, timestep, context, y, freqs, freqs_text, transformer_options=transformer_options, **kwargs)
|
||||
if original_dims == 4:
|
||||
out = out.squeeze(2)
|
||||
return out
|
||||
|
||||
def forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, timestep, context, y, time_dim_replace=time_dim_replace, transformer_options=transformer_options, **kwargs)
|
||||
@ -3,12 +3,11 @@ from torch import nn
|
||||
import comfy.patcher_extension
|
||||
import comfy.ldm.modules.attention
|
||||
import comfy.ldm.common_dit
|
||||
from einops import rearrange
|
||||
import math
|
||||
from typing import Dict, Optional, Tuple
|
||||
|
||||
from .symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords
|
||||
|
||||
from comfy.ldm.flux.math import apply_rope1
|
||||
|
||||
def get_timestep_embedding(
|
||||
timesteps: torch.Tensor,
|
||||
@ -238,20 +237,6 @@ class FeedForward(nn.Module):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
def apply_rotary_emb(input_tensor, freqs_cis): #TODO: remove duplicate funcs and pick the best/fastest one
|
||||
cos_freqs = freqs_cis[0]
|
||||
sin_freqs = freqs_cis[1]
|
||||
|
||||
t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
|
||||
t1, t2 = t_dup.unbind(dim=-1)
|
||||
t_dup = torch.stack((-t2, t1), dim=-1)
|
||||
input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)")
|
||||
|
||||
out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
@ -281,8 +266,8 @@ class CrossAttention(nn.Module):
|
||||
k = self.k_norm(k)
|
||||
|
||||
if pe is not None:
|
||||
q = apply_rotary_emb(q, pe)
|
||||
k = apply_rotary_emb(k, pe)
|
||||
q = apply_rope1(q.unsqueeze(1), pe).squeeze(1)
|
||||
k = apply_rope1(k.unsqueeze(1), pe).squeeze(1)
|
||||
|
||||
if mask is None:
|
||||
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
|
||||
@ -306,12 +291,17 @@ class BasicTransformerBlock(nn.Module):
|
||||
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None, transformer_options={}):
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)
|
||||
|
||||
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe, transformer_options=transformer_options) * gate_msa
|
||||
attn1_input = comfy.ldm.common_dit.rms_norm(x)
|
||||
attn1_input = torch.addcmul(attn1_input, attn1_input, scale_msa).add_(shift_msa)
|
||||
attn1_input = self.attn1(attn1_input, pe=pe, transformer_options=transformer_options)
|
||||
x.addcmul_(attn1_input, gate_msa)
|
||||
del attn1_input
|
||||
|
||||
x += self.attn2(x, context=context, mask=attention_mask, transformer_options=transformer_options)
|
||||
|
||||
y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
|
||||
x += self.ff(y) * gate_mlp
|
||||
y = comfy.ldm.common_dit.rms_norm(x)
|
||||
y = torch.addcmul(y, y, scale_mlp).add_(shift_mlp)
|
||||
x.addcmul_(self.ff(y), gate_mlp)
|
||||
|
||||
return x
|
||||
|
||||
@ -327,41 +317,35 @@ def get_fractional_positions(indices_grid, max_pos):
|
||||
|
||||
|
||||
def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]):
|
||||
dtype = torch.float32 #self.dtype
|
||||
dtype = torch.float32
|
||||
device = indices_grid.device
|
||||
|
||||
# Get fractional positions and compute frequency indices
|
||||
fractional_positions = get_fractional_positions(indices_grid, max_pos)
|
||||
indices = theta ** torch.linspace(0, 1, dim // 6, device=device, dtype=dtype) * math.pi / 2
|
||||
|
||||
start = 1
|
||||
end = theta
|
||||
device = fractional_positions.device
|
||||
# Compute frequencies and apply cos/sin
|
||||
freqs = (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)).transpose(-1, -2).flatten(2)
|
||||
cos_vals = freqs.cos().repeat_interleave(2, dim=-1)
|
||||
sin_vals = freqs.sin().repeat_interleave(2, dim=-1)
|
||||
|
||||
indices = theta ** (
|
||||
torch.linspace(
|
||||
math.log(start, theta),
|
||||
math.log(end, theta),
|
||||
dim // 6,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
)
|
||||
indices = indices.to(dtype=dtype)
|
||||
|
||||
indices = indices * math.pi / 2
|
||||
|
||||
freqs = (
|
||||
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
|
||||
.transpose(-1, -2)
|
||||
.flatten(2)
|
||||
)
|
||||
|
||||
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
|
||||
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
|
||||
# Pad if dim is not divisible by 6
|
||||
if dim % 6 != 0:
|
||||
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
|
||||
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
|
||||
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
|
||||
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
|
||||
return cos_freq.to(out_dtype), sin_freq.to(out_dtype)
|
||||
padding_size = dim % 6
|
||||
cos_vals = torch.cat([torch.ones_like(cos_vals[:, :, :padding_size]), cos_vals], dim=-1)
|
||||
sin_vals = torch.cat([torch.zeros_like(sin_vals[:, :, :padding_size]), sin_vals], dim=-1)
|
||||
|
||||
# Reshape and extract one value per pair (since repeat_interleave duplicates each value)
|
||||
cos_vals = cos_vals.reshape(*cos_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2]
|
||||
sin_vals = sin_vals.reshape(*sin_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2]
|
||||
|
||||
# Build rotation matrix [[cos, -sin], [sin, cos]] and add heads dimension
|
||||
freqs_cis = torch.stack([
|
||||
torch.stack([cos_vals, -sin_vals], dim=-1),
|
||||
torch.stack([sin_vals, cos_vals], dim=-1)
|
||||
], dim=-2).unsqueeze(1) # [B, 1, N, dim//2, 2, 2]
|
||||
|
||||
return freqs_cis
|
||||
|
||||
|
||||
class LTXVModel(torch.nn.Module):
|
||||
@ -501,7 +485,7 @@ class LTXVModel(torch.nn.Module):
|
||||
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
|
||||
x = self.norm_out(x)
|
||||
# Modulation
|
||||
x = x * (1 + scale) + shift
|
||||
x = torch.addcmul(x, x, scale).add_(shift)
|
||||
x = self.proj_out(x)
|
||||
|
||||
x = self.patchifier.unpatchify(
|
||||
|
||||
160
comfy/ldm/lumina/controlnet.py
Normal file
160
comfy/ldm/lumina/controlnet.py
Normal file
@ -0,0 +1,160 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from .model import JointTransformerBlock
|
||||
|
||||
class ZImageControlTransformerBlock(JointTransformerBlock):
|
||||
def __init__(
|
||||
self,
|
||||
layer_id: int,
|
||||
dim: int,
|
||||
n_heads: int,
|
||||
n_kv_heads: int,
|
||||
multiple_of: int,
|
||||
ffn_dim_multiplier: float,
|
||||
norm_eps: float,
|
||||
qk_norm: bool,
|
||||
modulation=True,
|
||||
block_id=0,
|
||||
operation_settings=None,
|
||||
):
|
||||
super().__init__(layer_id, dim, n_heads, n_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, qk_norm, modulation, z_image_modulation=True, operation_settings=operation_settings)
|
||||
self.block_id = block_id
|
||||
if block_id == 0:
|
||||
self.before_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.after_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, c, x, **kwargs):
|
||||
if self.block_id == 0:
|
||||
c = self.before_proj(c) + x
|
||||
c = super().forward(c, **kwargs)
|
||||
c_skip = self.after_proj(c)
|
||||
return c_skip, c
|
||||
|
||||
class ZImage_Control(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int = 3840,
|
||||
n_heads: int = 30,
|
||||
n_kv_heads: int = 30,
|
||||
multiple_of: int = 256,
|
||||
ffn_dim_multiplier: float = (8.0 / 3.0),
|
||||
norm_eps: float = 1e-5,
|
||||
qk_norm: bool = True,
|
||||
n_control_layers=6,
|
||||
control_in_dim=16,
|
||||
additional_in_dim=0,
|
||||
broken=False,
|
||||
refiner_control=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
|
||||
|
||||
self.broken = broken
|
||||
self.additional_in_dim = additional_in_dim
|
||||
self.control_in_dim = control_in_dim
|
||||
n_refiner_layers = 2
|
||||
self.n_control_layers = n_control_layers
|
||||
self.control_layers = nn.ModuleList(
|
||||
[
|
||||
ZImageControlTransformerBlock(
|
||||
i,
|
||||
dim,
|
||||
n_heads,
|
||||
n_kv_heads,
|
||||
multiple_of,
|
||||
ffn_dim_multiplier,
|
||||
norm_eps,
|
||||
qk_norm,
|
||||
block_id=i,
|
||||
operation_settings=operation_settings,
|
||||
)
|
||||
for i in range(self.n_control_layers)
|
||||
]
|
||||
)
|
||||
|
||||
all_x_embedder = {}
|
||||
patch_size = 2
|
||||
f_patch_size = 1
|
||||
x_embedder = operations.Linear(f_patch_size * patch_size * patch_size * (self.control_in_dim + self.additional_in_dim), dim, bias=True, device=device, dtype=dtype)
|
||||
all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder
|
||||
|
||||
self.refiner_control = refiner_control
|
||||
|
||||
self.control_all_x_embedder = nn.ModuleDict(all_x_embedder)
|
||||
if self.refiner_control:
|
||||
self.control_noise_refiner = nn.ModuleList(
|
||||
[
|
||||
ZImageControlTransformerBlock(
|
||||
layer_id,
|
||||
dim,
|
||||
n_heads,
|
||||
n_kv_heads,
|
||||
multiple_of,
|
||||
ffn_dim_multiplier,
|
||||
norm_eps,
|
||||
qk_norm,
|
||||
block_id=layer_id,
|
||||
operation_settings=operation_settings,
|
||||
)
|
||||
for layer_id in range(n_refiner_layers)
|
||||
]
|
||||
)
|
||||
else:
|
||||
self.control_noise_refiner = nn.ModuleList(
|
||||
[
|
||||
JointTransformerBlock(
|
||||
layer_id,
|
||||
dim,
|
||||
n_heads,
|
||||
n_kv_heads,
|
||||
multiple_of,
|
||||
ffn_dim_multiplier,
|
||||
norm_eps,
|
||||
qk_norm,
|
||||
modulation=True,
|
||||
z_image_modulation=True,
|
||||
operation_settings=operation_settings,
|
||||
)
|
||||
for layer_id in range(n_refiner_layers)
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, cap_feats, control_context, x_freqs_cis, adaln_input):
|
||||
patch_size = 2
|
||||
f_patch_size = 1
|
||||
pH = pW = patch_size
|
||||
B, C, H, W = control_context.shape
|
||||
control_context = self.control_all_x_embedder[f"{patch_size}-{f_patch_size}"](control_context.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2))
|
||||
|
||||
x_attn_mask = None
|
||||
if not self.refiner_control:
|
||||
for layer in self.control_noise_refiner:
|
||||
control_context = layer(control_context, x_attn_mask, x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input)
|
||||
|
||||
return control_context
|
||||
|
||||
def forward_noise_refiner_block(self, layer_id, control_context, x, x_attn_mask, x_freqs_cis, adaln_input):
|
||||
if self.refiner_control:
|
||||
if self.broken:
|
||||
if layer_id == 0:
|
||||
return self.control_layers[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)
|
||||
if layer_id > 0:
|
||||
out = None
|
||||
for i in range(1, len(self.control_layers)):
|
||||
o, control_context = self.control_layers[i](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)
|
||||
if out is None:
|
||||
out = o
|
||||
|
||||
return (out, control_context)
|
||||
else:
|
||||
return self.control_noise_refiner[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)
|
||||
else:
|
||||
return (None, control_context)
|
||||
|
||||
def forward_control_block(self, layer_id, control_context, x, x_attn_mask, x_freqs_cis, adaln_input):
|
||||
return self.control_layers[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)
|
||||
@ -11,6 +11,7 @@ import comfy.ldm.common_dit
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder
|
||||
from comfy.ldm.modules.attention import optimized_attention_masked
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
from comfy.ldm.flux.math import apply_rope
|
||||
import comfy.patcher_extension
|
||||
|
||||
|
||||
@ -21,6 +22,10 @@ def modulate(x, scale):
|
||||
# Core NextDiT Model #
|
||||
#############################################################################
|
||||
|
||||
def clamp_fp16(x):
|
||||
if x.dtype == torch.float16:
|
||||
return torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
return x
|
||||
|
||||
class JointAttention(nn.Module):
|
||||
"""Multi-head attention module."""
|
||||
@ -31,6 +36,7 @@ class JointAttention(nn.Module):
|
||||
n_heads: int,
|
||||
n_kv_heads: Optional[int],
|
||||
qk_norm: bool,
|
||||
out_bias: bool = False,
|
||||
operation_settings={},
|
||||
):
|
||||
"""
|
||||
@ -59,7 +65,7 @@ class JointAttention(nn.Module):
|
||||
self.out = operation_settings.get("operations").Linear(
|
||||
n_heads * self.head_dim,
|
||||
dim,
|
||||
bias=False,
|
||||
bias=out_bias,
|
||||
device=operation_settings.get("device"),
|
||||
dtype=operation_settings.get("dtype"),
|
||||
)
|
||||
@ -70,35 +76,6 @@ class JointAttention(nn.Module):
|
||||
else:
|
||||
self.q_norm = self.k_norm = nn.Identity()
|
||||
|
||||
@staticmethod
|
||||
def apply_rotary_emb(
|
||||
x_in: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Apply rotary embeddings to input tensors using the given frequency
|
||||
tensor.
|
||||
|
||||
This function applies rotary embeddings to the given query 'xq' and
|
||||
key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The
|
||||
input tensors are reshaped as complex numbers, and the frequency tensor
|
||||
is reshaped for broadcasting compatibility. The resulting tensors
|
||||
contain rotary embeddings and are returned as real tensors.
|
||||
|
||||
Args:
|
||||
x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings.
|
||||
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex
|
||||
exponentials.
|
||||
|
||||
Returns:
|
||||
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor
|
||||
and key tensor with rotary embeddings.
|
||||
"""
|
||||
|
||||
t_ = x_in.reshape(*x_in.shape[:-1], -1, 1, 2)
|
||||
t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
|
||||
return t_out.reshape(*x_in.shape)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
@ -134,8 +111,7 @@ class JointAttention(nn.Module):
|
||||
xq = self.q_norm(xq)
|
||||
xk = self.k_norm(xk)
|
||||
|
||||
xq = JointAttention.apply_rotary_emb(xq, freqs_cis=freqs_cis)
|
||||
xk = JointAttention.apply_rotary_emb(xk, freqs_cis=freqs_cis)
|
||||
xq, xk = apply_rope(xq, xk, freqs_cis)
|
||||
|
||||
n_rep = self.n_local_heads // self.n_local_kv_heads
|
||||
if n_rep >= 1:
|
||||
@ -197,7 +173,7 @@ class FeedForward(nn.Module):
|
||||
|
||||
# @torch.compile
|
||||
def _forward_silu_gating(self, x1, x3):
|
||||
return F.silu(x1) * x3
|
||||
return clamp_fp16(F.silu(x1) * x3)
|
||||
|
||||
def forward(self, x):
|
||||
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
|
||||
@ -215,6 +191,8 @@ class JointTransformerBlock(nn.Module):
|
||||
norm_eps: float,
|
||||
qk_norm: bool,
|
||||
modulation=True,
|
||||
z_image_modulation=False,
|
||||
attn_out_bias=False,
|
||||
operation_settings={},
|
||||
) -> None:
|
||||
"""
|
||||
@ -235,10 +213,10 @@ class JointTransformerBlock(nn.Module):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.head_dim = dim // n_heads
|
||||
self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, operation_settings=operation_settings)
|
||||
self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, out_bias=attn_out_bias, operation_settings=operation_settings)
|
||||
self.feed_forward = FeedForward(
|
||||
dim=dim,
|
||||
hidden_dim=4 * dim,
|
||||
hidden_dim=dim,
|
||||
multiple_of=multiple_of,
|
||||
ffn_dim_multiplier=ffn_dim_multiplier,
|
||||
operation_settings=operation_settings,
|
||||
@ -252,16 +230,27 @@ class JointTransformerBlock(nn.Module):
|
||||
|
||||
self.modulation = modulation
|
||||
if modulation:
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operation_settings.get("operations").Linear(
|
||||
min(dim, 1024),
|
||||
4 * dim,
|
||||
bias=True,
|
||||
device=operation_settings.get("device"),
|
||||
dtype=operation_settings.get("dtype"),
|
||||
),
|
||||
)
|
||||
if z_image_modulation:
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
operation_settings.get("operations").Linear(
|
||||
min(dim, 256),
|
||||
4 * dim,
|
||||
bias=True,
|
||||
device=operation_settings.get("device"),
|
||||
dtype=operation_settings.get("dtype"),
|
||||
),
|
||||
)
|
||||
else:
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operation_settings.get("operations").Linear(
|
||||
min(dim, 1024),
|
||||
4 * dim,
|
||||
bias=True,
|
||||
device=operation_settings.get("device"),
|
||||
dtype=operation_settings.get("dtype"),
|
||||
),
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -288,27 +277,27 @@ class JointTransformerBlock(nn.Module):
|
||||
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1)
|
||||
|
||||
x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2(
|
||||
self.attention(
|
||||
clamp_fp16(self.attention(
|
||||
modulate(self.attention_norm1(x), scale_msa),
|
||||
x_mask,
|
||||
freqs_cis,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
))
|
||||
)
|
||||
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
|
||||
self.feed_forward(
|
||||
clamp_fp16(self.feed_forward(
|
||||
modulate(self.ffn_norm1(x), scale_mlp),
|
||||
)
|
||||
))
|
||||
)
|
||||
else:
|
||||
assert adaln_input is None
|
||||
x = x + self.attention_norm2(
|
||||
self.attention(
|
||||
clamp_fp16(self.attention(
|
||||
self.attention_norm1(x),
|
||||
x_mask,
|
||||
freqs_cis,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
))
|
||||
)
|
||||
x = x + self.ffn_norm2(
|
||||
self.feed_forward(
|
||||
@ -323,7 +312,7 @@ class FinalLayer(nn.Module):
|
||||
The final layer of NextDiT.
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_size, patch_size, out_channels, operation_settings={}):
|
||||
def __init__(self, hidden_size, patch_size, out_channels, z_image_modulation=False, operation_settings={}):
|
||||
super().__init__()
|
||||
self.norm_final = operation_settings.get("operations").LayerNorm(
|
||||
hidden_size,
|
||||
@ -340,10 +329,15 @@ class FinalLayer(nn.Module):
|
||||
dtype=operation_settings.get("dtype"),
|
||||
)
|
||||
|
||||
if z_image_modulation:
|
||||
min_mod = 256
|
||||
else:
|
||||
min_mod = 1024
|
||||
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operation_settings.get("operations").Linear(
|
||||
min(hidden_size, 1024),
|
||||
min(hidden_size, min_mod),
|
||||
hidden_size,
|
||||
bias=True,
|
||||
device=operation_settings.get("device"),
|
||||
@ -373,12 +367,17 @@ class NextDiT(nn.Module):
|
||||
n_heads: int = 32,
|
||||
n_kv_heads: Optional[int] = None,
|
||||
multiple_of: int = 256,
|
||||
ffn_dim_multiplier: Optional[float] = None,
|
||||
ffn_dim_multiplier: float = 4.0,
|
||||
norm_eps: float = 1e-5,
|
||||
qk_norm: bool = False,
|
||||
cap_feat_dim: int = 5120,
|
||||
axes_dims: List[int] = (16, 56, 56),
|
||||
axes_lens: List[int] = (1, 512, 512),
|
||||
rope_theta=10000.0,
|
||||
z_image_modulation=False,
|
||||
time_scale=1.0,
|
||||
pad_tokens_multiple=None,
|
||||
clip_text_dim=None,
|
||||
image_model=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
@ -390,6 +389,8 @@ class NextDiT(nn.Module):
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels
|
||||
self.patch_size = patch_size
|
||||
self.time_scale = time_scale
|
||||
self.pad_tokens_multiple = pad_tokens_multiple
|
||||
|
||||
self.x_embedder = operation_settings.get("operations").Linear(
|
||||
in_features=patch_size * patch_size * in_channels,
|
||||
@ -411,6 +412,7 @@ class NextDiT(nn.Module):
|
||||
norm_eps,
|
||||
qk_norm,
|
||||
modulation=True,
|
||||
z_image_modulation=z_image_modulation,
|
||||
operation_settings=operation_settings,
|
||||
)
|
||||
for layer_id in range(n_refiner_layers)
|
||||
@ -434,7 +436,7 @@ class NextDiT(nn.Module):
|
||||
]
|
||||
)
|
||||
|
||||
self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings)
|
||||
self.t_embedder = TimestepEmbedder(min(dim, 1024), output_size=256 if z_image_modulation else None, **operation_settings)
|
||||
self.cap_embedder = nn.Sequential(
|
||||
operation_settings.get("operations").RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
|
||||
operation_settings.get("operations").Linear(
|
||||
@ -446,6 +448,31 @@ class NextDiT(nn.Module):
|
||||
),
|
||||
)
|
||||
|
||||
self.clip_text_pooled_proj = None
|
||||
|
||||
if clip_text_dim is not None:
|
||||
self.clip_text_dim = clip_text_dim
|
||||
self.clip_text_pooled_proj = nn.Sequential(
|
||||
operation_settings.get("operations").RMSNorm(clip_text_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
|
||||
operation_settings.get("operations").Linear(
|
||||
clip_text_dim,
|
||||
clip_text_dim,
|
||||
bias=True,
|
||||
device=operation_settings.get("device"),
|
||||
dtype=operation_settings.get("dtype"),
|
||||
),
|
||||
)
|
||||
self.time_text_embed = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operation_settings.get("operations").Linear(
|
||||
min(dim, 1024) + clip_text_dim,
|
||||
min(dim, 1024),
|
||||
bias=True,
|
||||
device=operation_settings.get("device"),
|
||||
dtype=operation_settings.get("dtype"),
|
||||
),
|
||||
)
|
||||
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
JointTransformerBlock(
|
||||
@ -457,18 +484,25 @@ class NextDiT(nn.Module):
|
||||
ffn_dim_multiplier,
|
||||
norm_eps,
|
||||
qk_norm,
|
||||
z_image_modulation=z_image_modulation,
|
||||
attn_out_bias=False,
|
||||
operation_settings=operation_settings,
|
||||
)
|
||||
for layer_id in range(n_layers)
|
||||
]
|
||||
)
|
||||
self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings)
|
||||
# This norm final is in the lumina 2.0 code but isn't actually used for anything.
|
||||
# self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, z_image_modulation=z_image_modulation, operation_settings=operation_settings)
|
||||
|
||||
if self.pad_tokens_multiple is not None:
|
||||
self.x_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype))
|
||||
self.cap_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype))
|
||||
|
||||
assert (dim // n_heads) == sum(axes_dims)
|
||||
self.axes_dims = axes_dims
|
||||
self.axes_lens = axes_lens
|
||||
self.rope_embedder = EmbedND(dim=dim // n_heads, theta=10000.0, axes_dim=axes_dims)
|
||||
self.rope_embedder = EmbedND(dim=dim // n_heads, theta=rope_theta, axes_dim=axes_dims)
|
||||
self.dim = dim
|
||||
self.n_heads = n_heads
|
||||
|
||||
@ -503,96 +537,63 @@ class NextDiT(nn.Module):
|
||||
bsz = len(x)
|
||||
pH = pW = self.patch_size
|
||||
device = x[0].device
|
||||
dtype = x[0].dtype
|
||||
orig_x = x
|
||||
|
||||
if cap_mask is not None:
|
||||
l_effective_cap_len = cap_mask.sum(dim=1).tolist()
|
||||
else:
|
||||
l_effective_cap_len = [num_tokens] * bsz
|
||||
if self.pad_tokens_multiple is not None:
|
||||
pad_extra = (-cap_feats.shape[1]) % self.pad_tokens_multiple
|
||||
cap_feats = torch.cat((cap_feats, self.cap_pad_token.to(device=cap_feats.device, dtype=cap_feats.dtype, copy=True).unsqueeze(0).repeat(cap_feats.shape[0], pad_extra, 1)), dim=1)
|
||||
|
||||
if cap_mask is not None and not torch.is_floating_point(cap_mask):
|
||||
cap_mask = (cap_mask - 1).to(dtype) * torch.finfo(dtype).max
|
||||
cap_pos_ids = torch.zeros(bsz, cap_feats.shape[1], 3, dtype=torch.float32, device=device)
|
||||
cap_pos_ids[:, :, 0] = torch.arange(cap_feats.shape[1], dtype=torch.float32, device=device) + 1.0
|
||||
|
||||
img_sizes = [(img.size(1), img.size(2)) for img in x]
|
||||
l_effective_img_len = [(H // pH) * (W // pW) for (H, W) in img_sizes]
|
||||
B, C, H, W = x.shape
|
||||
x = self.x_embedder(x.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2))
|
||||
|
||||
max_seq_len = max(
|
||||
(cap_len+img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len))
|
||||
)
|
||||
max_cap_len = max(l_effective_cap_len)
|
||||
max_img_len = max(l_effective_img_len)
|
||||
rope_options = transformer_options.get("rope_options", None)
|
||||
h_scale = 1.0
|
||||
w_scale = 1.0
|
||||
h_start = 0
|
||||
w_start = 0
|
||||
if rope_options is not None:
|
||||
h_scale = rope_options.get("scale_y", 1.0)
|
||||
w_scale = rope_options.get("scale_x", 1.0)
|
||||
|
||||
position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.int32, device=device)
|
||||
h_start = rope_options.get("shift_y", 0.0)
|
||||
w_start = rope_options.get("shift_x", 0.0)
|
||||
|
||||
for i in range(bsz):
|
||||
cap_len = l_effective_cap_len[i]
|
||||
img_len = l_effective_img_len[i]
|
||||
H, W = img_sizes[i]
|
||||
H_tokens, W_tokens = H // pH, W // pW
|
||||
assert H_tokens * W_tokens == img_len
|
||||
H_tokens, W_tokens = H // pH, W // pW
|
||||
x_pos_ids = torch.zeros((bsz, x.shape[1], 3), dtype=torch.float32, device=device)
|
||||
x_pos_ids[:, :, 0] = cap_feats.shape[1] + 1
|
||||
x_pos_ids[:, :, 1] = (torch.arange(H_tokens, dtype=torch.float32, device=device) * h_scale + h_start).view(-1, 1).repeat(1, W_tokens).flatten()
|
||||
x_pos_ids[:, :, 2] = (torch.arange(W_tokens, dtype=torch.float32, device=device) * w_scale + w_start).view(1, -1).repeat(H_tokens, 1).flatten()
|
||||
|
||||
position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.int32, device=device)
|
||||
position_ids[i, cap_len:cap_len+img_len, 0] = cap_len
|
||||
row_ids = torch.arange(H_tokens, dtype=torch.int32, device=device).view(-1, 1).repeat(1, W_tokens).flatten()
|
||||
col_ids = torch.arange(W_tokens, dtype=torch.int32, device=device).view(1, -1).repeat(H_tokens, 1).flatten()
|
||||
position_ids[i, cap_len:cap_len+img_len, 1] = row_ids
|
||||
position_ids[i, cap_len:cap_len+img_len, 2] = col_ids
|
||||
if self.pad_tokens_multiple is not None:
|
||||
pad_extra = (-x.shape[1]) % self.pad_tokens_multiple
|
||||
x = torch.cat((x, self.x_pad_token.to(device=x.device, dtype=x.dtype, copy=True).unsqueeze(0).repeat(x.shape[0], pad_extra, 1)), dim=1)
|
||||
x_pos_ids = torch.nn.functional.pad(x_pos_ids, (0, 0, 0, pad_extra))
|
||||
|
||||
freqs_cis = self.rope_embedder(position_ids).movedim(1, 2).to(dtype)
|
||||
freqs_cis = self.rope_embedder(torch.cat((cap_pos_ids, x_pos_ids), dim=1)).movedim(1, 2)
|
||||
|
||||
# build freqs_cis for cap and image individually
|
||||
cap_freqs_cis_shape = list(freqs_cis.shape)
|
||||
# cap_freqs_cis_shape[1] = max_cap_len
|
||||
cap_freqs_cis_shape[1] = cap_feats.shape[1]
|
||||
cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
|
||||
|
||||
img_freqs_cis_shape = list(freqs_cis.shape)
|
||||
img_freqs_cis_shape[1] = max_img_len
|
||||
img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
|
||||
|
||||
for i in range(bsz):
|
||||
cap_len = l_effective_cap_len[i]
|
||||
img_len = l_effective_img_len[i]
|
||||
cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len]
|
||||
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len:cap_len+img_len]
|
||||
patches = transformer_options.get("patches", {})
|
||||
|
||||
# refine context
|
||||
for layer in self.context_refiner:
|
||||
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis, transformer_options=transformer_options)
|
||||
cap_feats = layer(cap_feats, cap_mask, freqs_cis[:, :cap_pos_ids.shape[1]], transformer_options=transformer_options)
|
||||
|
||||
# refine image
|
||||
flat_x = []
|
||||
for i in range(bsz):
|
||||
img = x[i]
|
||||
C, H, W = img.size()
|
||||
img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 2, 4, 0).flatten(2).flatten(0, 1)
|
||||
flat_x.append(img)
|
||||
x = flat_x
|
||||
padded_img_embed = torch.zeros(bsz, max_img_len, x[0].shape[-1], device=device, dtype=x[0].dtype)
|
||||
padded_img_mask = torch.zeros(bsz, max_img_len, dtype=dtype, device=device)
|
||||
for i in range(bsz):
|
||||
padded_img_embed[i, :l_effective_img_len[i]] = x[i]
|
||||
padded_img_mask[i, l_effective_img_len[i]:] = -torch.finfo(dtype).max
|
||||
|
||||
padded_img_embed = self.x_embedder(padded_img_embed)
|
||||
padded_img_mask = padded_img_mask.unsqueeze(1)
|
||||
for layer in self.noise_refiner:
|
||||
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t, transformer_options=transformer_options)
|
||||
|
||||
if cap_mask is not None:
|
||||
mask = torch.zeros(bsz, max_seq_len, dtype=dtype, device=device)
|
||||
mask[:, :max_cap_len] = cap_mask[:, :max_cap_len]
|
||||
else:
|
||||
mask = None
|
||||
|
||||
padded_full_embed = torch.zeros(bsz, max_seq_len, self.dim, device=device, dtype=x[0].dtype)
|
||||
for i in range(bsz):
|
||||
cap_len = l_effective_cap_len[i]
|
||||
img_len = l_effective_img_len[i]
|
||||
|
||||
padded_full_embed[i, :cap_len] = cap_feats[i, :cap_len]
|
||||
padded_full_embed[i, cap_len:cap_len+img_len] = padded_img_embed[i, :img_len]
|
||||
padded_img_mask = None
|
||||
x_input = x
|
||||
for i, layer in enumerate(self.noise_refiner):
|
||||
x = layer(x, padded_img_mask, freqs_cis[:, cap_pos_ids.shape[1]:], t, transformer_options=transformer_options)
|
||||
if "noise_refiner" in patches:
|
||||
for p in patches["noise_refiner"]:
|
||||
out = p({"img": x, "img_input": x_input, "txt": cap_feats, "pe": freqs_cis[:, cap_pos_ids.shape[1]:], "vec": t, "x": orig_x, "block_index": i, "transformer_options": transformer_options, "block_type": "noise_refiner"})
|
||||
if "img" in out:
|
||||
x = out["img"]
|
||||
|
||||
padded_full_embed = torch.cat((cap_feats, x), dim=1)
|
||||
mask = None
|
||||
img_sizes = [(H, W)] * bsz
|
||||
l_effective_cap_len = [cap_feats.shape[1]] * bsz
|
||||
return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis
|
||||
|
||||
def forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
|
||||
@ -603,7 +604,7 @@ class NextDiT(nn.Module):
|
||||
).execute(x, timesteps, context, num_tokens, attention_mask, **kwargs)
|
||||
|
||||
# def forward(self, x, t, cap_feats, cap_mask):
|
||||
def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
|
||||
def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, transformer_options={}, **kwargs):
|
||||
t = 1.0 - timesteps
|
||||
cap_feats = context
|
||||
cap_mask = attention_mask
|
||||
@ -615,21 +616,41 @@ class NextDiT(nn.Module):
|
||||
y: (N,) tensor of text tokens/features
|
||||
"""
|
||||
|
||||
t = self.t_embedder(t, dtype=x.dtype) # (N, D)
|
||||
t = self.t_embedder(t * self.time_scale, dtype=x.dtype) # (N, D)
|
||||
adaln_input = t
|
||||
|
||||
cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute
|
||||
|
||||
transformer_options = kwargs.get("transformer_options", {})
|
||||
if self.clip_text_pooled_proj is not None:
|
||||
pooled = kwargs.get("clip_text_pooled", None)
|
||||
if pooled is not None:
|
||||
pooled = self.clip_text_pooled_proj(pooled)
|
||||
else:
|
||||
pooled = torch.zeros((x.shape[0], self.clip_text_dim), device=x.device, dtype=x.dtype)
|
||||
|
||||
adaln_input = self.time_text_embed(torch.cat((t, pooled), dim=-1))
|
||||
|
||||
patches = transformer_options.get("patches", {})
|
||||
x_is_tensor = isinstance(x, torch.Tensor)
|
||||
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options)
|
||||
freqs_cis = freqs_cis.to(x.device)
|
||||
img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, adaln_input, num_tokens, transformer_options=transformer_options)
|
||||
freqs_cis = freqs_cis.to(img.device)
|
||||
|
||||
for layer in self.layers:
|
||||
x = layer(x, mask, freqs_cis, adaln_input, transformer_options=transformer_options)
|
||||
transformer_options["total_blocks"] = len(self.layers)
|
||||
transformer_options["block_type"] = "double"
|
||||
img_input = img
|
||||
for i, layer in enumerate(self.layers):
|
||||
transformer_options["block_index"] = i
|
||||
img = layer(img, mask, freqs_cis, adaln_input, transformer_options=transformer_options)
|
||||
if "double_block" in patches:
|
||||
for p in patches["double_block"]:
|
||||
out = p({"img": img[:, cap_size[0]:], "img_input": img_input[:, cap_size[0]:], "txt": img[:, :cap_size[0]], "pe": freqs_cis[:, cap_size[0]:], "vec": adaln_input, "x": x, "block_index": i, "transformer_options": transformer_options})
|
||||
if "img" in out:
|
||||
img[:, cap_size[0]:] = out["img"]
|
||||
if "txt" in out:
|
||||
img[:, :cap_size[0]] = out["txt"]
|
||||
|
||||
x = self.final_layer(x, adaln_input)
|
||||
x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)[:,:,:h,:w]
|
||||
img = self.final_layer(img, adaln_input)
|
||||
img = self.unpatchify(img, img_size, cap_size, return_tensor=x_is_tensor)[:, :, :h, :w]
|
||||
|
||||
return -x
|
||||
return -img
|
||||
|
||||
|
||||
0
comfy/ldm/mmaudio/vae/__init__.py
Normal file
0
comfy/ldm/mmaudio/vae/__init__.py
Normal file
120
comfy/ldm/mmaudio/vae/activations.py
Normal file
120
comfy/ldm/mmaudio/vae/activations.py
Normal file
@ -0,0 +1,120 @@
|
||||
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch
|
||||
from torch import nn, sin, pow
|
||||
from torch.nn import Parameter
|
||||
import comfy.model_management
|
||||
|
||||
class Snake(nn.Module):
|
||||
'''
|
||||
Implementation of a sine-based periodic activation function
|
||||
Shape:
|
||||
- Input: (B, C, T)
|
||||
- Output: (B, C, T), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||||
https://arxiv.org/abs/2006.08195
|
||||
Examples:
|
||||
>>> a1 = snake(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
||||
'''
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- alpha: trainable parameter
|
||||
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||||
alpha will be trained along with the rest of your model.
|
||||
'''
|
||||
super(Snake, self).__init__()
|
||||
self.in_features = in_features
|
||||
|
||||
# initialize alpha
|
||||
self.alpha_logscale = alpha_logscale
|
||||
if self.alpha_logscale:
|
||||
self.alpha = Parameter(torch.empty(in_features))
|
||||
else:
|
||||
self.alpha = Parameter(torch.empty(in_features))
|
||||
|
||||
self.alpha.requires_grad = alpha_trainable
|
||||
|
||||
self.no_div_by_zero = 0.000000001
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
Snake ∶= x + 1/a * sin^2 (xa)
|
||||
'''
|
||||
alpha = comfy.model_management.cast_to(self.alpha, dtype=x.dtype, device=x.device).unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
||||
if self.alpha_logscale:
|
||||
alpha = torch.exp(alpha)
|
||||
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class SnakeBeta(nn.Module):
|
||||
'''
|
||||
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
||||
Shape:
|
||||
- Input: (B, C, T)
|
||||
- Output: (B, C, T), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter that controls frequency
|
||||
- beta - trainable parameter that controls magnitude
|
||||
References:
|
||||
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||||
https://arxiv.org/abs/2006.08195
|
||||
Examples:
|
||||
>>> a1 = snakebeta(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
||||
'''
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- alpha - trainable parameter that controls frequency
|
||||
- beta - trainable parameter that controls magnitude
|
||||
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||||
beta is initialized to 1 by default, higher values = higher-magnitude.
|
||||
alpha will be trained along with the rest of your model.
|
||||
'''
|
||||
super(SnakeBeta, self).__init__()
|
||||
self.in_features = in_features
|
||||
|
||||
# initialize alpha
|
||||
self.alpha_logscale = alpha_logscale
|
||||
if self.alpha_logscale:
|
||||
self.alpha = Parameter(torch.empty(in_features))
|
||||
self.beta = Parameter(torch.empty(in_features))
|
||||
else:
|
||||
self.alpha = Parameter(torch.empty(in_features))
|
||||
self.beta = Parameter(torch.empty(in_features))
|
||||
|
||||
self.alpha.requires_grad = alpha_trainable
|
||||
self.beta.requires_grad = alpha_trainable
|
||||
|
||||
self.no_div_by_zero = 0.000000001
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
||||
'''
|
||||
alpha = comfy.model_management.cast_to(self.alpha, dtype=x.dtype, device=x.device).unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
||||
beta = comfy.model_management.cast_to(self.beta, dtype=x.dtype, device=x.device).unsqueeze(0).unsqueeze(-1)
|
||||
if self.alpha_logscale:
|
||||
alpha = torch.exp(alpha)
|
||||
beta = torch.exp(beta)
|
||||
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||||
|
||||
return x
|
||||
157
comfy/ldm/mmaudio/vae/alias_free_torch.py
Normal file
157
comfy/ldm/mmaudio/vae/alias_free_torch.py
Normal file
@ -0,0 +1,157 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
import comfy.model_management
|
||||
|
||||
if 'sinc' in dir(torch):
|
||||
sinc = torch.sinc
|
||||
else:
|
||||
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
||||
# https://adefossez.github.io/julius/julius/core.html
|
||||
# LICENSE is in incl_licenses directory.
|
||||
def sinc(x: torch.Tensor):
|
||||
"""
|
||||
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
||||
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
||||
"""
|
||||
return torch.where(x == 0,
|
||||
torch.tensor(1., device=x.device, dtype=x.dtype),
|
||||
torch.sin(math.pi * x) / math.pi / x)
|
||||
|
||||
|
||||
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
||||
# https://adefossez.github.io/julius/julius/lowpass.html
|
||||
# LICENSE is in incl_licenses directory.
|
||||
def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
|
||||
even = (kernel_size % 2 == 0)
|
||||
half_size = kernel_size // 2
|
||||
|
||||
#For kaiser window
|
||||
delta_f = 4 * half_width
|
||||
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
||||
if A > 50.:
|
||||
beta = 0.1102 * (A - 8.7)
|
||||
elif A >= 21.:
|
||||
beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.)
|
||||
else:
|
||||
beta = 0.
|
||||
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
||||
|
||||
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
||||
if even:
|
||||
time = (torch.arange(-half_size, half_size) + 0.5)
|
||||
else:
|
||||
time = torch.arange(kernel_size) - half_size
|
||||
if cutoff == 0:
|
||||
filter_ = torch.zeros_like(time)
|
||||
else:
|
||||
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
||||
# Normalize filter to have sum = 1, otherwise we will have a small leakage
|
||||
# of the constant component in the input signal.
|
||||
filter_ /= filter_.sum()
|
||||
filter = filter_.view(1, 1, kernel_size)
|
||||
|
||||
return filter
|
||||
|
||||
|
||||
class LowPassFilter1d(nn.Module):
|
||||
def __init__(self,
|
||||
cutoff=0.5,
|
||||
half_width=0.6,
|
||||
stride: int = 1,
|
||||
padding: bool = True,
|
||||
padding_mode: str = 'replicate',
|
||||
kernel_size: int = 12):
|
||||
# kernel_size should be even number for stylegan3 setup,
|
||||
# in this implementation, odd number is also possible.
|
||||
super().__init__()
|
||||
if cutoff < -0.:
|
||||
raise ValueError("Minimum cutoff must be larger than zero.")
|
||||
if cutoff > 0.5:
|
||||
raise ValueError("A cutoff above 0.5 does not make sense.")
|
||||
self.kernel_size = kernel_size
|
||||
self.even = (kernel_size % 2 == 0)
|
||||
self.pad_left = kernel_size // 2 - int(self.even)
|
||||
self.pad_right = kernel_size // 2
|
||||
self.stride = stride
|
||||
self.padding = padding
|
||||
self.padding_mode = padding_mode
|
||||
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
||||
self.register_buffer("filter", filter)
|
||||
|
||||
#input [B, C, T]
|
||||
def forward(self, x):
|
||||
_, C, _ = x.shape
|
||||
|
||||
if self.padding:
|
||||
x = F.pad(x, (self.pad_left, self.pad_right),
|
||||
mode=self.padding_mode)
|
||||
out = F.conv1d(x, comfy.model_management.cast_to(self.filter.expand(C, -1, -1), dtype=x.dtype, device=x.device),
|
||||
stride=self.stride, groups=C)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class UpSample1d(nn.Module):
|
||||
def __init__(self, ratio=2, kernel_size=None):
|
||||
super().__init__()
|
||||
self.ratio = ratio
|
||||
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||
self.stride = ratio
|
||||
self.pad = self.kernel_size // ratio - 1
|
||||
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
||||
self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
||||
filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio,
|
||||
half_width=0.6 / ratio,
|
||||
kernel_size=self.kernel_size)
|
||||
self.register_buffer("filter", filter)
|
||||
|
||||
# x: [B, C, T]
|
||||
def forward(self, x):
|
||||
_, C, _ = x.shape
|
||||
|
||||
x = F.pad(x, (self.pad, self.pad), mode='replicate')
|
||||
x = self.ratio * F.conv_transpose1d(
|
||||
x, comfy.model_management.cast_to(self.filter.expand(C, -1, -1), dtype=x.dtype, device=x.device), stride=self.stride, groups=C)
|
||||
x = x[..., self.pad_left:-self.pad_right]
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class DownSample1d(nn.Module):
|
||||
def __init__(self, ratio=2, kernel_size=None):
|
||||
super().__init__()
|
||||
self.ratio = ratio
|
||||
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||
self.lowpass = LowPassFilter1d(cutoff=0.5 / ratio,
|
||||
half_width=0.6 / ratio,
|
||||
stride=ratio,
|
||||
kernel_size=self.kernel_size)
|
||||
|
||||
def forward(self, x):
|
||||
xx = self.lowpass(x)
|
||||
|
||||
return xx
|
||||
|
||||
class Activation1d(nn.Module):
|
||||
def __init__(self,
|
||||
activation,
|
||||
up_ratio: int = 2,
|
||||
down_ratio: int = 2,
|
||||
up_kernel_size: int = 12,
|
||||
down_kernel_size: int = 12):
|
||||
super().__init__()
|
||||
self.up_ratio = up_ratio
|
||||
self.down_ratio = down_ratio
|
||||
self.act = activation
|
||||
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
||||
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
||||
|
||||
# x: [B,C,T]
|
||||
def forward(self, x):
|
||||
x = self.upsample(x)
|
||||
x = self.act(x)
|
||||
x = self.downsample(x)
|
||||
|
||||
return x
|
||||
156
comfy/ldm/mmaudio/vae/autoencoder.py
Normal file
156
comfy/ldm/mmaudio/vae/autoencoder.py
Normal file
@ -0,0 +1,156 @@
|
||||
from typing import Literal
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .distributions import DiagonalGaussianDistribution
|
||||
from .vae import VAE_16k
|
||||
from .bigvgan import BigVGANVocoder
|
||||
import logging
|
||||
|
||||
try:
|
||||
import torchaudio
|
||||
except:
|
||||
logging.warning("torchaudio missing, MMAudio VAE model will be broken")
|
||||
|
||||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, *, norm_fn):
|
||||
return norm_fn(torch.clamp(x, min=clip_val) * C)
|
||||
|
||||
|
||||
def spectral_normalize_torch(magnitudes, norm_fn):
|
||||
output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn)
|
||||
return output
|
||||
|
||||
class MelConverter(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
sampling_rate: float,
|
||||
n_fft: int,
|
||||
num_mels: int,
|
||||
hop_size: int,
|
||||
win_size: int,
|
||||
fmin: float,
|
||||
fmax: float,
|
||||
norm_fn,
|
||||
):
|
||||
super().__init__()
|
||||
self.sampling_rate = sampling_rate
|
||||
self.n_fft = n_fft
|
||||
self.num_mels = num_mels
|
||||
self.hop_size = hop_size
|
||||
self.win_size = win_size
|
||||
self.fmin = fmin
|
||||
self.fmax = fmax
|
||||
self.norm_fn = norm_fn
|
||||
|
||||
# mel = librosa_mel_fn(sr=self.sampling_rate,
|
||||
# n_fft=self.n_fft,
|
||||
# n_mels=self.num_mels,
|
||||
# fmin=self.fmin,
|
||||
# fmax=self.fmax)
|
||||
# mel_basis = torch.from_numpy(mel).float()
|
||||
mel_basis = torch.empty((num_mels, 1 + n_fft // 2))
|
||||
hann_window = torch.hann_window(self.win_size)
|
||||
|
||||
self.register_buffer('mel_basis', mel_basis)
|
||||
self.register_buffer('hann_window', hann_window)
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self.mel_basis.device
|
||||
|
||||
def forward(self, waveform: torch.Tensor, center: bool = False) -> torch.Tensor:
|
||||
waveform = waveform.clamp(min=-1., max=1.).to(self.device)
|
||||
|
||||
waveform = torch.nn.functional.pad(
|
||||
waveform.unsqueeze(1),
|
||||
[int((self.n_fft - self.hop_size) / 2),
|
||||
int((self.n_fft - self.hop_size) / 2)],
|
||||
mode='reflect')
|
||||
waveform = waveform.squeeze(1)
|
||||
|
||||
spec = torch.stft(waveform,
|
||||
self.n_fft,
|
||||
hop_length=self.hop_size,
|
||||
win_length=self.win_size,
|
||||
window=self.hann_window,
|
||||
center=center,
|
||||
pad_mode='reflect',
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=True)
|
||||
|
||||
spec = torch.view_as_real(spec)
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
|
||||
spec = torch.matmul(self.mel_basis, spec)
|
||||
spec = spectral_normalize_torch(spec, self.norm_fn)
|
||||
|
||||
return spec
|
||||
|
||||
class AudioAutoencoder(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
# ckpt_path: str,
|
||||
mode=Literal['16k', '44k'],
|
||||
need_vae_encoder: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
assert mode == "16k", "Only 16k mode is supported currently."
|
||||
self.mel_converter = MelConverter(sampling_rate=16_000,
|
||||
n_fft=1024,
|
||||
num_mels=80,
|
||||
hop_size=256,
|
||||
win_size=1024,
|
||||
fmin=0,
|
||||
fmax=8_000,
|
||||
norm_fn=torch.log10)
|
||||
|
||||
self.vae = VAE_16k().eval()
|
||||
|
||||
bigvgan_config = {
|
||||
"resblock": "1",
|
||||
"num_mels": 80,
|
||||
"upsample_rates": [4, 4, 2, 2, 2, 2],
|
||||
"upsample_kernel_sizes": [8, 8, 4, 4, 4, 4],
|
||||
"upsample_initial_channel": 1536,
|
||||
"resblock_kernel_sizes": [3, 7, 11],
|
||||
"resblock_dilation_sizes": [
|
||||
[1, 3, 5],
|
||||
[1, 3, 5],
|
||||
[1, 3, 5],
|
||||
],
|
||||
"activation": "snakebeta",
|
||||
"snake_logscale": True,
|
||||
}
|
||||
|
||||
self.vocoder = BigVGANVocoder(
|
||||
bigvgan_config
|
||||
).eval()
|
||||
|
||||
@torch.inference_mode()
|
||||
def encode_audio(self, x) -> DiagonalGaussianDistribution:
|
||||
# x: (B * L)
|
||||
mel = self.mel_converter(x)
|
||||
dist = self.vae.encode(mel)
|
||||
|
||||
return dist
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(self, z):
|
||||
mel_decoded = self.vae.decode(z)
|
||||
audio = self.vocoder(mel_decoded)
|
||||
|
||||
audio = torchaudio.functional.resample(audio, 16000, 44100)
|
||||
return audio
|
||||
|
||||
@torch.no_grad()
|
||||
def encode(self, audio):
|
||||
audio = audio.mean(dim=1)
|
||||
audio = torchaudio.functional.resample(audio, 44100, 16000)
|
||||
dist = self.encode_audio(audio)
|
||||
return dist.mean
|
||||
219
comfy/ldm/mmaudio/vae/bigvgan.py
Normal file
219
comfy/ldm/mmaudio/vae/bigvgan.py
Normal file
@ -0,0 +1,219 @@
|
||||
# Copyright (c) 2022 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from types import SimpleNamespace
|
||||
from . import activations
|
||||
from .alias_free_torch import Activation1d
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
class AMPBlock1(torch.nn.Module):
|
||||
|
||||
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
|
||||
super(AMPBlock1, self).__init__()
|
||||
self.h = h
|
||||
|
||||
self.convs1 = nn.ModuleList([
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0])),
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1])),
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2]))
|
||||
])
|
||||
|
||||
self.convs2 = nn.ModuleList([
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1)),
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1)),
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1))
|
||||
])
|
||||
|
||||
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
|
||||
|
||||
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
||||
self.activations = nn.ModuleList([
|
||||
Activation1d(
|
||||
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
||||
for _ in range(self.num_layers)
|
||||
])
|
||||
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
||||
self.activations = nn.ModuleList([
|
||||
Activation1d(
|
||||
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
||||
for _ in range(self.num_layers)
|
||||
])
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
||||
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
||||
xt = a1(x)
|
||||
xt = c1(xt)
|
||||
xt = a2(xt)
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class AMPBlock2(torch.nn.Module):
|
||||
|
||||
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
|
||||
super(AMPBlock2, self).__init__()
|
||||
self.h = h
|
||||
|
||||
self.convs = nn.ModuleList([
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0])),
|
||||
ops.Conv1d(channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]))
|
||||
])
|
||||
|
||||
self.num_layers = len(self.convs) # total number of conv layers
|
||||
|
||||
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
||||
self.activations = nn.ModuleList([
|
||||
Activation1d(
|
||||
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
||||
for _ in range(self.num_layers)
|
||||
])
|
||||
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
||||
self.activations = nn.ModuleList([
|
||||
Activation1d(
|
||||
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
||||
for _ in range(self.num_layers)
|
||||
])
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
for c, a in zip(self.convs, self.activations):
|
||||
xt = a(x)
|
||||
xt = c(xt)
|
||||
x = xt + x
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class BigVGANVocoder(torch.nn.Module):
|
||||
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
|
||||
def __init__(self, h):
|
||||
super().__init__()
|
||||
if isinstance(h, dict):
|
||||
h = SimpleNamespace(**h)
|
||||
self.h = h
|
||||
|
||||
self.num_kernels = len(h.resblock_kernel_sizes)
|
||||
self.num_upsamples = len(h.upsample_rates)
|
||||
|
||||
# pre conv
|
||||
self.conv_pre = ops.Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)
|
||||
|
||||
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
||||
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2
|
||||
|
||||
# transposed conv-based upsamplers. does not apply anti-aliasing
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
||||
self.ups.append(
|
||||
nn.ModuleList([
|
||||
ops.ConvTranspose1d(h.upsample_initial_channel // (2**i),
|
||||
h.upsample_initial_channel // (2**(i + 1)),
|
||||
k,
|
||||
u,
|
||||
padding=(k - u) // 2)
|
||||
]))
|
||||
|
||||
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = h.upsample_initial_channel // (2**(i + 1))
|
||||
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
||||
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))
|
||||
|
||||
# post conv
|
||||
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
|
||||
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
|
||||
self.activation_post = Activation1d(activation=activation_post)
|
||||
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
|
||||
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
|
||||
self.activation_post = Activation1d(activation=activation_post)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
self.conv_post = ops.Conv1d(ch, 1, 7, 1, padding=3)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
# pre conv
|
||||
x = self.conv_pre(x)
|
||||
|
||||
for i in range(self.num_upsamples):
|
||||
# upsampling
|
||||
for i_up in range(len(self.ups[i])):
|
||||
x = self.ups[i][i_up](x)
|
||||
# AMP blocks
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||
else:
|
||||
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||
x = xs / self.num_kernels
|
||||
|
||||
# post conv
|
||||
x = self.activation_post(x)
|
||||
x = self.conv_post(x)
|
||||
x = torch.tanh(x)
|
||||
|
||||
return x
|
||||
92
comfy/ldm/mmaudio/vae/distributions.py
Normal file
92
comfy/ldm/mmaudio/vae/distributions.py
Normal file
@ -0,0 +1,92 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
class AbstractDistribution:
|
||||
def sample(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
def mode(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class DiracDistribution(AbstractDistribution):
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
|
||||
def sample(self):
|
||||
return self.value
|
||||
|
||||
def mode(self):
|
||||
return self.value
|
||||
|
||||
|
||||
class DiagonalGaussianDistribution(object):
|
||||
def __init__(self, parameters, deterministic=False):
|
||||
self.parameters = parameters
|
||||
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
||||
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
||||
self.deterministic = deterministic
|
||||
self.std = torch.exp(0.5 * self.logvar)
|
||||
self.var = torch.exp(self.logvar)
|
||||
if self.deterministic:
|
||||
self.var = self.std = torch.zeros_like(self.mean, device=self.parameters.device)
|
||||
|
||||
def sample(self):
|
||||
x = self.mean + self.std * torch.randn(self.mean.shape, device=self.parameters.device)
|
||||
return x
|
||||
|
||||
def kl(self, other=None):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
else:
|
||||
if other is None:
|
||||
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
||||
+ self.var - 1.0 - self.logvar,
|
||||
dim=[1, 2, 3])
|
||||
else:
|
||||
return 0.5 * torch.sum(
|
||||
torch.pow(self.mean - other.mean, 2) / other.var
|
||||
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
||||
dim=[1, 2, 3])
|
||||
|
||||
def nll(self, sample, dims=[1,2,3]):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
logtwopi = np.log(2.0 * np.pi)
|
||||
return 0.5 * torch.sum(
|
||||
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
||||
dim=dims)
|
||||
|
||||
def mode(self):
|
||||
return self.mean
|
||||
|
||||
|
||||
def normal_kl(mean1, logvar1, mean2, logvar2):
|
||||
"""
|
||||
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
||||
Compute the KL divergence between two gaussians.
|
||||
Shapes are automatically broadcasted, so batches can be compared to
|
||||
scalars, among other use cases.
|
||||
"""
|
||||
tensor = None
|
||||
for obj in (mean1, logvar1, mean2, logvar2):
|
||||
if isinstance(obj, torch.Tensor):
|
||||
tensor = obj
|
||||
break
|
||||
assert tensor is not None, "at least one argument must be a Tensor"
|
||||
|
||||
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
||||
# Tensors, but it does not work for torch.exp().
|
||||
logvar1, logvar2 = [
|
||||
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
||||
for x in (logvar1, logvar2)
|
||||
]
|
||||
|
||||
return 0.5 * (
|
||||
-1.0
|
||||
+ logvar2
|
||||
- logvar1
|
||||
+ torch.exp(logvar1 - logvar2)
|
||||
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
||||
)
|
||||
358
comfy/ldm/mmaudio/vae/vae.py
Normal file
358
comfy/ldm/mmaudio/vae/vae.py
Normal file
@ -0,0 +1,358 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .vae_modules import (AttnBlock1D, Downsample1D, ResnetBlock1D,
|
||||
Upsample1D, nonlinearity)
|
||||
from .distributions import DiagonalGaussianDistribution
|
||||
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
log = logging.getLogger()
|
||||
|
||||
DATA_MEAN_80D = [
|
||||
-1.6058, -1.3676, -1.2520, -1.2453, -1.2078, -1.2224, -1.2419, -1.2439, -1.2922, -1.2927,
|
||||
-1.3170, -1.3543, -1.3401, -1.3836, -1.3907, -1.3912, -1.4313, -1.4152, -1.4527, -1.4728,
|
||||
-1.4568, -1.5101, -1.5051, -1.5172, -1.5623, -1.5373, -1.5746, -1.5687, -1.6032, -1.6131,
|
||||
-1.6081, -1.6331, -1.6489, -1.6489, -1.6700, -1.6738, -1.6953, -1.6969, -1.7048, -1.7280,
|
||||
-1.7361, -1.7495, -1.7658, -1.7814, -1.7889, -1.8064, -1.8221, -1.8377, -1.8417, -1.8643,
|
||||
-1.8857, -1.8929, -1.9173, -1.9379, -1.9531, -1.9673, -1.9824, -2.0042, -2.0215, -2.0436,
|
||||
-2.0766, -2.1064, -2.1418, -2.1855, -2.2319, -2.2767, -2.3161, -2.3572, -2.3954, -2.4282,
|
||||
-2.4659, -2.5072, -2.5552, -2.6074, -2.6584, -2.7107, -2.7634, -2.8266, -2.8981, -2.9673
|
||||
]
|
||||
|
||||
DATA_STD_80D = [
|
||||
1.0291, 1.0411, 1.0043, 0.9820, 0.9677, 0.9543, 0.9450, 0.9392, 0.9343, 0.9297, 0.9276, 0.9263,
|
||||
0.9242, 0.9254, 0.9232, 0.9281, 0.9263, 0.9315, 0.9274, 0.9247, 0.9277, 0.9199, 0.9188, 0.9194,
|
||||
0.9160, 0.9161, 0.9146, 0.9161, 0.9100, 0.9095, 0.9145, 0.9076, 0.9066, 0.9095, 0.9032, 0.9043,
|
||||
0.9038, 0.9011, 0.9019, 0.9010, 0.8984, 0.8983, 0.8986, 0.8961, 0.8962, 0.8978, 0.8962, 0.8973,
|
||||
0.8993, 0.8976, 0.8995, 0.9016, 0.8982, 0.8972, 0.8974, 0.8949, 0.8940, 0.8947, 0.8936, 0.8939,
|
||||
0.8951, 0.8956, 0.9017, 0.9167, 0.9436, 0.9690, 1.0003, 1.0225, 1.0381, 1.0491, 1.0545, 1.0604,
|
||||
1.0761, 1.0929, 1.1089, 1.1196, 1.1176, 1.1156, 1.1117, 1.1070
|
||||
]
|
||||
|
||||
DATA_MEAN_128D = [
|
||||
-3.3462, -2.6723, -2.4893, -2.3143, -2.2664, -2.3317, -2.1802, -2.4006, -2.2357, -2.4597,
|
||||
-2.3717, -2.4690, -2.5142, -2.4919, -2.6610, -2.5047, -2.7483, -2.5926, -2.7462, -2.7033,
|
||||
-2.7386, -2.8112, -2.7502, -2.9594, -2.7473, -3.0035, -2.8891, -2.9922, -2.9856, -3.0157,
|
||||
-3.1191, -2.9893, -3.1718, -3.0745, -3.1879, -3.2310, -3.1424, -3.2296, -3.2791, -3.2782,
|
||||
-3.2756, -3.3134, -3.3509, -3.3750, -3.3951, -3.3698, -3.4505, -3.4509, -3.5089, -3.4647,
|
||||
-3.5536, -3.5788, -3.5867, -3.6036, -3.6400, -3.6747, -3.7072, -3.7279, -3.7283, -3.7795,
|
||||
-3.8259, -3.8447, -3.8663, -3.9182, -3.9605, -3.9861, -4.0105, -4.0373, -4.0762, -4.1121,
|
||||
-4.1488, -4.1874, -4.2461, -4.3170, -4.3639, -4.4452, -4.5282, -4.6297, -4.7019, -4.7960,
|
||||
-4.8700, -4.9507, -5.0303, -5.0866, -5.1634, -5.2342, -5.3242, -5.4053, -5.4927, -5.5712,
|
||||
-5.6464, -5.7052, -5.7619, -5.8410, -5.9188, -6.0103, -6.0955, -6.1673, -6.2362, -6.3120,
|
||||
-6.3926, -6.4797, -6.5565, -6.6511, -6.8130, -6.9961, -7.1275, -7.2457, -7.3576, -7.4663,
|
||||
-7.6136, -7.7469, -7.8815, -8.0132, -8.1515, -8.3071, -8.4722, -8.7418, -9.3975, -9.6628,
|
||||
-9.7671, -9.8863, -9.9992, -10.0860, -10.1709, -10.5418, -11.2795, -11.3861
|
||||
]
|
||||
|
||||
DATA_STD_128D = [
|
||||
2.3804, 2.4368, 2.3772, 2.3145, 2.2803, 2.2510, 2.2316, 2.2083, 2.1996, 2.1835, 2.1769, 2.1659,
|
||||
2.1631, 2.1618, 2.1540, 2.1606, 2.1571, 2.1567, 2.1612, 2.1579, 2.1679, 2.1683, 2.1634, 2.1557,
|
||||
2.1668, 2.1518, 2.1415, 2.1449, 2.1406, 2.1350, 2.1313, 2.1415, 2.1281, 2.1352, 2.1219, 2.1182,
|
||||
2.1327, 2.1195, 2.1137, 2.1080, 2.1179, 2.1036, 2.1087, 2.1036, 2.1015, 2.1068, 2.0975, 2.0991,
|
||||
2.0902, 2.1015, 2.0857, 2.0920, 2.0893, 2.0897, 2.0910, 2.0881, 2.0925, 2.0873, 2.0960, 2.0900,
|
||||
2.0957, 2.0958, 2.0978, 2.0936, 2.0886, 2.0905, 2.0845, 2.0855, 2.0796, 2.0840, 2.0813, 2.0817,
|
||||
2.0838, 2.0840, 2.0917, 2.1061, 2.1431, 2.1976, 2.2482, 2.3055, 2.3700, 2.4088, 2.4372, 2.4609,
|
||||
2.4731, 2.4847, 2.5072, 2.5451, 2.5772, 2.6147, 2.6529, 2.6596, 2.6645, 2.6726, 2.6803, 2.6812,
|
||||
2.6899, 2.6916, 2.6931, 2.6998, 2.7062, 2.7262, 2.7222, 2.7158, 2.7041, 2.7485, 2.7491, 2.7451,
|
||||
2.7485, 2.7233, 2.7297, 2.7233, 2.7145, 2.6958, 2.6788, 2.6439, 2.6007, 2.4786, 2.2469, 2.1877,
|
||||
2.1392, 2.0717, 2.0107, 1.9676, 1.9140, 1.7102, 0.9101, 0.7164
|
||||
]
|
||||
|
||||
|
||||
class VAE(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
data_dim: int,
|
||||
embed_dim: int,
|
||||
hidden_dim: int,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if data_dim == 80:
|
||||
self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_80D, dtype=torch.float32))
|
||||
self.data_std = nn.Buffer(torch.tensor(DATA_STD_80D, dtype=torch.float32))
|
||||
elif data_dim == 128:
|
||||
self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_128D, dtype=torch.float32))
|
||||
self.data_std = nn.Buffer(torch.tensor(DATA_STD_128D, dtype=torch.float32))
|
||||
|
||||
self.data_mean = self.data_mean.view(1, -1, 1)
|
||||
self.data_std = self.data_std.view(1, -1, 1)
|
||||
|
||||
self.encoder = Encoder1D(
|
||||
dim=hidden_dim,
|
||||
ch_mult=(1, 2, 4),
|
||||
num_res_blocks=2,
|
||||
attn_layers=[3],
|
||||
down_layers=[0],
|
||||
in_dim=data_dim,
|
||||
embed_dim=embed_dim,
|
||||
)
|
||||
self.decoder = Decoder1D(
|
||||
dim=hidden_dim,
|
||||
ch_mult=(1, 2, 4),
|
||||
num_res_blocks=2,
|
||||
attn_layers=[3],
|
||||
down_layers=[0],
|
||||
in_dim=data_dim,
|
||||
out_dim=data_dim,
|
||||
embed_dim=embed_dim,
|
||||
)
|
||||
|
||||
self.embed_dim = embed_dim
|
||||
# self.quant_conv = nn.Conv1d(2 * embed_dim, 2 * embed_dim, 1)
|
||||
# self.post_quant_conv = nn.Conv1d(embed_dim, embed_dim, 1)
|
||||
|
||||
self.initialize_weights()
|
||||
|
||||
def initialize_weights(self):
|
||||
pass
|
||||
|
||||
def encode(self, x: torch.Tensor, normalize: bool = True) -> DiagonalGaussianDistribution:
|
||||
if normalize:
|
||||
x = self.normalize(x)
|
||||
moments = self.encoder(x)
|
||||
posterior = DiagonalGaussianDistribution(moments)
|
||||
return posterior
|
||||
|
||||
def decode(self, z: torch.Tensor, unnormalize: bool = True) -> torch.Tensor:
|
||||
dec = self.decoder(z)
|
||||
if unnormalize:
|
||||
dec = self.unnormalize(dec)
|
||||
return dec
|
||||
|
||||
def normalize(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return (x - comfy.model_management.cast_to(self.data_mean, dtype=x.dtype, device=x.device)) / comfy.model_management.cast_to(self.data_std, dtype=x.dtype, device=x.device)
|
||||
|
||||
def unnormalize(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return x * comfy.model_management.cast_to(self.data_std, dtype=x.dtype, device=x.device) + comfy.model_management.cast_to(self.data_mean, dtype=x.dtype, device=x.device)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
sample_posterior: bool = True,
|
||||
rng: Optional[torch.Generator] = None,
|
||||
normalize: bool = True,
|
||||
unnormalize: bool = True,
|
||||
) -> tuple[torch.Tensor, DiagonalGaussianDistribution]:
|
||||
|
||||
posterior = self.encode(x, normalize=normalize)
|
||||
if sample_posterior:
|
||||
z = posterior.sample(rng)
|
||||
else:
|
||||
z = posterior.mode()
|
||||
dec = self.decode(z, unnormalize=unnormalize)
|
||||
return dec, posterior
|
||||
|
||||
def load_weights(self, src_dict) -> None:
|
||||
self.load_state_dict(src_dict, strict=True)
|
||||
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
return next(self.parameters()).device
|
||||
|
||||
def get_last_layer(self):
|
||||
return self.decoder.conv_out.weight
|
||||
|
||||
def remove_weight_norm(self):
|
||||
return self
|
||||
|
||||
|
||||
class Encoder1D(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
*,
|
||||
dim: int,
|
||||
ch_mult: tuple[int] = (1, 2, 4, 8),
|
||||
num_res_blocks: int,
|
||||
attn_layers: list[int] = [],
|
||||
down_layers: list[int] = [],
|
||||
resamp_with_conv: bool = True,
|
||||
in_dim: int,
|
||||
embed_dim: int,
|
||||
double_z: bool = True,
|
||||
kernel_size: int = 3,
|
||||
clip_act: float = 256.0):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.num_layers = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.in_channels = in_dim
|
||||
self.clip_act = clip_act
|
||||
self.down_layers = down_layers
|
||||
self.attn_layers = attn_layers
|
||||
self.conv_in = ops.Conv1d(in_dim, self.dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
|
||||
|
||||
in_ch_mult = (1, ) + tuple(ch_mult)
|
||||
self.in_ch_mult = in_ch_mult
|
||||
# downsampling
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_layers):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = dim * in_ch_mult[i_level]
|
||||
block_out = dim * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(
|
||||
ResnetBlock1D(in_dim=block_in,
|
||||
out_dim=block_out,
|
||||
kernel_size=kernel_size,
|
||||
use_norm=True))
|
||||
block_in = block_out
|
||||
if i_level in attn_layers:
|
||||
attn.append(AttnBlock1D(block_in))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level in down_layers:
|
||||
down.downsample = Downsample1D(block_in, resamp_with_conv)
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock1D(in_dim=block_in,
|
||||
out_dim=block_in,
|
||||
kernel_size=kernel_size,
|
||||
use_norm=True)
|
||||
self.mid.attn_1 = AttnBlock1D(block_in)
|
||||
self.mid.block_2 = ResnetBlock1D(in_dim=block_in,
|
||||
out_dim=block_in,
|
||||
kernel_size=kernel_size,
|
||||
use_norm=True)
|
||||
|
||||
# end
|
||||
self.conv_out = ops.Conv1d(block_in,
|
||||
2 * embed_dim if double_z else embed_dim,
|
||||
kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
|
||||
|
||||
self.learnable_gain = nn.Parameter(torch.zeros([]))
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
# downsampling
|
||||
h = self.conv_in(x)
|
||||
for i_level in range(self.num_layers):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](h)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
h = h.clamp(-self.clip_act, self.clip_act)
|
||||
if i_level in self.down_layers:
|
||||
h = self.down[i_level].downsample(h)
|
||||
|
||||
# middle
|
||||
h = self.mid.block_1(h)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h)
|
||||
h = h.clamp(-self.clip_act, self.clip_act)
|
||||
|
||||
# end
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h) * (self.learnable_gain + 1)
|
||||
return h
|
||||
|
||||
|
||||
class Decoder1D(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
*,
|
||||
dim: int,
|
||||
out_dim: int,
|
||||
ch_mult: tuple[int] = (1, 2, 4, 8),
|
||||
num_res_blocks: int,
|
||||
attn_layers: list[int] = [],
|
||||
down_layers: list[int] = [],
|
||||
kernel_size: int = 3,
|
||||
resamp_with_conv: bool = True,
|
||||
in_dim: int,
|
||||
embed_dim: int,
|
||||
clip_act: float = 256.0):
|
||||
super().__init__()
|
||||
self.ch = dim
|
||||
self.num_layers = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.in_channels = in_dim
|
||||
self.clip_act = clip_act
|
||||
self.down_layers = [i + 1 for i in down_layers] # each downlayer add one
|
||||
|
||||
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||
block_in = dim * ch_mult[self.num_layers - 1]
|
||||
|
||||
# z to block_in
|
||||
self.conv_in = ops.Conv1d(embed_dim, block_in, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
|
||||
self.mid.attn_1 = AttnBlock1D(block_in)
|
||||
self.mid.block_2 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_layers)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = dim * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
block.append(ResnetBlock1D(in_dim=block_in, out_dim=block_out, use_norm=True))
|
||||
block_in = block_out
|
||||
if i_level in attn_layers:
|
||||
attn.append(AttnBlock1D(block_in))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level in self.down_layers:
|
||||
up.upsample = Upsample1D(block_in, resamp_with_conv)
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.conv_out = ops.Conv1d(block_in, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
|
||||
self.learnable_gain = nn.Parameter(torch.zeros([]))
|
||||
|
||||
def forward(self, z):
|
||||
# z to block_in
|
||||
h = self.conv_in(z)
|
||||
|
||||
# middle
|
||||
h = self.mid.block_1(h)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h)
|
||||
h = h.clamp(-self.clip_act, self.clip_act)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_layers)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.up[i_level].block[i_block](h)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
h = h.clamp(-self.clip_act, self.clip_act)
|
||||
if i_level in self.down_layers:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h) * (self.learnable_gain + 1)
|
||||
return h
|
||||
|
||||
|
||||
def VAE_16k(**kwargs) -> VAE:
|
||||
return VAE(data_dim=80, embed_dim=20, hidden_dim=384, **kwargs)
|
||||
|
||||
|
||||
def VAE_44k(**kwargs) -> VAE:
|
||||
return VAE(data_dim=128, embed_dim=40, hidden_dim=512, **kwargs)
|
||||
|
||||
|
||||
def get_my_vae(name: str, **kwargs) -> VAE:
|
||||
if name == '16k':
|
||||
return VAE_16k(**kwargs)
|
||||
if name == '44k':
|
||||
return VAE_44k(**kwargs)
|
||||
raise ValueError(f'Unknown model: {name}')
|
||||
|
||||
121
comfy/ldm/mmaudio/vae/vae_modules.py
Normal file
121
comfy/ldm/mmaudio/vae/vae_modules.py
Normal file
@ -0,0 +1,121 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from comfy.ldm.modules.diffusionmodules.model import vae_attention
|
||||
import math
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
def nonlinearity(x):
|
||||
# swish
|
||||
return torch.nn.functional.silu(x) / 0.596
|
||||
|
||||
def mp_sum(a, b, t=0.5):
|
||||
return a.lerp(b, t) / math.sqrt((1 - t)**2 + t**2)
|
||||
|
||||
def normalize(x, dim=None, eps=1e-4):
|
||||
if dim is None:
|
||||
dim = list(range(1, x.ndim))
|
||||
norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32)
|
||||
norm = torch.add(eps, norm, alpha=math.sqrt(norm.numel() / x.numel()))
|
||||
return x / norm.to(x.dtype)
|
||||
|
||||
class ResnetBlock1D(nn.Module):
|
||||
|
||||
def __init__(self, *, in_dim, out_dim=None, conv_shortcut=False, kernel_size=3, use_norm=True):
|
||||
super().__init__()
|
||||
self.in_dim = in_dim
|
||||
out_dim = in_dim if out_dim is None else out_dim
|
||||
self.out_dim = out_dim
|
||||
self.use_conv_shortcut = conv_shortcut
|
||||
self.use_norm = use_norm
|
||||
|
||||
self.conv1 = ops.Conv1d(in_dim, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
|
||||
self.conv2 = ops.Conv1d(out_dim, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
|
||||
if self.in_dim != self.out_dim:
|
||||
if self.use_conv_shortcut:
|
||||
self.conv_shortcut = ops.Conv1d(in_dim, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
|
||||
else:
|
||||
self.nin_shortcut = ops.Conv1d(in_dim, out_dim, kernel_size=1, padding=0, bias=False)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
|
||||
# pixel norm
|
||||
if self.use_norm:
|
||||
x = normalize(x, dim=1)
|
||||
|
||||
h = x
|
||||
h = nonlinearity(h)
|
||||
h = self.conv1(h)
|
||||
|
||||
h = nonlinearity(h)
|
||||
h = self.conv2(h)
|
||||
|
||||
if self.in_dim != self.out_dim:
|
||||
if self.use_conv_shortcut:
|
||||
x = self.conv_shortcut(x)
|
||||
else:
|
||||
x = self.nin_shortcut(x)
|
||||
|
||||
return mp_sum(x, h, t=0.3)
|
||||
|
||||
|
||||
class AttnBlock1D(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, num_heads=1):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.qkv = ops.Conv1d(in_channels, in_channels * 3, kernel_size=1, padding=0, bias=False)
|
||||
self.proj_out = ops.Conv1d(in_channels, in_channels, kernel_size=1, padding=0, bias=False)
|
||||
self.optimized_attention = vae_attention()
|
||||
|
||||
def forward(self, x):
|
||||
h = x
|
||||
y = self.qkv(h)
|
||||
y = y.reshape(y.shape[0], -1, 3, y.shape[-1])
|
||||
q, k, v = normalize(y, dim=1).unbind(2)
|
||||
|
||||
h = self.optimized_attention(q, k, v)
|
||||
h = self.proj_out(h)
|
||||
|
||||
return mp_sum(x, h, t=0.3)
|
||||
|
||||
|
||||
class Upsample1D(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
self.conv = ops.Conv1d(in_channels, in_channels, kernel_size=3, padding=1, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.interpolate(x, scale_factor=2.0, mode='nearest-exact') # support 3D tensor(B,C,T)
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample1D(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
self.conv1 = ops.Conv1d(in_channels, in_channels, kernel_size=1, padding=0, bias=False)
|
||||
self.conv2 = ops.Conv1d(in_channels, in_channels, kernel_size=1, padding=0, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
if self.with_conv:
|
||||
x = self.conv1(x)
|
||||
|
||||
x = F.avg_pool1d(x, kernel_size=2, stride=2)
|
||||
|
||||
if self.with_conv:
|
||||
x = self.conv2(x)
|
||||
|
||||
return x
|
||||
@ -9,6 +9,8 @@ from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistri
|
||||
from comfy.ldm.util import get_obj_from_str, instantiate_from_config
|
||||
from comfy.ldm.modules.ema import LitEma
|
||||
import comfy.ops
|
||||
from einops import rearrange
|
||||
import comfy.model_management
|
||||
|
||||
class DiagonalGaussianRegularizer(torch.nn.Module):
|
||||
def __init__(self, sample: bool = False):
|
||||
@ -179,6 +181,21 @@ class AutoencodingEngineLegacy(AutoencodingEngine):
|
||||
self.post_quant_conv = conv_op(embed_dim, ddconfig["z_channels"], 1)
|
||||
self.embed_dim = embed_dim
|
||||
|
||||
if ddconfig.get("batch_norm_latent", False):
|
||||
self.bn_eps = 1e-4
|
||||
self.bn_momentum = 0.1
|
||||
self.ps = [2, 2]
|
||||
self.bn = torch.nn.BatchNorm2d(math.prod(self.ps) * ddconfig["z_channels"],
|
||||
eps=self.bn_eps,
|
||||
momentum=self.bn_momentum,
|
||||
affine=False,
|
||||
track_running_stats=True,
|
||||
)
|
||||
self.bn.eval()
|
||||
else:
|
||||
self.bn = None
|
||||
|
||||
|
||||
def get_autoencoder_params(self) -> list:
|
||||
params = super().get_autoencoder_params()
|
||||
return params
|
||||
@ -201,11 +218,36 @@ class AutoencodingEngineLegacy(AutoencodingEngine):
|
||||
z = torch.cat(z, 0)
|
||||
|
||||
z, reg_log = self.regularization(z)
|
||||
|
||||
if self.bn is not None:
|
||||
z = rearrange(z,
|
||||
"... c (i pi) (j pj) -> ... (c pi pj) i j",
|
||||
pi=self.ps[0],
|
||||
pj=self.ps[1],
|
||||
)
|
||||
|
||||
z = torch.nn.functional.batch_norm(z,
|
||||
comfy.model_management.cast_to(self.bn.running_mean, dtype=z.dtype, device=z.device),
|
||||
comfy.model_management.cast_to(self.bn.running_var, dtype=z.dtype, device=z.device),
|
||||
momentum=self.bn_momentum,
|
||||
eps=self.bn_eps)
|
||||
|
||||
if return_reg_log:
|
||||
return z, reg_log
|
||||
return z
|
||||
|
||||
def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor:
|
||||
if self.bn is not None:
|
||||
s = torch.sqrt(comfy.model_management.cast_to(self.bn.running_var.view(1, -1, 1, 1), dtype=z.dtype, device=z.device) + self.bn_eps)
|
||||
m = comfy.model_management.cast_to(self.bn.running_mean.view(1, -1, 1, 1), dtype=z.dtype, device=z.device)
|
||||
z = z * s + m
|
||||
z = rearrange(
|
||||
z,
|
||||
"... (c pi pj) i j -> ... c (i pi) (j pj)",
|
||||
pi=self.ps[0],
|
||||
pj=self.ps[1],
|
||||
)
|
||||
|
||||
if self.max_batch_size is None:
|
||||
dec = self.post_quant_conv(z)
|
||||
dec = self.decoder(dec, **decoder_kwargs)
|
||||
|
||||
@ -30,6 +30,13 @@ except ImportError as e:
|
||||
raise e
|
||||
exit(-1)
|
||||
|
||||
SAGE_ATTENTION3_IS_AVAILABLE = False
|
||||
try:
|
||||
from sageattn3 import sageattn3_blackwell
|
||||
SAGE_ATTENTION3_IS_AVAILABLE = True
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
FLASH_ATTENTION_IS_AVAILABLE = False
|
||||
try:
|
||||
from flash_attn import flash_attn_func
|
||||
@ -517,6 +524,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
|
||||
|
||||
@wrap_attn
|
||||
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
|
||||
exception_fallback = False
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
tensor_layout = "HND"
|
||||
@ -541,6 +549,8 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
|
||||
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
|
||||
except Exception as e:
|
||||
logging.error("Error running sage attention: {}, using pytorch attention instead.".format(e))
|
||||
exception_fallback = True
|
||||
if exception_fallback:
|
||||
if tensor_layout == "NHD":
|
||||
q, k, v = map(
|
||||
lambda t: t.transpose(1, 2),
|
||||
@ -560,6 +570,93 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
|
||||
out = out.reshape(b, -1, heads * dim_head)
|
||||
return out
|
||||
|
||||
@wrap_attn
|
||||
def attention3_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
|
||||
exception_fallback = False
|
||||
if (q.device.type != "cuda" or
|
||||
q.dtype not in (torch.float16, torch.bfloat16) or
|
||||
mask is not None):
|
||||
return attention_pytorch(
|
||||
q, k, v, heads,
|
||||
mask=mask,
|
||||
attn_precision=attn_precision,
|
||||
skip_reshape=skip_reshape,
|
||||
skip_output_reshape=skip_output_reshape,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
if skip_reshape:
|
||||
B, H, L, D = q.shape
|
||||
if H != heads:
|
||||
return attention_pytorch(
|
||||
q, k, v, heads,
|
||||
mask=mask,
|
||||
attn_precision=attn_precision,
|
||||
skip_reshape=True,
|
||||
skip_output_reshape=skip_output_reshape,
|
||||
**kwargs
|
||||
)
|
||||
q_s, k_s, v_s = q, k, v
|
||||
N = q.shape[2]
|
||||
dim_head = D
|
||||
else:
|
||||
B, N, inner_dim = q.shape
|
||||
if inner_dim % heads != 0:
|
||||
return attention_pytorch(
|
||||
q, k, v, heads,
|
||||
mask=mask,
|
||||
attn_precision=attn_precision,
|
||||
skip_reshape=False,
|
||||
skip_output_reshape=skip_output_reshape,
|
||||
**kwargs
|
||||
)
|
||||
dim_head = inner_dim // heads
|
||||
|
||||
if dim_head >= 256 or N <= 1024:
|
||||
return attention_pytorch(
|
||||
q, k, v, heads,
|
||||
mask=mask,
|
||||
attn_precision=attn_precision,
|
||||
skip_reshape=skip_reshape,
|
||||
skip_output_reshape=skip_output_reshape,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
if not skip_reshape:
|
||||
q_s, k_s, v_s = map(
|
||||
lambda t: t.view(B, -1, heads, dim_head).permute(0, 2, 1, 3).contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
B, H, L, D = q_s.shape
|
||||
|
||||
try:
|
||||
out = sageattn3_blackwell(q_s, k_s, v_s, is_causal=False)
|
||||
except Exception as e:
|
||||
exception_fallback = True
|
||||
logging.error("Error running SageAttention3: %s, falling back to pytorch attention.", e)
|
||||
|
||||
if exception_fallback:
|
||||
if not skip_reshape:
|
||||
del q_s, k_s, v_s
|
||||
return attention_pytorch(
|
||||
q, k, v, heads,
|
||||
mask=mask,
|
||||
attn_precision=attn_precision,
|
||||
skip_reshape=False,
|
||||
skip_output_reshape=skip_output_reshape,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
if skip_reshape:
|
||||
if not skip_output_reshape:
|
||||
out = out.permute(0, 2, 1, 3).reshape(B, L, H * D)
|
||||
else:
|
||||
if skip_output_reshape:
|
||||
pass
|
||||
else:
|
||||
out = out.permute(0, 2, 1, 3).reshape(B, L, H * D)
|
||||
|
||||
return out
|
||||
|
||||
try:
|
||||
@torch.library.custom_op("flash_attention::flash_attn", mutates_args=())
|
||||
@ -647,6 +744,8 @@ optimized_attention_masked = optimized_attention
|
||||
# register core-supported attention functions
|
||||
if SAGE_ATTENTION_IS_AVAILABLE:
|
||||
register_attention_function("sage", attention_sage)
|
||||
if SAGE_ATTENTION3_IS_AVAILABLE:
|
||||
register_attention_function("sage3", attention3_sage)
|
||||
if FLASH_ATTENTION_IS_AVAILABLE:
|
||||
register_attention_function("flash", attention_flash)
|
||||
if model_management.xformers_enabled():
|
||||
|
||||
@ -211,12 +211,14 @@ class TimestepEmbedder(nn.Module):
|
||||
Embeds scalar timesteps into vector representations.
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
|
||||
def __init__(self, hidden_size, frequency_embedding_size=256, output_size=None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
if output_size is None:
|
||||
output_size = hidden_size
|
||||
self.mlp = nn.Sequential(
|
||||
operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
operations.Linear(hidden_size, output_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
self.frequency_embedding_size = frequency_embedding_size
|
||||
|
||||
|
||||
@ -13,6 +13,12 @@ if model_management.xformers_enabled_vae():
|
||||
import xformers
|
||||
import xformers.ops
|
||||
|
||||
def torch_cat_if_needed(xl, dim):
|
||||
if len(xl) > 1:
|
||||
return torch.cat(xl, dim)
|
||||
else:
|
||||
return xl[0]
|
||||
|
||||
def get_timestep_embedding(timesteps, embedding_dim):
|
||||
"""
|
||||
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
||||
@ -43,6 +49,37 @@ def Normalize(in_channels, num_groups=32):
|
||||
return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
|
||||
class CarriedConv3d(nn.Module):
|
||||
def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding=0, **kwargs):
|
||||
super().__init__()
|
||||
self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
def conv_carry_causal_3d(xl, op, conv_carry_in=None, conv_carry_out=None):
|
||||
|
||||
x = xl[0]
|
||||
xl.clear()
|
||||
|
||||
if isinstance(op, CarriedConv3d):
|
||||
if conv_carry_in is None:
|
||||
x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2, 0), mode = 'replicate')
|
||||
else:
|
||||
carry_len = conv_carry_in[0].shape[2]
|
||||
x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2 - carry_len, 0), mode = 'replicate')
|
||||
x = torch.cat([conv_carry_in.pop(0), x], dim=2)
|
||||
|
||||
if conv_carry_out is not None:
|
||||
to_push = x[:, :, -2:, :, :].clone()
|
||||
conv_carry_out.append(to_push)
|
||||
|
||||
out = op(x)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class VideoConv3d(nn.Module):
|
||||
def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding_mode='replicate', padding=1, **kwargs):
|
||||
super().__init__()
|
||||
@ -89,29 +126,24 @@ class Upsample(nn.Module):
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
|
||||
scale_factor = self.scale_factor
|
||||
if isinstance(scale_factor, (int, float)):
|
||||
scale_factor = (scale_factor,) * (x.ndim - 2)
|
||||
|
||||
if x.ndim == 5 and scale_factor[0] > 1.0:
|
||||
t = x.shape[2]
|
||||
if t > 1:
|
||||
a, b = x.split((1, t - 1), dim=2)
|
||||
del x
|
||||
b = interpolate_up(b, scale_factor)
|
||||
else:
|
||||
a = x
|
||||
|
||||
a = interpolate_up(a.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2)
|
||||
if t > 1:
|
||||
x = torch.cat((a, b), dim=2)
|
||||
else:
|
||||
x = a
|
||||
results = []
|
||||
if conv_carry_in is None:
|
||||
first = x[:, :, :1, :, :]
|
||||
results.append(interpolate_up(first.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2))
|
||||
x = x[:, :, 1:, :, :]
|
||||
if x.shape[2] > 0:
|
||||
results.append(interpolate_up(x, scale_factor))
|
||||
x = torch_cat_if_needed(results, dim=2)
|
||||
else:
|
||||
x = interpolate_up(x, scale_factor)
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
x = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
|
||||
return x
|
||||
|
||||
|
||||
@ -127,17 +159,20 @@ class Downsample(nn.Module):
|
||||
stride=stride,
|
||||
padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
|
||||
if self.with_conv:
|
||||
if x.ndim == 4:
|
||||
if isinstance(self.conv, CarriedConv3d):
|
||||
x = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
|
||||
elif x.ndim == 4:
|
||||
pad = (0, 1, 0, 1)
|
||||
mode = "constant"
|
||||
x = torch.nn.functional.pad(x, pad, mode=mode, value=0)
|
||||
x = self.conv(x)
|
||||
elif x.ndim == 5:
|
||||
pad = (1, 1, 1, 1, 2, 0)
|
||||
mode = "replicate"
|
||||
x = torch.nn.functional.pad(x, pad, mode=mode)
|
||||
x = self.conv(x)
|
||||
x = self.conv(x)
|
||||
else:
|
||||
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
||||
return x
|
||||
@ -183,23 +218,23 @@ class ResnetBlock(nn.Module):
|
||||
stride=1,
|
||||
padding=0)
|
||||
|
||||
def forward(self, x, temb=None):
|
||||
def forward(self, x, temb=None, conv_carry_in=None, conv_carry_out=None):
|
||||
h = x
|
||||
h = self.norm1(h)
|
||||
h = self.swish(h)
|
||||
h = self.conv1(h)
|
||||
h = [ self.swish(h) ]
|
||||
h = conv_carry_causal_3d(h, self.conv1, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out)
|
||||
|
||||
if temb is not None:
|
||||
h = h + self.temb_proj(self.swish(temb))[:,:,None,None]
|
||||
|
||||
h = self.norm2(h)
|
||||
h = self.swish(h)
|
||||
h = self.dropout(h)
|
||||
h = self.conv2(h)
|
||||
h = [ self.dropout(h) ]
|
||||
h = conv_carry_causal_3d(h, self.conv2, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out)
|
||||
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
x = self.conv_shortcut(x)
|
||||
x = conv_carry_causal_3d([x], self.conv_shortcut, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out)
|
||||
else:
|
||||
x = self.nin_shortcut(x)
|
||||
|
||||
@ -279,6 +314,7 @@ def pytorch_attention(q, k, v):
|
||||
orig_shape = q.shape
|
||||
B = orig_shape[0]
|
||||
C = orig_shape[1]
|
||||
oom_fallback = False
|
||||
q, k, v = map(
|
||||
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
|
||||
(q, k, v),
|
||||
@ -289,6 +325,8 @@ def pytorch_attention(q, k, v):
|
||||
out = out.transpose(2, 3).reshape(orig_shape)
|
||||
except model_management.OOM_EXCEPTION:
|
||||
logging.warning("scaled_dot_product_attention OOMed: switched to slice attention")
|
||||
oom_fallback = True
|
||||
if oom_fallback:
|
||||
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(orig_shape)
|
||||
return out
|
||||
|
||||
@ -517,9 +555,14 @@ class Encoder(nn.Module):
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
self.carried = False
|
||||
|
||||
if conv3d:
|
||||
conv_op = VideoConv3d
|
||||
if not attn_resolutions:
|
||||
conv_op = CarriedConv3d
|
||||
self.carried = True
|
||||
else:
|
||||
conv_op = VideoConv3d
|
||||
mid_attn_conv_op = ops.Conv3d
|
||||
else:
|
||||
conv_op = ops.Conv2d
|
||||
@ -532,6 +575,7 @@ class Encoder(nn.Module):
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
self.time_compress = 1
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1,)+tuple(ch_mult)
|
||||
self.in_ch_mult = in_ch_mult
|
||||
@ -558,10 +602,15 @@ class Encoder(nn.Module):
|
||||
if time_compress is not None:
|
||||
if (self.num_resolutions - 1 - i_level) > math.log2(time_compress):
|
||||
stride = (1, 2, 2)
|
||||
else:
|
||||
self.time_compress *= 2
|
||||
down.downsample = Downsample(block_in, resamp_with_conv, stride=stride, conv_op=conv_op)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
if time_compress is not None:
|
||||
self.time_compress = time_compress
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||
@ -587,15 +636,42 @@ class Encoder(nn.Module):
|
||||
def forward(self, x):
|
||||
# timestep embedding
|
||||
temb = None
|
||||
# downsampling
|
||||
h = self.conv_in(x)
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](h, temb)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
if i_level != self.num_resolutions-1:
|
||||
h = self.down[i_level].downsample(h)
|
||||
|
||||
if self.carried:
|
||||
xl = [x[:, :, :1, :, :]]
|
||||
if x.shape[2] > self.time_compress:
|
||||
tc = self.time_compress
|
||||
xl += torch.split(x[:, :, 1: 1 + ((x.shape[2] - 1) // tc) * tc, :, :], tc * 2, dim = 2)
|
||||
x = xl
|
||||
else:
|
||||
x = [x]
|
||||
out = []
|
||||
|
||||
conv_carry_in = None
|
||||
|
||||
for i, x1 in enumerate(x):
|
||||
conv_carry_out = []
|
||||
if i == len(x) - 1:
|
||||
conv_carry_out = None
|
||||
|
||||
# downsampling
|
||||
x1 = [ x1 ]
|
||||
h1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out)
|
||||
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h1 = self.down[i_level].block[i_block](h1, temb, conv_carry_in, conv_carry_out)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
assert i == 0 #carried should not happen if attn exists
|
||||
h1 = self.down[i_level].attn[i_block](h1)
|
||||
if i_level != self.num_resolutions-1:
|
||||
h1 = self.down[i_level].downsample(h1, conv_carry_in, conv_carry_out)
|
||||
|
||||
out.append(h1)
|
||||
conv_carry_in = conv_carry_out
|
||||
|
||||
h = torch_cat_if_needed(out, dim=2)
|
||||
del out
|
||||
|
||||
# middle
|
||||
h = self.mid.block_1(h, temb)
|
||||
@ -604,15 +680,15 @@ class Encoder(nn.Module):
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
h = [ nonlinearity(h) ]
|
||||
h = conv_carry_causal_3d(h, self.conv_out)
|
||||
return h
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
||||
resolution, z_channels, tanh_out=False, use_linear_attn=False,
|
||||
conv_out_op=ops.Conv2d,
|
||||
resnet_op=ResnetBlock,
|
||||
attn_op=AttnBlock,
|
||||
@ -626,12 +702,18 @@ class Decoder(nn.Module):
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
self.give_pre_end = give_pre_end
|
||||
self.tanh_out = tanh_out
|
||||
self.carried = False
|
||||
|
||||
if conv3d:
|
||||
conv_op = VideoConv3d
|
||||
conv_out_op = VideoConv3d
|
||||
if not attn_resolutions and resnet_op == ResnetBlock:
|
||||
conv_op = CarriedConv3d
|
||||
conv_out_op = CarriedConv3d
|
||||
self.carried = True
|
||||
else:
|
||||
conv_op = VideoConv3d
|
||||
conv_out_op = VideoConv3d
|
||||
|
||||
mid_attn_conv_op = ops.Conv3d
|
||||
else:
|
||||
conv_op = ops.Conv2d
|
||||
@ -706,29 +788,43 @@ class Decoder(nn.Module):
|
||||
temb = None
|
||||
|
||||
# z to block_in
|
||||
h = self.conv_in(z)
|
||||
h = conv_carry_causal_3d([z], self.conv_in)
|
||||
|
||||
# middle
|
||||
h = self.mid.block_1(h, temb, **kwargs)
|
||||
h = self.mid.attn_1(h, **kwargs)
|
||||
h = self.mid.block_2(h, temb, **kwargs)
|
||||
|
||||
if self.carried:
|
||||
h = torch.split(h, 2, dim=2)
|
||||
else:
|
||||
h = [ h ]
|
||||
out = []
|
||||
|
||||
conv_carry_in = None
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks+1):
|
||||
h = self.up[i_level].block[i_block](h, temb, **kwargs)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h, **kwargs)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
for i, h1 in enumerate(h):
|
||||
conv_carry_out = []
|
||||
if i == len(h) - 1:
|
||||
conv_carry_out = None
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks+1):
|
||||
h1 = self.up[i_level].block[i_block](h1, temb, conv_carry_in, conv_carry_out, **kwargs)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
assert i == 0 #carried should not happen if attn exists
|
||||
h1 = self.up[i_level].attn[i_block](h1, **kwargs)
|
||||
if i_level != 0:
|
||||
h1 = self.up[i_level].upsample(h1, conv_carry_in, conv_carry_out)
|
||||
|
||||
# end
|
||||
if self.give_pre_end:
|
||||
return h
|
||||
h1 = self.norm_out(h1)
|
||||
h1 = [ nonlinearity(h1) ]
|
||||
h1 = conv_carry_causal_3d(h1, self.conv_out, conv_carry_in, conv_carry_out)
|
||||
if self.tanh_out:
|
||||
h1 = torch.tanh(h1)
|
||||
out.append(h1)
|
||||
conv_carry_in = conv_carry_out
|
||||
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h, **kwargs)
|
||||
if self.tanh_out:
|
||||
h = torch.tanh(h)
|
||||
return h
|
||||
out = torch_cat_if_needed(out, dim=2)
|
||||
|
||||
return out
|
||||
|
||||
@ -44,7 +44,7 @@ class QwenImageControlNetModel(QwenImageTransformer2DModel):
|
||||
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
|
||||
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
|
||||
image_rotary_emb = self.pe_embedder(ids).to(x.dtype).contiguous()
|
||||
del ids, txt_ids, img_ids
|
||||
|
||||
hidden_states = self.img_in(hidden_states) + self.controlnet_x_embedder(hint)
|
||||
|
||||
@ -10,6 +10,7 @@ from comfy.ldm.modules.attention import optimized_attention_masked
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
import comfy.ldm.common_dit
|
||||
import comfy.patcher_extension
|
||||
from comfy.ldm.flux.math import apply_rope1
|
||||
|
||||
class GELU(nn.Module):
|
||||
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True, dtype=None, device=None, operations=None):
|
||||
@ -60,7 +61,7 @@ def apply_rotary_emb(x, freqs_cis):
|
||||
|
||||
|
||||
class QwenTimestepProjEmbeddings(nn.Module):
|
||||
def __init__(self, embedding_dim, pooled_projection_dim, dtype=None, device=None, operations=None):
|
||||
def __init__(self, embedding_dim, pooled_projection_dim, use_additional_t_cond=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
|
||||
self.timestep_embedder = TimestepEmbedding(
|
||||
@ -71,9 +72,19 @@ class QwenTimestepProjEmbeddings(nn.Module):
|
||||
operations=operations
|
||||
)
|
||||
|
||||
def forward(self, timestep, hidden_states):
|
||||
self.use_additional_t_cond = use_additional_t_cond
|
||||
if self.use_additional_t_cond:
|
||||
self.addition_t_embedding = operations.Embedding(2, embedding_dim, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, timestep, hidden_states, addition_t_cond=None):
|
||||
timesteps_proj = self.time_proj(timestep)
|
||||
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype))
|
||||
|
||||
if self.use_additional_t_cond:
|
||||
if addition_t_cond is None:
|
||||
addition_t_cond = torch.zeros((timesteps_emb.shape[0]), device=timesteps_emb.device, dtype=torch.long)
|
||||
timesteps_emb += self.addition_t_embedding(addition_t_cond, out_dtype=timesteps_emb.dtype)
|
||||
|
||||
return timesteps_emb
|
||||
|
||||
|
||||
@ -134,33 +145,34 @@ class Attention(nn.Module):
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
transformer_options={},
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
batch_size = hidden_states.shape[0]
|
||||
seq_img = hidden_states.shape[1]
|
||||
seq_txt = encoder_hidden_states.shape[1]
|
||||
|
||||
img_query = self.to_q(hidden_states).unflatten(-1, (self.heads, -1))
|
||||
img_key = self.to_k(hidden_states).unflatten(-1, (self.heads, -1))
|
||||
img_value = self.to_v(hidden_states).unflatten(-1, (self.heads, -1))
|
||||
# Project and reshape to BHND format (batch, heads, seq, dim)
|
||||
img_query = self.to_q(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2).contiguous()
|
||||
img_key = self.to_k(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2).contiguous()
|
||||
img_value = self.to_v(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2)
|
||||
|
||||
txt_query = self.add_q_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
||||
txt_key = self.add_k_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
||||
txt_value = self.add_v_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
||||
txt_query = self.add_q_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2).contiguous()
|
||||
txt_key = self.add_k_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2).contiguous()
|
||||
txt_value = self.add_v_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2)
|
||||
|
||||
img_query = self.norm_q(img_query)
|
||||
img_key = self.norm_k(img_key)
|
||||
txt_query = self.norm_added_q(txt_query)
|
||||
txt_key = self.norm_added_k(txt_key)
|
||||
|
||||
joint_query = torch.cat([txt_query, img_query], dim=1)
|
||||
joint_key = torch.cat([txt_key, img_key], dim=1)
|
||||
joint_value = torch.cat([txt_value, img_value], dim=1)
|
||||
joint_query = torch.cat([txt_query, img_query], dim=2)
|
||||
joint_key = torch.cat([txt_key, img_key], dim=2)
|
||||
joint_value = torch.cat([txt_value, img_value], dim=2)
|
||||
|
||||
joint_query = apply_rotary_emb(joint_query, image_rotary_emb)
|
||||
joint_key = apply_rotary_emb(joint_key, image_rotary_emb)
|
||||
joint_query = apply_rope1(joint_query, image_rotary_emb)
|
||||
joint_key = apply_rope1(joint_key, image_rotary_emb)
|
||||
|
||||
joint_query = joint_query.flatten(start_dim=2)
|
||||
joint_key = joint_key.flatten(start_dim=2)
|
||||
joint_value = joint_value.flatten(start_dim=2)
|
||||
|
||||
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask, transformer_options=transformer_options)
|
||||
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads,
|
||||
attention_mask, transformer_options=transformer_options,
|
||||
skip_reshape=True)
|
||||
|
||||
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
|
||||
img_attn_output = joint_hidden_states[:, seq_txt:, :]
|
||||
@ -216,9 +228,24 @@ class QwenImageTransformerBlock(nn.Module):
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
def _apply_gate(self, x, y, gate, timestep_zero_index=None):
|
||||
if timestep_zero_index is not None:
|
||||
return y + torch.cat((x[:, :timestep_zero_index] * gate[0], x[:, timestep_zero_index:] * gate[1]), dim=1)
|
||||
else:
|
||||
return torch.addcmul(y, gate, x)
|
||||
|
||||
def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor, timestep_zero_index=None) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
shift, scale, gate = torch.chunk(mod_params, 3, dim=-1)
|
||||
return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1)
|
||||
if timestep_zero_index is not None:
|
||||
actual_batch = shift.size(0) // 2
|
||||
shift, shift_0 = shift[:actual_batch], shift[actual_batch:]
|
||||
scale, scale_0 = scale[:actual_batch], scale[actual_batch:]
|
||||
gate, gate_0 = gate[:actual_batch], gate[actual_batch:]
|
||||
reg = torch.addcmul(shift.unsqueeze(1), x[:, :timestep_zero_index], 1 + scale.unsqueeze(1))
|
||||
zero = torch.addcmul(shift_0.unsqueeze(1), x[:, timestep_zero_index:], 1 + scale_0.unsqueeze(1))
|
||||
return torch.cat((reg, zero), dim=1), (gate.unsqueeze(1), gate_0.unsqueeze(1))
|
||||
else:
|
||||
return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -227,17 +254,22 @@ class QwenImageTransformerBlock(nn.Module):
|
||||
encoder_hidden_states_mask: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
timestep_zero_index=None,
|
||||
transformer_options={},
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
img_mod_params = self.img_mod(temb)
|
||||
|
||||
if timestep_zero_index is not None:
|
||||
temb = temb.chunk(2, dim=0)[0]
|
||||
|
||||
txt_mod_params = self.txt_mod(temb)
|
||||
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1)
|
||||
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1)
|
||||
|
||||
img_normed = self.img_norm1(hidden_states)
|
||||
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
|
||||
txt_normed = self.txt_norm1(encoder_hidden_states)
|
||||
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
|
||||
img_modulated, img_gate1 = self._modulate(self.img_norm1(hidden_states), img_mod1, timestep_zero_index)
|
||||
del img_mod1
|
||||
txt_modulated, txt_gate1 = self._modulate(self.txt_norm1(encoder_hidden_states), txt_mod1)
|
||||
del txt_mod1
|
||||
|
||||
img_attn_output, txt_attn_output = self.attn(
|
||||
hidden_states=img_modulated,
|
||||
@ -246,16 +278,20 @@ class QwenImageTransformerBlock(nn.Module):
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
del img_modulated
|
||||
del txt_modulated
|
||||
|
||||
hidden_states = hidden_states + img_gate1 * img_attn_output
|
||||
hidden_states = self._apply_gate(img_attn_output, hidden_states, img_gate1, timestep_zero_index)
|
||||
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
|
||||
del img_attn_output
|
||||
del txt_attn_output
|
||||
del img_gate1
|
||||
del txt_gate1
|
||||
|
||||
img_normed2 = self.img_norm2(hidden_states)
|
||||
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
|
||||
hidden_states = torch.addcmul(hidden_states, img_gate2, self.img_mlp(img_modulated2))
|
||||
img_modulated2, img_gate2 = self._modulate(self.img_norm2(hidden_states), img_mod2, timestep_zero_index)
|
||||
hidden_states = self._apply_gate(self.img_mlp(img_modulated2), hidden_states, img_gate2, timestep_zero_index)
|
||||
|
||||
txt_normed2 = self.txt_norm2(encoder_hidden_states)
|
||||
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
|
||||
txt_modulated2, txt_gate2 = self._modulate(self.txt_norm2(encoder_hidden_states), txt_mod2)
|
||||
encoder_hidden_states = torch.addcmul(encoder_hidden_states, txt_gate2, self.txt_mlp(txt_modulated2))
|
||||
|
||||
return encoder_hidden_states, hidden_states
|
||||
@ -294,10 +330,11 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
num_attention_heads: int = 24,
|
||||
joint_attention_dim: int = 3584,
|
||||
pooled_projection_dim: int = 768,
|
||||
guidance_embeds: bool = False,
|
||||
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
||||
default_ref_method="index",
|
||||
image_model=None,
|
||||
final_layer=True,
|
||||
use_additional_t_cond=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
@ -308,12 +345,14 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels or in_channels
|
||||
self.inner_dim = num_attention_heads * attention_head_dim
|
||||
self.default_ref_method = default_ref_method
|
||||
|
||||
self.pe_embedder = EmbedND(dim=attention_head_dim, theta=10000, axes_dim=list(axes_dims_rope))
|
||||
|
||||
self.time_text_embed = QwenTimestepProjEmbeddings(
|
||||
embedding_dim=self.inner_dim,
|
||||
pooled_projection_dim=pooled_projection_dim,
|
||||
use_additional_t_cond=use_additional_t_cond,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
@ -335,6 +374,9 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
for _ in range(num_layers)
|
||||
])
|
||||
|
||||
if self.default_ref_method == "index_timestep_zero":
|
||||
self.register_buffer("__index_timestep_zero__", torch.tensor([]))
|
||||
|
||||
if final_layer:
|
||||
self.norm_out = LastLayer(self.inner_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.proj_out = operations.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True, dtype=dtype, device=device)
|
||||
@ -344,27 +386,33 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
patch_size = self.patch_size
|
||||
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (1, self.patch_size, self.patch_size))
|
||||
orig_shape = hidden_states.shape
|
||||
hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2)
|
||||
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5)
|
||||
hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4)
|
||||
hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-3], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2)
|
||||
hidden_states = hidden_states.permute(0, 2, 3, 5, 1, 4, 6)
|
||||
hidden_states = hidden_states.reshape(orig_shape[0], orig_shape[-3] * (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4)
|
||||
t_len = t
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
|
||||
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
|
||||
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
|
||||
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device)
|
||||
img_ids[:, :, 0] = img_ids[:, :, 1] + index
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1) - (h_len // 2)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) - (w_len // 2)
|
||||
return hidden_states, repeat(img_ids, "h w c -> b (h w) c", b=bs), orig_shape
|
||||
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device)
|
||||
|
||||
def forward(self, x, timestep, context, attention_mask=None, guidance=None, ref_latents=None, transformer_options={}, **kwargs):
|
||||
if t_len > 1:
|
||||
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).unsqueeze(1).unsqueeze(1)
|
||||
else:
|
||||
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + index
|
||||
|
||||
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1).unsqueeze(0) - (h_len // 2)
|
||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0).unsqueeze(0) - (w_len // 2)
|
||||
return hidden_states, repeat(img_ids, "t h w c -> b (t h w) c", b=bs), orig_shape
|
||||
|
||||
def forward(self, x, timestep, context, attention_mask=None, ref_latents=None, additional_t_cond=None, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, timestep, context, attention_mask, guidance, ref_latents, transformer_options, **kwargs)
|
||||
).execute(x, timestep, context, attention_mask, ref_latents, additional_t_cond, transformer_options, **kwargs)
|
||||
|
||||
def _forward(
|
||||
self,
|
||||
@ -372,8 +420,8 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
timesteps,
|
||||
context,
|
||||
attention_mask=None,
|
||||
guidance: torch.Tensor = None,
|
||||
ref_latents=None,
|
||||
additional_t_cond=None,
|
||||
transformer_options={},
|
||||
control=None,
|
||||
**kwargs
|
||||
@ -385,16 +433,24 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
hidden_states, img_ids, orig_shape = self.process_img(x)
|
||||
num_embeds = hidden_states.shape[1]
|
||||
|
||||
timestep_zero_index = None
|
||||
if ref_latents is not None:
|
||||
h = 0
|
||||
w = 0
|
||||
index = 0
|
||||
index_ref_method = kwargs.get("ref_latents_method", "index") == "index"
|
||||
ref_method = kwargs.get("ref_latents_method", self.default_ref_method)
|
||||
index_ref_method = (ref_method == "index") or (ref_method == "index_timestep_zero")
|
||||
negative_ref_method = ref_method == "negative_index"
|
||||
timestep_zero = ref_method == "index_timestep_zero"
|
||||
for ref in ref_latents:
|
||||
if index_ref_method:
|
||||
index += 1
|
||||
h_offset = 0
|
||||
w_offset = 0
|
||||
elif negative_ref_method:
|
||||
index -= 1
|
||||
h_offset = 0
|
||||
w_offset = 0
|
||||
else:
|
||||
index = 1
|
||||
h_offset = 0
|
||||
@ -409,35 +465,35 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
kontext, kontext_ids, _ = self.process_img(ref, index=index, h_offset=h_offset, w_offset=w_offset)
|
||||
hidden_states = torch.cat([hidden_states, kontext], dim=1)
|
||||
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
|
||||
if timestep_zero:
|
||||
if index > 0:
|
||||
timestep = torch.cat([timestep, timestep * 0], dim=0)
|
||||
timestep_zero_index = num_embeds
|
||||
|
||||
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
|
||||
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
|
||||
image_rotary_emb = self.pe_embedder(ids).to(x.dtype).contiguous()
|
||||
del ids, txt_ids, img_ids
|
||||
|
||||
hidden_states = self.img_in(hidden_states)
|
||||
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
|
||||
encoder_hidden_states = self.txt_in(encoder_hidden_states)
|
||||
|
||||
if guidance is not None:
|
||||
guidance = guidance * 1000
|
||||
|
||||
temb = (
|
||||
self.time_text_embed(timestep, hidden_states)
|
||||
if guidance is None
|
||||
else self.time_text_embed(timestep, guidance, hidden_states)
|
||||
)
|
||||
temb = self.time_text_embed(timestep, hidden_states, additional_t_cond)
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
patches = transformer_options.get("patches", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
|
||||
transformer_options["total_blocks"] = len(self.transformer_blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"])
|
||||
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], timestep_zero_index=timestep_zero_index, transformer_options=args["transformer_options"])
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
|
||||
hidden_states = out["img"]
|
||||
@ -449,6 +505,7 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
timestep_zero_index=timestep_zero_index,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
@ -465,9 +522,12 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
if add is not None:
|
||||
hidden_states[:, :add.shape[1]] += add
|
||||
|
||||
if timestep_zero_index is not None:
|
||||
temb = temb.chunk(2, dim=0)[0]
|
||||
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
hidden_states = hidden_states[:, :num_embeds].view(orig_shape[0], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2)
|
||||
hidden_states = hidden_states.permute(0, 3, 1, 4, 2, 5)
|
||||
hidden_states = hidden_states[:, :num_embeds].view(orig_shape[0], orig_shape[-3], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2)
|
||||
hidden_states = hidden_states.permute(0, 4, 1, 2, 5, 3, 6)
|
||||
return hidden_states.reshape(orig_shape)[:, :, :, :x.shape[-2], :x.shape[-1]]
|
||||
|
||||
@ -232,6 +232,7 @@ class WanAttentionBlock(nn.Module):
|
||||
# assert e[0].dtype == torch.float32
|
||||
|
||||
# self-attention
|
||||
x = x.contiguous() # otherwise implicit in LayerNorm
|
||||
y = self.self_attn(
|
||||
torch.addcmul(repeat_e(e[0], x), self.norm1(x), 1 + repeat_e(e[1], x)),
|
||||
freqs, transformer_options=transformer_options)
|
||||
@ -567,7 +568,10 @@ class WanModel(torch.nn.Module):
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
@ -588,7 +592,7 @@ class WanModel(torch.nn.Module):
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
|
||||
def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None):
|
||||
def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None, transformer_options={}):
|
||||
patch_size = self.patch_size
|
||||
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
||||
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
|
||||
@ -601,10 +605,22 @@ class WanModel(torch.nn.Module):
|
||||
if steps_w is None:
|
||||
steps_w = w_len
|
||||
|
||||
h_start = 0
|
||||
w_start = 0
|
||||
rope_options = transformer_options.get("rope_options", None)
|
||||
if rope_options is not None:
|
||||
t_len = (t_len - 1.0) * rope_options.get("scale_t", 1.0) + 1.0
|
||||
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
|
||||
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
|
||||
|
||||
t_start += rope_options.get("shift_t", 0.0)
|
||||
h_start += rope_options.get("shift_y", 0.0)
|
||||
w_start += rope_options.get("shift_x", 0.0)
|
||||
|
||||
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
|
||||
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
|
||||
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
|
||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
|
||||
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_start, h_start + (h_len - 1), steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
|
||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_start, w_start + (w_len - 1), steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
|
||||
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
|
||||
|
||||
freqs = self.rope_embedder(img_ids).movedim(1, 2)
|
||||
@ -630,7 +646,7 @@ class WanModel(torch.nn.Module):
|
||||
if self.ref_conv is not None and "reference_latent" in kwargs:
|
||||
t_len += 1
|
||||
|
||||
freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype)
|
||||
freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options)
|
||||
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w]
|
||||
|
||||
def unpatchify(self, x, grid_sizes):
|
||||
@ -750,7 +766,10 @@ class VaceWanModel(WanModel):
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
@ -849,7 +868,10 @@ class CameraWanModel(WanModel):
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
@ -1313,16 +1335,19 @@ class WanModel_S2V(WanModel):
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
|
||||
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], transformer_options=args["transformer_options"])
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(x, e=e0, freqs=freqs, context=context)
|
||||
x = block(x, e=e0, freqs=freqs, context=context, transformer_options=transformer_options)
|
||||
if audio_emb is not None:
|
||||
x = self.audio_injector(x, i, audio_emb, audio_emb_global, seq_len)
|
||||
# head
|
||||
@ -1561,7 +1586,10 @@ class HumoWanModel(WanModel):
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
|
||||
@ -523,7 +523,10 @@ class AnimateWanModel(WanModel):
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
|
||||
@ -227,6 +227,7 @@ class Encoder3d(nn.Module):
|
||||
def __init__(self,
|
||||
dim=128,
|
||||
z_dim=4,
|
||||
input_channels=3,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
@ -245,7 +246,7 @@ class Encoder3d(nn.Module):
|
||||
scale = 1.0
|
||||
|
||||
# init block
|
||||
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
|
||||
self.conv1 = CausalConv3d(input_channels, dims[0], 3, padding=1)
|
||||
|
||||
# downsample blocks
|
||||
downsamples = []
|
||||
@ -331,6 +332,7 @@ class Decoder3d(nn.Module):
|
||||
def __init__(self,
|
||||
dim=128,
|
||||
z_dim=4,
|
||||
output_channels=3,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
@ -378,7 +380,7 @@ class Decoder3d(nn.Module):
|
||||
# output blocks
|
||||
self.head = nn.Sequential(
|
||||
RMS_norm(out_dim, images=False), nn.SiLU(),
|
||||
CausalConv3d(out_dim, 3, 3, padding=1))
|
||||
CausalConv3d(out_dim, output_channels, 3, padding=1))
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
## conv1
|
||||
@ -449,6 +451,7 @@ class WanVAE(nn.Module):
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
temperal_downsample=[True, True, False],
|
||||
image_channels=3,
|
||||
dropout=0.0):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
@ -460,11 +463,11 @@ class WanVAE(nn.Module):
|
||||
self.temperal_upsample = temperal_downsample[::-1]
|
||||
|
||||
# modules
|
||||
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks,
|
||||
self.encoder = Encoder3d(dim, z_dim * 2, image_channels, dim_mult, num_res_blocks,
|
||||
attn_scales, self.temperal_downsample, dropout)
|
||||
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
|
||||
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
|
||||
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
|
||||
self.decoder = Decoder3d(dim, z_dim, image_channels, dim_mult, num_res_blocks,
|
||||
attn_scales, self.temperal_upsample, dropout)
|
||||
|
||||
def encode(self, x):
|
||||
|
||||
@ -657,51 +657,51 @@ class WanVAE(nn.Module):
|
||||
)
|
||||
|
||||
def encode(self, x):
|
||||
self.clear_cache()
|
||||
conv_idx = [0]
|
||||
feat_map = [None] * count_conv3d(self.encoder)
|
||||
x = patchify(x, patch_size=2)
|
||||
t = x.shape[2]
|
||||
iter_ = 1 + (t - 1) // 4
|
||||
for i in range(iter_):
|
||||
self._enc_conv_idx = [0]
|
||||
conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.encoder(
|
||||
x[:, :, :1, :, :],
|
||||
feat_cache=self._enc_feat_map,
|
||||
feat_idx=self._enc_conv_idx,
|
||||
feat_cache=feat_map,
|
||||
feat_idx=conv_idx,
|
||||
)
|
||||
else:
|
||||
out_ = self.encoder(
|
||||
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
|
||||
feat_cache=self._enc_feat_map,
|
||||
feat_idx=self._enc_conv_idx,
|
||||
feat_cache=feat_map,
|
||||
feat_idx=conv_idx,
|
||||
)
|
||||
out = torch.cat([out, out_], 2)
|
||||
mu, log_var = self.conv1(out).chunk(2, dim=1)
|
||||
self.clear_cache()
|
||||
return mu
|
||||
|
||||
def decode(self, z):
|
||||
self.clear_cache()
|
||||
conv_idx = [0]
|
||||
feat_map = [None] * count_conv3d(self.decoder)
|
||||
iter_ = z.shape[2]
|
||||
x = self.conv2(z)
|
||||
for i in range(iter_):
|
||||
self._conv_idx = [0]
|
||||
conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.decoder(
|
||||
x[:, :, i:i + 1, :, :],
|
||||
feat_cache=self._feat_map,
|
||||
feat_idx=self._conv_idx,
|
||||
feat_cache=feat_map,
|
||||
feat_idx=conv_idx,
|
||||
first_chunk=True,
|
||||
)
|
||||
else:
|
||||
out_ = self.decoder(
|
||||
x[:, :, i:i + 1, :, :],
|
||||
feat_cache=self._feat_map,
|
||||
feat_idx=self._conv_idx,
|
||||
feat_cache=feat_map,
|
||||
feat_idx=conv_idx,
|
||||
)
|
||||
out = torch.cat([out, out_], 2)
|
||||
out = unpatchify(out, patch_size=2)
|
||||
self.clear_cache()
|
||||
return out
|
||||
|
||||
def reparameterize(self, mu, log_var):
|
||||
@ -715,12 +715,3 @@ class WanVAE(nn.Module):
|
||||
return mu
|
||||
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
|
||||
return mu + std * torch.randn_like(std)
|
||||
|
||||
def clear_cache(self):
|
||||
self._conv_num = count_conv3d(self.decoder)
|
||||
self._conv_idx = [0]
|
||||
self._feat_map = [None] * self._conv_num
|
||||
# cache encode
|
||||
self._enc_conv_num = count_conv3d(self.encoder)
|
||||
self._enc_conv_idx = [0]
|
||||
self._enc_feat_map = [None] * self._enc_conv_num
|
||||
|
||||
@ -313,6 +313,23 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
key_map["transformer.{}".format(key_lora)] = k
|
||||
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
|
||||
|
||||
if isinstance(model, comfy.model_base.Lumina2):
|
||||
diffusers_keys = comfy.utils.z_image_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
to = diffusers_keys[k]
|
||||
key_lora = k[:-len(".weight")]
|
||||
key_map["diffusion_model.{}".format(key_lora)] = to
|
||||
key_map["transformer.{}".format(key_lora)] = to
|
||||
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to
|
||||
|
||||
if isinstance(model, comfy.model_base.Kandinsky5):
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")]
|
||||
key_map["{}".format(key_lora)] = k
|
||||
key_map["transformer.{}".format(key_lora)] = k
|
||||
|
||||
return key_map
|
||||
|
||||
|
||||
|
||||
@ -47,6 +47,7 @@ import comfy.ldm.chroma_radiance.model
|
||||
import comfy.ldm.ace.model
|
||||
import comfy.ldm.omnigen.omnigen2
|
||||
import comfy.ldm.qwen_image.model
|
||||
import comfy.ldm.kandinsky5.model
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
@ -134,10 +135,11 @@ class BaseModel(torch.nn.Module):
|
||||
if not unet_config.get("disable_unet_model_creation", False):
|
||||
if model_config.custom_operations is None:
|
||||
fp8 = model_config.optimizations.get("fp8", False)
|
||||
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8)
|
||||
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, model_config=model_config)
|
||||
else:
|
||||
operations = model_config.custom_operations
|
||||
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
|
||||
self.diffusion_model.eval()
|
||||
if comfy.model_management.force_channels_last():
|
||||
self.diffusion_model.to(memory_format=torch.channels_last)
|
||||
logging.debug("using channels last mode for diffusion model")
|
||||
@ -196,8 +198,14 @@ class BaseModel(torch.nn.Module):
|
||||
extra_conds[o] = extra
|
||||
|
||||
t = self.process_timestep(t, x=x, **extra_conds)
|
||||
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
|
||||
return self.model_sampling.calculate_denoised(sigma, model_output, x)
|
||||
if "latent_shapes" in extra_conds:
|
||||
xc = utils.unpack_latents(xc, extra_conds.pop("latent_shapes"))
|
||||
|
||||
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds)
|
||||
if len(model_output) > 1 and not torch.is_tensor(model_output):
|
||||
model_output, _ = utils.pack_latents(model_output)
|
||||
|
||||
return self.model_sampling.calculate_denoised(sigma, model_output.float(), x)
|
||||
|
||||
def process_timestep(self, timestep, **kwargs):
|
||||
return timestep
|
||||
@ -322,10 +330,6 @@ class BaseModel(torch.nn.Module):
|
||||
extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
|
||||
|
||||
unet_state_dict = self.diffusion_model.state_dict()
|
||||
|
||||
if self.model_config.scaled_fp8 is not None:
|
||||
unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8)
|
||||
|
||||
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
|
||||
|
||||
if self.model_type == ModelType.V_PREDICTION:
|
||||
@ -669,7 +673,6 @@ class Lotus(BaseModel):
|
||||
class StableCascade_C(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=StageC)
|
||||
self.diffusion_model.eval().requires_grad_(False)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
@ -698,7 +701,6 @@ class StableCascade_C(BaseModel):
|
||||
class StableCascade_B(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=StageB)
|
||||
self.diffusion_model.eval().requires_grad_(False)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
@ -885,12 +887,13 @@ class Flux(BaseModel):
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
if attention_mask is not None:
|
||||
shape = kwargs["noise"].shape
|
||||
mask_ref_size = kwargs["attention_mask_img_shape"]
|
||||
# the model will pad to the patch size, and then divide
|
||||
# essentially dividing and rounding up
|
||||
(h_tok, w_tok) = (math.ceil(shape[2] / self.diffusion_model.patch_size), math.ceil(shape[3] / self.diffusion_model.patch_size))
|
||||
attention_mask = utils.upscale_dit_mask(attention_mask, mask_ref_size, (h_tok, w_tok))
|
||||
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
|
||||
mask_ref_size = kwargs.get("attention_mask_img_shape", None)
|
||||
if mask_ref_size is not None:
|
||||
# the model will pad to the patch size, and then divide
|
||||
# essentially dividing and rounding up
|
||||
(h_tok, w_tok) = (math.ceil(shape[2] / self.diffusion_model.patch_size), math.ceil(shape[3] / self.diffusion_model.patch_size))
|
||||
attention_mask = utils.upscale_dit_mask(attention_mask, mask_ref_size, (h_tok, w_tok))
|
||||
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
|
||||
|
||||
guidance = kwargs.get("guidance", 3.5)
|
||||
if guidance is not None:
|
||||
@ -912,9 +915,19 @@ class Flux(BaseModel):
|
||||
out = {}
|
||||
ref_latents = kwargs.get("reference_latents", None)
|
||||
if ref_latents is not None:
|
||||
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
|
||||
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()[2:]), ref_latents))])
|
||||
return out
|
||||
|
||||
class Flux2(Flux):
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
target_text_len = 512
|
||||
if cross_attn.shape[1] < target_text_len:
|
||||
cross_attn = torch.nn.functional.pad(cross_attn, (0, 0, target_text_len - cross_attn.shape[1], 0))
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
return out
|
||||
|
||||
class GenmoMochi(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
@ -1090,9 +1103,17 @@ class Lumina2(BaseModel):
|
||||
if torch.numel(attention_mask) != attention_mask.sum():
|
||||
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
|
||||
out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item()))
|
||||
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
if 'num_tokens' not in out:
|
||||
out['num_tokens'] = comfy.conds.CONDConstant(cross_attn.shape[1])
|
||||
|
||||
clip_text_pooled = kwargs.get("pooled_output", None) # NewBie
|
||||
if clip_text_pooled is not None:
|
||||
out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled)
|
||||
|
||||
return out
|
||||
|
||||
class WAN21(BaseModel):
|
||||
@ -1523,3 +1544,140 @@ class HunyuanImage21Refiner(HunyuanImage21):
|
||||
out = super().extra_conds(**kwargs)
|
||||
out['disable_time_r'] = comfy.conds.CONDConstant(True)
|
||||
return out
|
||||
|
||||
class HunyuanVideo15(HunyuanVideo):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
noise = kwargs.get("noise", None)
|
||||
extra_channels = self.diffusion_model.img_in.proj.weight.shape[1] - noise.shape[1] - 1 #noise 32 img cond 32 + mask 1
|
||||
if extra_channels == 0:
|
||||
return None
|
||||
|
||||
image = kwargs.get("concat_latent_image", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
if image is None:
|
||||
shape_image = list(noise.shape)
|
||||
shape_image[1] = extra_channels
|
||||
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
|
||||
else:
|
||||
latent_dim = self.latent_format.latent_channels
|
||||
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
for i in range(0, image.shape[1], latent_dim):
|
||||
image[:, i: i + latent_dim] = self.process_latent_in(image[:, i: i + latent_dim])
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
|
||||
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
|
||||
if mask is None:
|
||||
mask = torch.zeros_like(noise)[:, :1]
|
||||
else:
|
||||
mask = 1.0 - mask
|
||||
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
if mask.shape[-3] < noise.shape[-3]:
|
||||
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
|
||||
mask = utils.resize_to_batch_size(mask, noise.shape[0])
|
||||
|
||||
return torch.cat((image, mask), dim=1)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
if attention_mask is not None:
|
||||
if torch.numel(attention_mask) != attention_mask.sum():
|
||||
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
|
||||
conditioning_byt5small = kwargs.get("conditioning_byt5small", None)
|
||||
if conditioning_byt5small is not None:
|
||||
out['txt_byt5'] = comfy.conds.CONDRegular(conditioning_byt5small)
|
||||
|
||||
guidance = kwargs.get("guidance", 6.0)
|
||||
if guidance is not None:
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
|
||||
|
||||
clip_vision_output = kwargs.get("clip_vision_output", None)
|
||||
if clip_vision_output is not None:
|
||||
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.last_hidden_state)
|
||||
|
||||
return out
|
||||
|
||||
class HunyuanVideo15_SR_Distilled(HunyuanVideo15):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
noise = kwargs.get("noise", None)
|
||||
image = kwargs.get("concat_latent_image", None)
|
||||
noise_augmentation = kwargs.get("noise_augmentation", 0.0)
|
||||
device = kwargs["device"]
|
||||
|
||||
if image is None:
|
||||
image = torch.zeros([noise.shape[0], noise.shape[1] * 2 + 2, noise.shape[-3], noise.shape[-2], noise.shape[-1]], device=comfy.model_management.intermediate_device())
|
||||
else:
|
||||
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
#image = self.process_latent_in(image) # scaling wasn't applied in reference code
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
lq_image_slice = slice(noise.shape[1] + 1, 2 * noise.shape[1] + 1)
|
||||
if noise_augmentation > 0:
|
||||
generator = torch.Generator(device="cpu")
|
||||
generator.manual_seed(kwargs.get("seed", 0) - 10)
|
||||
noise = torch.randn(image[:, lq_image_slice].shape, generator=generator, dtype=image.dtype, device="cpu").to(image.device)
|
||||
image[:, lq_image_slice] = noise_augmentation * noise + min(1.0 - noise_augmentation, 0.75) * image[:, lq_image_slice]
|
||||
else:
|
||||
image[:, lq_image_slice] = 0.75 * image[:, lq_image_slice]
|
||||
return image
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
out['disable_time_r'] = comfy.conds.CONDConstant(False)
|
||||
return out
|
||||
|
||||
class Kandinsky5(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.kandinsky5.model.Kandinsky5)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
return kwargs["pooled_output"]
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
noise = kwargs.get("noise", None)
|
||||
device = kwargs["device"]
|
||||
image = torch.zeros_like(noise)
|
||||
|
||||
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
|
||||
if mask is None:
|
||||
mask = torch.zeros_like(noise)[:, :1]
|
||||
else:
|
||||
mask = 1.0 - mask
|
||||
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
if mask.shape[-3] < noise.shape[-3]:
|
||||
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
|
||||
mask = utils.resize_to_batch_size(mask, noise.shape[0])
|
||||
|
||||
return torch.cat((image, mask), dim=1)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
if attention_mask is not None:
|
||||
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
|
||||
time_dim_replace = kwargs.get("time_dim_replace", None)
|
||||
if time_dim_replace is not None:
|
||||
out['time_dim_replace'] = comfy.conds.CONDRegular(self.process_latent_in(time_dim_replace))
|
||||
|
||||
return out
|
||||
|
||||
class Kandinsky5Image(Kandinsky5):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
return None
|
||||
|
||||
@ -172,30 +172,73 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
|
||||
guidance_keys = list(filter(lambda a: a.startswith("{}guidance_in.".format(key_prefix)), state_dict_keys))
|
||||
dit_config["guidance_embed"] = len(guidance_keys) > 0
|
||||
|
||||
# HunyuanVideo 1.5
|
||||
if '{}cond_type_embedding.weight'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["use_cond_type_embedding"] = True
|
||||
else:
|
||||
dit_config["use_cond_type_embedding"] = False
|
||||
if '{}vision_in.proj.0.weight'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["vision_in_dim"] = state_dict['{}vision_in.proj.0.weight'.format(key_prefix)].shape[0]
|
||||
dit_config["meanflow_sum"] = True
|
||||
else:
|
||||
dit_config["vision_in_dim"] = None
|
||||
dit_config["meanflow_sum"] = False
|
||||
return dit_config
|
||||
|
||||
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "flux"
|
||||
if '{}double_stream_modulation_img.lin.weight'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["image_model"] = "flux2"
|
||||
dit_config["axes_dim"] = [32, 32, 32, 32]
|
||||
dit_config["num_heads"] = 48
|
||||
dit_config["mlp_ratio"] = 3.0
|
||||
dit_config["theta"] = 2000
|
||||
dit_config["out_channels"] = 128
|
||||
dit_config["global_modulation"] = True
|
||||
dit_config["mlp_silu_act"] = True
|
||||
dit_config["qkv_bias"] = False
|
||||
dit_config["ops_bias"] = False
|
||||
dit_config["default_ref_method"] = "index"
|
||||
dit_config["ref_index_scale"] = 10.0
|
||||
dit_config["txt_ids_dims"] = [3]
|
||||
patch_size = 1
|
||||
else:
|
||||
dit_config["image_model"] = "flux"
|
||||
dit_config["axes_dim"] = [16, 56, 56]
|
||||
dit_config["num_heads"] = 24
|
||||
dit_config["mlp_ratio"] = 4.0
|
||||
dit_config["theta"] = 10000
|
||||
dit_config["out_channels"] = 16
|
||||
dit_config["qkv_bias"] = True
|
||||
dit_config["txt_ids_dims"] = []
|
||||
patch_size = 2
|
||||
|
||||
dit_config["in_channels"] = 16
|
||||
patch_size = 2
|
||||
dit_config["hidden_size"] = 3072
|
||||
dit_config["context_in_dim"] = 4096
|
||||
|
||||
dit_config["patch_size"] = patch_size
|
||||
in_key = "{}img_in.weight".format(key_prefix)
|
||||
if in_key in state_dict_keys:
|
||||
dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size)
|
||||
dit_config["out_channels"] = 16
|
||||
w = state_dict[in_key]
|
||||
dit_config["in_channels"] = w.shape[1] // (patch_size * patch_size)
|
||||
dit_config["hidden_size"] = w.shape[0]
|
||||
|
||||
txt_in_key = "{}txt_in.weight".format(key_prefix)
|
||||
if txt_in_key in state_dict_keys:
|
||||
w = state_dict[txt_in_key]
|
||||
dit_config["context_in_dim"] = w.shape[1]
|
||||
dit_config["hidden_size"] = w.shape[0]
|
||||
|
||||
vec_in_key = '{}vector_in.in_layer.weight'.format(key_prefix)
|
||||
if vec_in_key in state_dict_keys:
|
||||
dit_config["vec_in_dim"] = state_dict[vec_in_key].shape[1]
|
||||
dit_config["context_in_dim"] = 4096
|
||||
dit_config["hidden_size"] = 3072
|
||||
dit_config["mlp_ratio"] = 4.0
|
||||
dit_config["num_heads"] = 24
|
||||
else:
|
||||
dit_config["vec_in_dim"] = None
|
||||
|
||||
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["axes_dim"] = [16, 56, 56]
|
||||
dit_config["theta"] = 10000
|
||||
dit_config["qkv_bias"] = True
|
||||
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma
|
||||
dit_config["image_model"] = "chroma"
|
||||
dit_config["in_channels"] = 64
|
||||
@ -213,11 +256,20 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["nerf_mlp_ratio"] = 4
|
||||
dit_config["nerf_depth"] = 4
|
||||
dit_config["nerf_max_freqs"] = 8
|
||||
dit_config["nerf_tile_size"] = 32
|
||||
dit_config["nerf_tile_size"] = 512
|
||||
dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear"
|
||||
dit_config["nerf_embedder_dtype"] = torch.float32
|
||||
if "{}__x0__".format(key_prefix) in state_dict_keys: # x0 pred
|
||||
dit_config["use_x0"] = True
|
||||
else:
|
||||
dit_config["use_x0"] = False
|
||||
else:
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
dit_config["yak_mlp"] = '{}double_blocks.0.img_mlp.gate_proj.weight'.format(key_prefix) in state_dict_keys
|
||||
dit_config["txt_norm"] = "{}txt_norm.scale".format(key_prefix) in state_dict_keys
|
||||
if dit_config["yak_mlp"] and dit_config["txt_norm"]: # Ovis model
|
||||
dit_config["txt_ids_dims"] = [1, 2]
|
||||
|
||||
return dit_config
|
||||
|
||||
if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview
|
||||
@ -364,14 +416,35 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["image_model"] = "lumina2"
|
||||
dit_config["patch_size"] = 2
|
||||
dit_config["in_channels"] = 16
|
||||
dit_config["dim"] = 2304
|
||||
dit_config["cap_feat_dim"] = 2304
|
||||
dit_config["n_layers"] = 26
|
||||
dit_config["n_heads"] = 24
|
||||
dit_config["n_kv_heads"] = 8
|
||||
w = state_dict['{}cap_embedder.1.weight'.format(key_prefix)]
|
||||
dit_config["dim"] = w.shape[0]
|
||||
dit_config["cap_feat_dim"] = w.shape[1]
|
||||
dit_config["n_layers"] = count_blocks(state_dict_keys, '{}layers.'.format(key_prefix) + '{}.')
|
||||
dit_config["qk_norm"] = True
|
||||
dit_config["axes_dims"] = [32, 32, 32]
|
||||
dit_config["axes_lens"] = [300, 512, 512]
|
||||
|
||||
if dit_config["dim"] == 2304: # Original Lumina 2
|
||||
dit_config["n_heads"] = 24
|
||||
dit_config["n_kv_heads"] = 8
|
||||
dit_config["axes_dims"] = [32, 32, 32]
|
||||
dit_config["axes_lens"] = [300, 512, 512]
|
||||
dit_config["rope_theta"] = 10000.0
|
||||
dit_config["ffn_dim_multiplier"] = 4.0
|
||||
ctd_weight = state_dict.get('{}clip_text_pooled_proj.0.weight'.format(key_prefix), None)
|
||||
if ctd_weight is not None: # NewBie
|
||||
dit_config["clip_text_dim"] = ctd_weight.shape[0]
|
||||
# NewBie also sets axes_lens = [1024, 512, 512] but it's not used in ComfyUI
|
||||
elif dit_config["dim"] == 3840: # Z image
|
||||
dit_config["n_heads"] = 30
|
||||
dit_config["n_kv_heads"] = 30
|
||||
dit_config["axes_dims"] = [32, 48, 48]
|
||||
dit_config["axes_lens"] = [1536, 512, 512]
|
||||
dit_config["rope_theta"] = 256.0
|
||||
dit_config["ffn_dim_multiplier"] = (8.0 / 3.0)
|
||||
dit_config["z_image_modulation"] = True
|
||||
dit_config["time_scale"] = 1000.0
|
||||
if '{}cap_pad_token'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["pad_tokens_multiple"] = 32
|
||||
|
||||
return dit_config
|
||||
|
||||
if '{}head.modulation'.format(key_prefix) in state_dict_keys: # Wan 2.1
|
||||
@ -546,6 +619,29 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["image_model"] = "qwen_image"
|
||||
dit_config["in_channels"] = state_dict['{}img_in.weight'.format(key_prefix)].shape[1]
|
||||
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.')
|
||||
if "{}__index_timestep_zero__".format(key_prefix) in state_dict_keys: # 2511
|
||||
dit_config["default_ref_method"] = "index_timestep_zero"
|
||||
if "{}time_text_embed.addition_t_embedding.weight".format(key_prefix) in state_dict_keys: # Layered
|
||||
dit_config["use_additional_t_cond"] = True
|
||||
dit_config["default_ref_method"] = "negative_index"
|
||||
return dit_config
|
||||
|
||||
if '{}visual_transformer_blocks.0.cross_attention.key_norm.weight'.format(key_prefix) in state_dict_keys: # Kandinsky 5
|
||||
dit_config = {}
|
||||
model_dim = state_dict['{}visual_embeddings.in_layer.bias'.format(key_prefix)].shape[0]
|
||||
dit_config["model_dim"] = model_dim
|
||||
if model_dim in [4096, 2560]: # pro video and lite image
|
||||
dit_config["axes_dims"] = (32, 48, 48)
|
||||
if model_dim == 2560: # lite image
|
||||
dit_config["rope_scale_factor"] = (1.0, 1.0, 1.0)
|
||||
elif model_dim == 1792: # lite video
|
||||
dit_config["axes_dims"] = (16, 24, 24)
|
||||
dit_config["time_dim"] = state_dict['{}time_embeddings.in_layer.bias'.format(key_prefix)].shape[0]
|
||||
dit_config["image_model"] = "kandinsky5"
|
||||
dit_config["ff_dim"] = state_dict['{}visual_transformer_blocks.0.feed_forward.in_layer.weight'.format(key_prefix)].shape[0]
|
||||
dit_config["visual_embed_dim"] = state_dict['{}visual_embeddings.in_layer.weight'.format(key_prefix)].shape[1]
|
||||
dit_config["num_text_blocks"] = count_blocks(state_dict_keys, '{}text_transformer_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["num_visual_blocks"] = count_blocks(state_dict_keys, '{}visual_transformer_blocks.'.format(key_prefix) + '{}.')
|
||||
return dit_config
|
||||
|
||||
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
|
||||
@ -690,16 +786,11 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
|
||||
if model_config is None and use_base_if_no_match:
|
||||
model_config = comfy.supported_models_base.BASE(unet_config)
|
||||
|
||||
scaled_fp8_key = "{}scaled_fp8".format(unet_key_prefix)
|
||||
if scaled_fp8_key in state_dict:
|
||||
scaled_fp8_weight = state_dict.pop(scaled_fp8_key)
|
||||
model_config.scaled_fp8 = scaled_fp8_weight.dtype
|
||||
if model_config.scaled_fp8 == torch.float32:
|
||||
model_config.scaled_fp8 = torch.float8_e4m3fn
|
||||
if scaled_fp8_weight.nelement() == 2:
|
||||
model_config.optimizations["fp8"] = False
|
||||
else:
|
||||
model_config.optimizations["fp8"] = True
|
||||
# Detect per-layer quantization (mixed precision)
|
||||
quant_config = comfy.utils.detect_layer_quantization(state_dict, unet_key_prefix)
|
||||
if quant_config:
|
||||
model_config.quant_config = quant_config
|
||||
logging.info("Detected mixed precision quantization")
|
||||
|
||||
return model_config
|
||||
|
||||
|
||||
@ -26,6 +26,7 @@ import importlib
|
||||
import platform
|
||||
import weakref
|
||||
import gc
|
||||
import os
|
||||
|
||||
class VRAMState(Enum):
|
||||
DISABLED = 0 #No vram present: no need to move models to vram
|
||||
@ -89,6 +90,7 @@ if args.deterministic:
|
||||
|
||||
directml_enabled = False
|
||||
if args.directml is not None:
|
||||
logging.warning("WARNING: torch-directml barely works, is very slow, has not been updated in over 1 year and might be removed soon, please don't use it, there are better options.")
|
||||
import torch_directml
|
||||
directml_enabled = True
|
||||
device_index = args.directml
|
||||
@ -330,13 +332,23 @@ except:
|
||||
|
||||
|
||||
SUPPORT_FP8_OPS = args.supports_fp8_compute
|
||||
|
||||
AMD_RDNA2_AND_OLDER_ARCH = ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"]
|
||||
AMD_ENABLE_MIOPEN_ENV = 'COMFYUI_ENABLE_MIOPEN'
|
||||
|
||||
try:
|
||||
if is_amd():
|
||||
arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName
|
||||
if not (any((a in arch) for a in AMD_RDNA2_AND_OLDER_ARCH)):
|
||||
if os.getenv(AMD_ENABLE_MIOPEN_ENV) != '1':
|
||||
torch.backends.cudnn.enabled = False # Seems to improve things a lot on AMD
|
||||
logging.info("Set: torch.backends.cudnn.enabled = False for better AMD performance.")
|
||||
|
||||
try:
|
||||
rocm_version = tuple(map(int, str(torch.version.hip).split(".")[:2]))
|
||||
except:
|
||||
rocm_version = (6, -1)
|
||||
arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName
|
||||
|
||||
logging.info("AMD arch: {}".format(arch))
|
||||
logging.info("ROCm version: {}".format(rocm_version))
|
||||
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||
@ -344,11 +356,11 @@ try:
|
||||
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
|
||||
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
# if torch_version_numeric >= (2, 8):
|
||||
# if any((a in arch) for a in ["gfx1201"]):
|
||||
# ENABLE_PYTORCH_ATTENTION = True
|
||||
if rocm_version >= (7, 0):
|
||||
if any((a in arch) for a in ["gfx1201"]):
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
|
||||
if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx942", "gfx950"]): # TODO: more arches
|
||||
if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx950"]): # TODO: more arches, "gfx942" gives error on pytorch nightly 2.10 1013 rocm7.0
|
||||
SUPPORT_FP8_OPS = True
|
||||
|
||||
except:
|
||||
@ -370,6 +382,9 @@ try:
|
||||
except:
|
||||
pass
|
||||
|
||||
if torch.cuda.is_available() and torch.backends.cudnn.is_available() and PerformanceFeature.AutoTune in args.fast:
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
try:
|
||||
if torch_version_numeric >= (2, 5):
|
||||
torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True)
|
||||
@ -492,6 +507,7 @@ class LoadedModel:
|
||||
if use_more_vram == 0:
|
||||
use_more_vram = 1e32
|
||||
self.model_use_more_vram(use_more_vram, force_patch_weights=force_patch_weights)
|
||||
|
||||
real_model = self.model.model
|
||||
|
||||
if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and real_model is not None:
|
||||
@ -676,8 +692,11 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
|
||||
loaded_memory = loaded_model.model_loaded_memory()
|
||||
current_free_mem = get_free_memory(torch_dev) + loaded_memory
|
||||
|
||||
lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
|
||||
lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory)
|
||||
lowvram_model_memory = max(0, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
|
||||
lowvram_model_memory = lowvram_model_memory - loaded_memory
|
||||
|
||||
if lowvram_model_memory == 0:
|
||||
lowvram_model_memory = 0.1
|
||||
|
||||
if vram_set_state == VRAMState.NO_VRAM:
|
||||
lowvram_model_memory = 0.1
|
||||
@ -925,11 +944,7 @@ def vae_dtype(device=None, allowed_dtypes=[]):
|
||||
if d == torch.float16 and should_use_fp16(device):
|
||||
return d
|
||||
|
||||
# NOTE: bfloat16 seems to work on AMD for the VAE but is extremely slow in some cases compared to fp32
|
||||
# slowness still a problem on pytorch nightly 2.9.0.dev20250720+rocm6.4 tested on RDNA3
|
||||
# also a problem on RDNA4 except fp32 is also slow there.
|
||||
# This is due to large bf16 convolutions being extremely slow.
|
||||
if d == torch.bfloat16 and ((not is_amd()) or amd_min_version(device, min_rdna_version=4)) and should_use_bf16(device):
|
||||
if d == torch.bfloat16 and should_use_bf16(device):
|
||||
return d
|
||||
|
||||
return torch.float32
|
||||
@ -991,12 +1006,6 @@ def device_supports_non_blocking(device):
|
||||
return False
|
||||
return True
|
||||
|
||||
def device_should_use_non_blocking(device):
|
||||
if not device_supports_non_blocking(device):
|
||||
return False
|
||||
return False
|
||||
# return True #TODO: figure out why this causes memory issues on Nvidia and possibly others
|
||||
|
||||
def force_channels_last():
|
||||
if args.force_channels_last:
|
||||
return True
|
||||
@ -1006,54 +1015,72 @@ def force_channels_last():
|
||||
|
||||
|
||||
STREAMS = {}
|
||||
NUM_STREAMS = 1
|
||||
if args.async_offload:
|
||||
NUM_STREAMS = 2
|
||||
NUM_STREAMS = 0
|
||||
if args.async_offload is not None:
|
||||
NUM_STREAMS = args.async_offload
|
||||
else:
|
||||
# Enable by default on Nvidia and AMD
|
||||
if is_nvidia() or is_amd():
|
||||
NUM_STREAMS = 2
|
||||
|
||||
if args.disable_async_offload:
|
||||
NUM_STREAMS = 0
|
||||
|
||||
if NUM_STREAMS > 0:
|
||||
logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS))
|
||||
|
||||
def current_stream(device):
|
||||
if device is None:
|
||||
return None
|
||||
if is_device_cuda(device):
|
||||
return torch.cuda.current_stream()
|
||||
elif is_device_xpu(device):
|
||||
return torch.xpu.current_stream()
|
||||
else:
|
||||
return None
|
||||
|
||||
stream_counters = {}
|
||||
def get_offload_stream(device):
|
||||
stream_counter = stream_counters.get(device, 0)
|
||||
if NUM_STREAMS <= 1:
|
||||
if NUM_STREAMS == 0:
|
||||
return None
|
||||
|
||||
if torch.compiler.is_compiling():
|
||||
return None
|
||||
|
||||
if device in STREAMS:
|
||||
ss = STREAMS[device]
|
||||
s = ss[stream_counter]
|
||||
#Sync the oldest stream in the queue with the current
|
||||
ss[stream_counter].wait_stream(current_stream(device))
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
if is_device_cuda(device):
|
||||
ss[stream_counter].wait_stream(torch.cuda.current_stream())
|
||||
elif is_device_xpu(device):
|
||||
ss[stream_counter].wait_stream(torch.xpu.current_stream())
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
return ss[stream_counter]
|
||||
elif is_device_cuda(device):
|
||||
ss = []
|
||||
for k in range(NUM_STREAMS):
|
||||
ss.append(torch.cuda.Stream(device=device, priority=0))
|
||||
s1 = torch.cuda.Stream(device=device, priority=0)
|
||||
s1.as_context = torch.cuda.stream
|
||||
ss.append(s1)
|
||||
STREAMS[device] = ss
|
||||
s = ss[stream_counter]
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
elif is_device_xpu(device):
|
||||
ss = []
|
||||
for k in range(NUM_STREAMS):
|
||||
ss.append(torch.xpu.Stream(device=device, priority=0))
|
||||
s1 = torch.xpu.Stream(device=device, priority=0)
|
||||
s1.as_context = torch.xpu.stream
|
||||
ss.append(s1)
|
||||
STREAMS[device] = ss
|
||||
s = ss[stream_counter]
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
return None
|
||||
|
||||
def sync_stream(device, stream):
|
||||
if stream is None:
|
||||
if stream is None or current_stream(device) is None:
|
||||
return
|
||||
if is_device_cuda(device):
|
||||
torch.cuda.current_stream().wait_stream(stream)
|
||||
elif is_device_xpu(device):
|
||||
torch.xpu.current_stream().wait_stream(stream)
|
||||
current_stream(device).wait_stream(stream)
|
||||
|
||||
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None):
|
||||
if device is None or weight.device == device:
|
||||
@ -1061,12 +1088,19 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str
|
||||
if dtype is None or weight.dtype == dtype:
|
||||
return weight
|
||||
if stream is not None:
|
||||
with stream:
|
||||
wf_context = stream
|
||||
if hasattr(wf_context, "as_context"):
|
||||
wf_context = wf_context.as_context(stream)
|
||||
with wf_context:
|
||||
return weight.to(dtype=dtype, copy=copy)
|
||||
return weight.to(dtype=dtype, copy=copy)
|
||||
|
||||
|
||||
if stream is not None:
|
||||
with stream:
|
||||
wf_context = stream
|
||||
if hasattr(wf_context, "as_context"):
|
||||
wf_context = wf_context.as_context(stream)
|
||||
with wf_context:
|
||||
r = torch.empty_like(weight, dtype=dtype, device=device)
|
||||
r.copy_(weight, non_blocking=non_blocking)
|
||||
else:
|
||||
@ -1078,6 +1112,99 @@ def cast_to_device(tensor, device, dtype, copy=False):
|
||||
non_blocking = device_supports_non_blocking(device)
|
||||
return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy)
|
||||
|
||||
|
||||
PINNED_MEMORY = {}
|
||||
TOTAL_PINNED_MEMORY = 0
|
||||
MAX_PINNED_MEMORY = -1
|
||||
if not args.disable_pinned_memory:
|
||||
if is_nvidia() or is_amd():
|
||||
if WINDOWS:
|
||||
MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.45 # Windows limit is apparently 50%
|
||||
else:
|
||||
MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.95
|
||||
logging.info("Enabled pinned memory {}".format(MAX_PINNED_MEMORY // (1024 * 1024)))
|
||||
|
||||
PINNING_ALLOWED_TYPES = set(["Parameter", "QuantizedTensor"])
|
||||
|
||||
def discard_cuda_async_error():
|
||||
try:
|
||||
a = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
|
||||
b = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
|
||||
_ = a + b
|
||||
torch.cuda.synchronize()
|
||||
except torch.AcceleratorError:
|
||||
#Dump it! We already know about it from the synchronous return
|
||||
pass
|
||||
|
||||
def pin_memory(tensor):
|
||||
global TOTAL_PINNED_MEMORY
|
||||
if MAX_PINNED_MEMORY <= 0:
|
||||
return False
|
||||
|
||||
if type(tensor).__name__ not in PINNING_ALLOWED_TYPES:
|
||||
return False
|
||||
|
||||
if not is_device_cpu(tensor.device):
|
||||
return False
|
||||
|
||||
if tensor.is_pinned():
|
||||
#NOTE: Cuda does detect when a tensor is already pinned and would
|
||||
#error below, but there are proven cases where this also queues an error
|
||||
#on the GPU async. So dont trust the CUDA API and guard here
|
||||
return False
|
||||
|
||||
if not tensor.is_contiguous():
|
||||
return False
|
||||
|
||||
size = tensor.numel() * tensor.element_size()
|
||||
if (TOTAL_PINNED_MEMORY + size) > MAX_PINNED_MEMORY:
|
||||
return False
|
||||
|
||||
ptr = tensor.data_ptr()
|
||||
if ptr == 0:
|
||||
return False
|
||||
|
||||
if torch.cuda.cudart().cudaHostRegister(ptr, size, 1) == 0:
|
||||
PINNED_MEMORY[ptr] = size
|
||||
TOTAL_PINNED_MEMORY += size
|
||||
return True
|
||||
else:
|
||||
logging.warning("Pin error.")
|
||||
discard_cuda_async_error()
|
||||
|
||||
return False
|
||||
|
||||
def unpin_memory(tensor):
|
||||
global TOTAL_PINNED_MEMORY
|
||||
if MAX_PINNED_MEMORY <= 0:
|
||||
return False
|
||||
|
||||
if not is_device_cpu(tensor.device):
|
||||
return False
|
||||
|
||||
ptr = tensor.data_ptr()
|
||||
size = tensor.numel() * tensor.element_size()
|
||||
|
||||
size_stored = PINNED_MEMORY.get(ptr, None)
|
||||
if size_stored is None:
|
||||
logging.warning("Tried to unpin tensor not pinned by ComfyUI")
|
||||
return False
|
||||
|
||||
if size != size_stored:
|
||||
logging.warning("Size of pinned tensor changed")
|
||||
return False
|
||||
|
||||
if torch.cuda.cudart().cudaHostUnregister(ptr) == 0:
|
||||
TOTAL_PINNED_MEMORY -= PINNED_MEMORY.pop(ptr)
|
||||
if len(PINNED_MEMORY) == 0:
|
||||
TOTAL_PINNED_MEMORY = 0
|
||||
return True
|
||||
else:
|
||||
logging.warning("Unpin error.")
|
||||
discard_cuda_async_error()
|
||||
|
||||
return False
|
||||
|
||||
def sage_attention_enabled():
|
||||
return args.use_sage_attention
|
||||
|
||||
@ -1330,7 +1457,7 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
|
||||
if is_amd():
|
||||
arch = torch.cuda.get_device_properties(device).gcnArchName
|
||||
if any((a in arch) for a in ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"]): # RDNA2 and older don't support bf16
|
||||
if any((a in arch) for a in AMD_RDNA2_AND_OLDER_ARCH): # RDNA2 and older don't support bf16
|
||||
if manual_cast:
|
||||
return True
|
||||
return False
|
||||
@ -1384,6 +1511,20 @@ def extended_fp16_support():
|
||||
|
||||
return True
|
||||
|
||||
LORA_COMPUTE_DTYPES = {}
|
||||
def lora_compute_dtype(device):
|
||||
dtype = LORA_COMPUTE_DTYPES.get(device, None)
|
||||
if dtype is not None:
|
||||
return dtype
|
||||
|
||||
if should_use_fp16(device):
|
||||
dtype = torch.float16
|
||||
else:
|
||||
dtype = torch.float32
|
||||
|
||||
LORA_COMPUTE_DTYPES[device] = dtype
|
||||
return dtype
|
||||
|
||||
def soft_empty_cache(force=False):
|
||||
global cpu_state
|
||||
if cpu_state == CPUState.MPS:
|
||||
|
||||
@ -35,6 +35,7 @@ import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
import comfy.utils
|
||||
from comfy.comfy_types import UnetWrapperFunction
|
||||
from comfy.quant_ops import QuantizedTensor
|
||||
from comfy.patcher_extension import CallbacksMP, PatcherInjection, WrappersMP
|
||||
|
||||
|
||||
@ -123,16 +124,26 @@ def move_weight_functions(m, device):
|
||||
return memory
|
||||
|
||||
class LowVramPatch:
|
||||
def __init__(self, key, patches):
|
||||
def __init__(self, key, patches, convert_func=None, set_func=None):
|
||||
self.key = key
|
||||
self.patches = patches
|
||||
def __call__(self, weight):
|
||||
intermediate_dtype = weight.dtype
|
||||
if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
|
||||
intermediate_dtype = torch.float32
|
||||
return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key))
|
||||
self.convert_func = convert_func # TODO: remove
|
||||
self.set_func = set_func
|
||||
|
||||
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
|
||||
def __call__(self, weight):
|
||||
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=weight.dtype)
|
||||
|
||||
LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR = 2
|
||||
|
||||
def low_vram_patch_estimate_vram(model, key):
|
||||
weight, set_func, convert_func = get_key_weight(model, key)
|
||||
if weight is None:
|
||||
return 0
|
||||
model_dtype = getattr(model, "manual_cast_dtype", torch.float32)
|
||||
if model_dtype is None:
|
||||
model_dtype = weight.dtype
|
||||
|
||||
return weight.numel() * model_dtype.itemsize * LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR
|
||||
|
||||
def get_key_weight(model, key):
|
||||
set_func = None
|
||||
@ -217,13 +228,13 @@ class ModelPatcher:
|
||||
self.object_patches_backup = {}
|
||||
self.weight_wrapper_patches = {}
|
||||
self.model_options = {"transformer_options":{}}
|
||||
self.model_size()
|
||||
self.load_device = load_device
|
||||
self.offload_device = offload_device
|
||||
self.weight_inplace_update = weight_inplace_update
|
||||
self.force_cast_weights = False
|
||||
self.patches_uuid = uuid.uuid4()
|
||||
self.parent = None
|
||||
self.pinned = set()
|
||||
|
||||
self.attachments: dict[str] = {}
|
||||
self.additional_models: dict[str, list[ModelPatcher]] = {}
|
||||
@ -255,12 +266,18 @@ class ModelPatcher:
|
||||
if not hasattr(self.model, 'current_weight_patches_uuid'):
|
||||
self.model.current_weight_patches_uuid = None
|
||||
|
||||
if not hasattr(self.model, 'model_offload_buffer_memory'):
|
||||
self.model.model_offload_buffer_memory = 0
|
||||
|
||||
def model_size(self):
|
||||
if self.size > 0:
|
||||
return self.size
|
||||
self.size = comfy.model_management.module_size(self.model)
|
||||
return self.size
|
||||
|
||||
def get_ram_usage(self):
|
||||
return self.model_size()
|
||||
|
||||
def loaded_size(self):
|
||||
return self.model.model_loaded_weight_memory
|
||||
|
||||
@ -268,7 +285,7 @@ class ModelPatcher:
|
||||
return self.model.lowvram_patch_counter
|
||||
|
||||
def clone(self):
|
||||
n = self.__class__(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
|
||||
n = self.__class__(self.model, self.load_device, self.offload_device, self.model_size(), weight_inplace_update=self.weight_inplace_update)
|
||||
n.patches = {}
|
||||
for k in self.patches:
|
||||
n.patches[k] = self.patches[k][:]
|
||||
@ -280,6 +297,7 @@ class ModelPatcher:
|
||||
n.backup = self.backup
|
||||
n.object_patches_backup = self.object_patches_backup
|
||||
n.parent = self
|
||||
n.pinned = self.pinned
|
||||
|
||||
n.force_cast_weights = self.force_cast_weights
|
||||
|
||||
@ -436,6 +454,22 @@ class ModelPatcher:
|
||||
def set_model_post_input_patch(self, patch):
|
||||
self.set_model_patch(patch, "post_input")
|
||||
|
||||
def set_model_noise_refiner_patch(self, patch):
|
||||
self.set_model_patch(patch, "noise_refiner")
|
||||
|
||||
def set_model_rope_options(self, scale_x, shift_x, scale_y, shift_y, scale_t, shift_t, **kwargs):
|
||||
rope_options = self.model_options["transformer_options"].get("rope_options", {})
|
||||
rope_options["scale_x"] = scale_x
|
||||
rope_options["scale_y"] = scale_y
|
||||
rope_options["scale_t"] = scale_t
|
||||
|
||||
rope_options["shift_x"] = shift_x
|
||||
rope_options["shift_y"] = shift_y
|
||||
rope_options["shift_t"] = shift_t
|
||||
|
||||
self.model_options["transformer_options"]["rope_options"] = rope_options
|
||||
|
||||
|
||||
def add_object_patch(self, name, obj):
|
||||
self.object_patches[name] = obj
|
||||
|
||||
@ -587,10 +621,11 @@ class ModelPatcher:
|
||||
if key not in self.backup:
|
||||
self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update)
|
||||
|
||||
temp_dtype = comfy.model_management.lora_compute_dtype(device_to)
|
||||
if device_to is not None:
|
||||
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
|
||||
temp_weight = comfy.model_management.cast_to_device(weight, device_to, temp_dtype, copy=True)
|
||||
else:
|
||||
temp_weight = weight.to(torch.float32, copy=True)
|
||||
temp_weight = weight.to(temp_dtype, copy=True)
|
||||
if convert_func is not None:
|
||||
temp_weight = convert_func(temp_weight, inplace=True)
|
||||
|
||||
@ -604,6 +639,21 @@ class ModelPatcher:
|
||||
else:
|
||||
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
|
||||
|
||||
def pin_weight_to_device(self, key):
|
||||
weight, set_func, convert_func = get_key_weight(self.model, key)
|
||||
if comfy.model_management.pin_memory(weight):
|
||||
self.pinned.add(key)
|
||||
|
||||
def unpin_weight(self, key):
|
||||
if key in self.pinned:
|
||||
weight, set_func, convert_func = get_key_weight(self.model, key)
|
||||
comfy.model_management.unpin_memory(weight)
|
||||
self.pinned.remove(key)
|
||||
|
||||
def unpin_all_weights(self):
|
||||
for key in list(self.pinned):
|
||||
self.unpin_weight(key)
|
||||
|
||||
def _load_list(self):
|
||||
loading = []
|
||||
for n, m in self.model.named_modules():
|
||||
@ -616,7 +666,22 @@ class ModelPatcher:
|
||||
skip = True # skip random weights in non leaf modules
|
||||
break
|
||||
if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
|
||||
loading.append((comfy.model_management.module_size(m), n, m, params))
|
||||
module_mem = comfy.model_management.module_size(m)
|
||||
module_offload_mem = module_mem
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
def check_module_offload_mem(key):
|
||||
if key in self.patches:
|
||||
return low_vram_patch_estimate_vram(self.model, key)
|
||||
model_dtype = getattr(self.model, "manual_cast_dtype", None)
|
||||
weight, _, _ = get_key_weight(self.model, key)
|
||||
if model_dtype is None or weight is None:
|
||||
return 0
|
||||
if (weight.dtype != model_dtype or isinstance(weight, QuantizedTensor)):
|
||||
return weight.numel() * model_dtype.itemsize
|
||||
return 0
|
||||
module_offload_mem += check_module_offload_mem("{}.weight".format(n))
|
||||
module_offload_mem += check_module_offload_mem("{}.bias".format(n))
|
||||
loading.append((module_offload_mem, module_mem, n, m, params))
|
||||
return loading
|
||||
|
||||
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
|
||||
@ -625,25 +690,30 @@ class ModelPatcher:
|
||||
mem_counter = 0
|
||||
patch_counter = 0
|
||||
lowvram_counter = 0
|
||||
lowvram_mem_counter = 0
|
||||
loading = self._load_list()
|
||||
|
||||
load_completely = []
|
||||
offloaded = []
|
||||
offload_buffer = 0
|
||||
loading.sort(reverse=True)
|
||||
for x in loading:
|
||||
n = x[1]
|
||||
m = x[2]
|
||||
params = x[3]
|
||||
module_mem = x[0]
|
||||
for i, x in enumerate(loading):
|
||||
module_offload_mem, module_mem, n, m, params = x
|
||||
|
||||
lowvram_weight = False
|
||||
|
||||
potential_offload = max(offload_buffer, module_offload_mem + sum([ x1[1] for x1 in loading[i+1:i+1+comfy.model_management.NUM_STREAMS]]))
|
||||
lowvram_fits = mem_counter + module_mem + potential_offload < lowvram_model_memory
|
||||
|
||||
weight_key = "{}.weight".format(n)
|
||||
bias_key = "{}.bias".format(n)
|
||||
|
||||
if not full_load and hasattr(m, "comfy_cast_weights"):
|
||||
if mem_counter + module_mem >= lowvram_model_memory:
|
||||
if not lowvram_fits:
|
||||
offload_buffer = potential_offload
|
||||
lowvram_weight = True
|
||||
lowvram_counter += 1
|
||||
lowvram_mem_counter += module_mem
|
||||
if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed
|
||||
continue
|
||||
|
||||
@ -657,23 +727,28 @@ class ModelPatcher:
|
||||
if force_patch_weights:
|
||||
self.patch_weight_to_device(weight_key)
|
||||
else:
|
||||
m.weight_function = [LowVramPatch(weight_key, self.patches)]
|
||||
_, set_func, convert_func = get_key_weight(self.model, weight_key)
|
||||
m.weight_function = [LowVramPatch(weight_key, self.patches, convert_func, set_func)]
|
||||
patch_counter += 1
|
||||
if bias_key in self.patches:
|
||||
if force_patch_weights:
|
||||
self.patch_weight_to_device(bias_key)
|
||||
else:
|
||||
m.bias_function = [LowVramPatch(bias_key, self.patches)]
|
||||
_, set_func, convert_func = get_key_weight(self.model, bias_key)
|
||||
m.bias_function = [LowVramPatch(bias_key, self.patches, convert_func, set_func)]
|
||||
patch_counter += 1
|
||||
|
||||
cast_weight = True
|
||||
offloaded.append((module_mem, n, m, params))
|
||||
else:
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
wipe_lowvram_weight(m)
|
||||
|
||||
if full_load or mem_counter + module_mem < lowvram_model_memory:
|
||||
if full_load or lowvram_fits:
|
||||
mem_counter += module_mem
|
||||
load_completely.append((module_mem, n, m, params))
|
||||
else:
|
||||
offload_buffer = potential_offload
|
||||
|
||||
if cast_weight and hasattr(m, "comfy_cast_weights"):
|
||||
m.prev_comfy_cast_weights = m.comfy_cast_weights
|
||||
@ -697,7 +772,11 @@ class ModelPatcher:
|
||||
continue
|
||||
|
||||
for param in params:
|
||||
self.patch_weight_to_device("{}.{}".format(n, param), device_to=device_to)
|
||||
key = "{}.{}".format(n, param)
|
||||
self.unpin_weight(key)
|
||||
self.patch_weight_to_device(key, device_to=device_to)
|
||||
if comfy.model_management.is_device_cuda(device_to):
|
||||
torch.cuda.synchronize()
|
||||
|
||||
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
|
||||
m.comfy_patched_weights = True
|
||||
@ -705,11 +784,17 @@ class ModelPatcher:
|
||||
for x in load_completely:
|
||||
x[2].to(device_to)
|
||||
|
||||
for x in offloaded:
|
||||
n = x[1]
|
||||
params = x[3]
|
||||
for param in params:
|
||||
self.pin_weight_to_device("{}.{}".format(n, param))
|
||||
|
||||
if lowvram_counter > 0:
|
||||
logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter))
|
||||
logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter))
|
||||
self.model.model_lowvram = True
|
||||
else:
|
||||
logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
|
||||
logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
|
||||
self.model.model_lowvram = False
|
||||
if full_load:
|
||||
self.model.to(device_to)
|
||||
@ -718,6 +803,7 @@ class ModelPatcher:
|
||||
self.model.lowvram_patch_counter += patch_counter
|
||||
self.model.device = device_to
|
||||
self.model.model_loaded_weight_memory = mem_counter
|
||||
self.model.model_offload_buffer_memory = offload_buffer
|
||||
self.model.current_weight_patches_uuid = self.patches_uuid
|
||||
|
||||
for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD):
|
||||
@ -746,6 +832,7 @@ class ModelPatcher:
|
||||
self.eject_model()
|
||||
if unpatch_weights:
|
||||
self.unpatch_hooks()
|
||||
self.unpin_all_weights()
|
||||
if self.model.model_lowvram:
|
||||
for m in self.model.modules():
|
||||
move_weight_functions(m, device_to)
|
||||
@ -770,6 +857,7 @@ class ModelPatcher:
|
||||
self.model.to(device_to)
|
||||
self.model.device = device_to
|
||||
self.model.model_loaded_weight_memory = 0
|
||||
self.model.model_offload_buffer_memory = 0
|
||||
|
||||
for m in self.model.modules():
|
||||
if hasattr(m, "comfy_patched_weights"):
|
||||
@ -781,20 +869,25 @@ class ModelPatcher:
|
||||
|
||||
self.object_patches_backup.clear()
|
||||
|
||||
def partially_unload(self, device_to, memory_to_free=0):
|
||||
def partially_unload(self, device_to, memory_to_free=0, force_patch_weights=False):
|
||||
with self.use_ejected():
|
||||
hooks_unpatched = False
|
||||
memory_freed = 0
|
||||
patch_counter = 0
|
||||
unload_list = self._load_list()
|
||||
unload_list.sort()
|
||||
|
||||
offload_buffer = self.model.model_offload_buffer_memory
|
||||
if len(unload_list) > 0:
|
||||
NS = comfy.model_management.NUM_STREAMS
|
||||
offload_weight_factor = [ min(offload_buffer / (NS + 1), unload_list[0][1]) ] * NS
|
||||
|
||||
for unload in unload_list:
|
||||
if memory_to_free < memory_freed:
|
||||
if memory_to_free + offload_buffer - self.model.model_offload_buffer_memory < memory_freed:
|
||||
break
|
||||
module_mem = unload[0]
|
||||
n = unload[1]
|
||||
m = unload[2]
|
||||
params = unload[3]
|
||||
module_offload_mem, module_mem, n, m, params = unload
|
||||
|
||||
potential_offload = module_offload_mem + sum(offload_weight_factor)
|
||||
|
||||
lowvram_possible = hasattr(m, "comfy_cast_weights")
|
||||
if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
|
||||
@ -825,23 +918,40 @@ class ModelPatcher:
|
||||
module_mem += move_weight_functions(m, device_to)
|
||||
if lowvram_possible:
|
||||
if weight_key in self.patches:
|
||||
m.weight_function.append(LowVramPatch(weight_key, self.patches))
|
||||
patch_counter += 1
|
||||
if force_patch_weights:
|
||||
self.patch_weight_to_device(weight_key)
|
||||
else:
|
||||
_, set_func, convert_func = get_key_weight(self.model, weight_key)
|
||||
m.weight_function.append(LowVramPatch(weight_key, self.patches, convert_func, set_func))
|
||||
patch_counter += 1
|
||||
if bias_key in self.patches:
|
||||
m.bias_function.append(LowVramPatch(bias_key, self.patches))
|
||||
patch_counter += 1
|
||||
if force_patch_weights:
|
||||
self.patch_weight_to_device(bias_key)
|
||||
else:
|
||||
_, set_func, convert_func = get_key_weight(self.model, bias_key)
|
||||
m.bias_function.append(LowVramPatch(bias_key, self.patches, convert_func, set_func))
|
||||
patch_counter += 1
|
||||
cast_weight = True
|
||||
|
||||
if cast_weight:
|
||||
if cast_weight and hasattr(m, "comfy_cast_weights"):
|
||||
m.prev_comfy_cast_weights = m.comfy_cast_weights
|
||||
m.comfy_cast_weights = True
|
||||
m.comfy_patched_weights = False
|
||||
memory_freed += module_mem
|
||||
offload_buffer = max(offload_buffer, potential_offload)
|
||||
offload_weight_factor.append(module_mem)
|
||||
offload_weight_factor.pop(0)
|
||||
logging.debug("freed {}".format(n))
|
||||
|
||||
for param in params:
|
||||
self.pin_weight_to_device("{}.{}".format(n, param))
|
||||
|
||||
|
||||
self.model.model_lowvram = True
|
||||
self.model.lowvram_patch_counter += patch_counter
|
||||
self.model.model_loaded_weight_memory -= memory_freed
|
||||
self.model.model_offload_buffer_memory = offload_buffer
|
||||
logging.info("Unloaded partially: {:.2f} MB freed, {:.2f} MB remains loaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(memory_freed / (1024 * 1024), self.model.model_loaded_weight_memory / (1024 * 1024), offload_buffer / (1024 * 1024), self.model.lowvram_patch_counter))
|
||||
return memory_freed
|
||||
|
||||
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
|
||||
@ -854,6 +964,9 @@ class ModelPatcher:
|
||||
extra_memory += (used - self.model.model_loaded_weight_memory)
|
||||
|
||||
self.patch_model(load_weights=False)
|
||||
if extra_memory < 0 and not unpatch_weights:
|
||||
self.partially_unload(self.offload_device, -extra_memory, force_patch_weights=force_patch_weights)
|
||||
return 0
|
||||
full_load = False
|
||||
if self.model.model_lowvram == False and self.model.model_loaded_weight_memory > 0:
|
||||
self.apply_hooks(self.forced_hooks, force_apply=True)
|
||||
@ -1241,5 +1354,6 @@ class ModelPatcher:
|
||||
self.clear_cached_hook_weights()
|
||||
|
||||
def __del__(self):
|
||||
self.unpin_all_weights()
|
||||
self.detach(unpatch_all=False)
|
||||
|
||||
|
||||
@ -21,17 +21,23 @@ def rescale_zero_terminal_snr_sigmas(sigmas):
|
||||
alphas_bar[-1] = 4.8973451890853435e-08
|
||||
return ((1 - alphas_bar) / alphas_bar) ** 0.5
|
||||
|
||||
def reshape_sigma(sigma, noise_dim):
|
||||
if sigma.nelement() == 1:
|
||||
return sigma.view(())
|
||||
else:
|
||||
return sigma.view(sigma.shape[:1] + (1,) * (noise_dim - 1))
|
||||
|
||||
class EPS:
|
||||
def calculate_input(self, sigma, noise):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, noise.ndim)
|
||||
return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, model_output.ndim)
|
||||
return model_input - model_output * sigma
|
||||
|
||||
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, noise.ndim)
|
||||
if max_denoise:
|
||||
noise = noise * torch.sqrt(1.0 + sigma ** 2.0)
|
||||
else:
|
||||
@ -45,12 +51,12 @@ class EPS:
|
||||
|
||||
class V_PREDICTION(EPS):
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, model_output.ndim)
|
||||
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
|
||||
class EDM(V_PREDICTION):
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, model_output.ndim)
|
||||
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
|
||||
class CONST:
|
||||
@ -58,15 +64,15 @@ class CONST:
|
||||
return noise
|
||||
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, model_output.ndim)
|
||||
return model_input - model_output * sigma
|
||||
|
||||
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, noise.ndim)
|
||||
return sigma * noise + (1.0 - sigma) * latent_image
|
||||
|
||||
def inverse_noise_scaling(self, sigma, latent):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (latent.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, latent.ndim)
|
||||
return latent / (1.0 - sigma)
|
||||
|
||||
class X0(EPS):
|
||||
@ -80,16 +86,16 @@ class IMG_TO_IMG(X0):
|
||||
class COSMOS_RFLOW:
|
||||
def calculate_input(self, sigma, noise):
|
||||
sigma = (sigma / (sigma + 1))
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, noise.ndim)
|
||||
return noise * (1.0 - sigma)
|
||||
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = (sigma / (sigma + 1))
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, model_output.ndim)
|
||||
return model_input * (1.0 - sigma) - model_output * sigma
|
||||
|
||||
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||
sigma = reshape_sigma(sigma, noise.ndim)
|
||||
noise = noise * sigma
|
||||
noise += latent_image
|
||||
return noise
|
||||
|
||||
91
comfy/nested_tensor.py
Normal file
91
comfy/nested_tensor.py
Normal file
@ -0,0 +1,91 @@
|
||||
import torch
|
||||
|
||||
class NestedTensor:
|
||||
def __init__(self, tensors):
|
||||
self.tensors = list(tensors)
|
||||
self.is_nested = True
|
||||
|
||||
def _copy(self):
|
||||
return NestedTensor(self.tensors)
|
||||
|
||||
def apply_operation(self, other, operation):
|
||||
o = self._copy()
|
||||
if isinstance(other, NestedTensor):
|
||||
for i, t in enumerate(o.tensors):
|
||||
o.tensors[i] = operation(t, other.tensors[i])
|
||||
else:
|
||||
for i, t in enumerate(o.tensors):
|
||||
o.tensors[i] = operation(t, other)
|
||||
return o
|
||||
|
||||
def __add__(self, b):
|
||||
return self.apply_operation(b, lambda x, y: x + y)
|
||||
|
||||
def __sub__(self, b):
|
||||
return self.apply_operation(b, lambda x, y: x - y)
|
||||
|
||||
def __mul__(self, b):
|
||||
return self.apply_operation(b, lambda x, y: x * y)
|
||||
|
||||
# def __itruediv__(self, b):
|
||||
# return self.apply_operation(b, lambda x, y: x / y)
|
||||
|
||||
def __truediv__(self, b):
|
||||
return self.apply_operation(b, lambda x, y: x / y)
|
||||
|
||||
def __getitem__(self, *args, **kwargs):
|
||||
return self.apply_operation(None, lambda x, y: x.__getitem__(*args, **kwargs))
|
||||
|
||||
def unbind(self):
|
||||
return self.tensors
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
o = self._copy()
|
||||
for i, t in enumerate(o.tensors):
|
||||
o.tensors[i] = t.to(*args, **kwargs)
|
||||
return o
|
||||
|
||||
def new_ones(self, *args, **kwargs):
|
||||
return self.tensors[0].new_ones(*args, **kwargs)
|
||||
|
||||
def float(self):
|
||||
return self.to(dtype=torch.float)
|
||||
|
||||
def chunk(self, *args, **kwargs):
|
||||
return self.apply_operation(None, lambda x, y: x.chunk(*args, **kwargs))
|
||||
|
||||
def size(self):
|
||||
return self.tensors[0].size()
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
return self.tensors[0].shape
|
||||
|
||||
@property
|
||||
def ndim(self):
|
||||
dims = 0
|
||||
for t in self.tensors:
|
||||
dims = max(t.ndim, dims)
|
||||
return dims
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self.tensors[0].device
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self.tensors[0].dtype
|
||||
|
||||
@property
|
||||
def layout(self):
|
||||
return self.tensors[0].layout
|
||||
|
||||
|
||||
def cat_nested(tensors, *args, **kwargs):
|
||||
cated_tensors = []
|
||||
for i in range(len(tensors[0].tensors)):
|
||||
tens = []
|
||||
for j in range(len(tensors)):
|
||||
tens.append(tensors[j].tensors[i])
|
||||
cated_tensors.append(torch.cat(tens, *args, **kwargs))
|
||||
return NestedTensor(cated_tensors)
|
||||
479
comfy/ops.py
479
comfy/ops.py
@ -22,15 +22,20 @@ import comfy.model_management
|
||||
from comfy.cli_args import args, PerformanceFeature
|
||||
import comfy.float
|
||||
import comfy.rmsnorm
|
||||
import contextlib
|
||||
import json
|
||||
|
||||
def run_every_op():
|
||||
if torch.compiler.is_compiling():
|
||||
return
|
||||
|
||||
comfy.model_management.throw_exception_if_processing_interrupted()
|
||||
|
||||
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
|
||||
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
|
||||
|
||||
|
||||
try:
|
||||
if torch.cuda.is_available():
|
||||
if torch.cuda.is_available() and comfy.model_management.WINDOWS:
|
||||
from torch.nn.attention import SDPBackend, sdpa_kernel
|
||||
import inspect
|
||||
if "set_priority" in inspect.signature(sdpa_kernel).parameters:
|
||||
@ -50,49 +55,92 @@ try:
|
||||
except (ModuleNotFoundError, TypeError):
|
||||
logging.warning("Could not set sdpa backend priority.")
|
||||
|
||||
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
|
||||
NVIDIA_MEMORY_CONV_BUG_WORKAROUND = False
|
||||
try:
|
||||
if comfy.model_management.is_nvidia():
|
||||
cudnn_version = torch.backends.cudnn.version()
|
||||
if (cudnn_version >= 91002 and cudnn_version < 91500) and comfy.model_management.torch_version_numeric >= (2, 9) and comfy.model_management.torch_version_numeric <= (2, 10):
|
||||
#TODO: change upper bound version once it's fixed'
|
||||
NVIDIA_MEMORY_CONV_BUG_WORKAROUND = True
|
||||
logging.info("working around nvidia conv3d memory bug.")
|
||||
except:
|
||||
pass
|
||||
|
||||
if torch.cuda.is_available() and torch.backends.cudnn.is_available() and PerformanceFeature.AutoTune in args.fast:
|
||||
torch.backends.cudnn.benchmark = True
|
||||
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
|
||||
|
||||
def cast_to_input(weight, input, non_blocking=False, copy=True):
|
||||
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
|
||||
|
||||
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
|
||||
|
||||
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False):
|
||||
# NOTE: offloadable=False is a a legacy and if you are a custom node author reading this please pass
|
||||
# offloadable=True and call uncast_bias_weight() after your last usage of the weight/bias. This
|
||||
# will add async-offload support to your cast and improve performance.
|
||||
if input is not None:
|
||||
if dtype is None:
|
||||
dtype = input.dtype
|
||||
if isinstance(input, QuantizedTensor):
|
||||
dtype = input._layout_params["orig_dtype"]
|
||||
else:
|
||||
dtype = input.dtype
|
||||
if bias_dtype is None:
|
||||
bias_dtype = dtype
|
||||
if device is None:
|
||||
device = input.device
|
||||
|
||||
offload_stream = comfy.model_management.get_offload_stream(device)
|
||||
if offload_stream is not None:
|
||||
wf_context = offload_stream
|
||||
if offloadable and (device != s.weight.device or
|
||||
(s.bias is not None and device != s.bias.device)):
|
||||
offload_stream = comfy.model_management.get_offload_stream(device)
|
||||
else:
|
||||
wf_context = contextlib.nullcontext()
|
||||
offload_stream = None
|
||||
|
||||
non_blocking = comfy.model_management.device_supports_non_blocking(device)
|
||||
|
||||
weight_has_function = len(s.weight_function) > 0
|
||||
bias_has_function = len(s.bias_function) > 0
|
||||
|
||||
weight = comfy.model_management.cast_to(s.weight, None, device, non_blocking=non_blocking, copy=weight_has_function, stream=offload_stream)
|
||||
|
||||
bias = None
|
||||
non_blocking = comfy.model_management.device_supports_non_blocking(device)
|
||||
if s.bias is not None:
|
||||
has_function = len(s.bias_function) > 0
|
||||
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
|
||||
|
||||
if has_function:
|
||||
with wf_context:
|
||||
for f in s.bias_function:
|
||||
bias = f(bias)
|
||||
|
||||
has_function = len(s.weight_function) > 0
|
||||
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
|
||||
if has_function:
|
||||
with wf_context:
|
||||
for f in s.weight_function:
|
||||
weight = f(weight)
|
||||
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream)
|
||||
|
||||
comfy.model_management.sync_stream(device, offload_stream)
|
||||
return weight, bias
|
||||
|
||||
bias_a = bias
|
||||
weight_a = weight
|
||||
|
||||
if s.bias is not None:
|
||||
for f in s.bias_function:
|
||||
bias = f(bias)
|
||||
|
||||
if weight_has_function or weight.dtype != dtype:
|
||||
weight = weight.to(dtype=dtype)
|
||||
if isinstance(weight, QuantizedTensor):
|
||||
weight = weight.dequantize()
|
||||
for f in s.weight_function:
|
||||
weight = f(weight)
|
||||
|
||||
if offloadable:
|
||||
return weight, bias, (offload_stream, weight_a, bias_a)
|
||||
else:
|
||||
#Legacy function signature
|
||||
return weight, bias
|
||||
|
||||
|
||||
def uncast_bias_weight(s, weight, bias, offload_stream):
|
||||
if offload_stream is None:
|
||||
return
|
||||
os, weight_a, bias_a = offload_stream
|
||||
if os is None:
|
||||
return
|
||||
if weight_a is not None:
|
||||
device = weight_a.device
|
||||
else:
|
||||
if bias_a is None:
|
||||
return
|
||||
device = bias_a.device
|
||||
os.wait_stream(comfy.model_management.current_stream(device))
|
||||
|
||||
|
||||
class CastWeightBiasOp:
|
||||
comfy_cast_weights = False
|
||||
@ -105,10 +153,13 @@ class disable_weight_init:
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = torch.nn.functional.linear(input, weight, bias)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -119,10 +170,13 @@ class disable_weight_init:
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = self._conv_forward(input, weight, bias)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -133,10 +187,13 @@ class disable_weight_init:
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = self._conv_forward(input, weight, bias)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -146,11 +203,23 @@ class disable_weight_init:
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def _conv_forward(self, input, weight, bias, *args, **kwargs):
|
||||
if NVIDIA_MEMORY_CONV_BUG_WORKAROUND and weight.dtype in (torch.float16, torch.bfloat16):
|
||||
out = torch.cudnn_convolution(input, weight, self.padding, self.stride, self.dilation, self.groups, benchmark=False, deterministic=False, allow_tf32=True)
|
||||
if bias is not None:
|
||||
out += bias.reshape((1, -1) + (1,) * (out.ndim - 2))
|
||||
return out
|
||||
else:
|
||||
return super()._conv_forward(input, weight, bias, *args, **kwargs)
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = self._conv_forward(input, weight, bias)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -161,10 +230,13 @@ class disable_weight_init:
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -176,13 +248,17 @@ class disable_weight_init:
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
if self.weight is not None:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
else:
|
||||
weight = None
|
||||
bias = None
|
||||
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
|
||||
offload_stream = None
|
||||
x = torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -195,13 +271,18 @@ class disable_weight_init:
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
if self.weight is not None:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
else:
|
||||
weight = None
|
||||
return comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
|
||||
# return torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
|
||||
bias = None
|
||||
offload_stream = None
|
||||
x = comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
|
||||
# x = torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -217,12 +298,15 @@ class disable_weight_init:
|
||||
input, output_size, self.stride, self.padding, self.kernel_size,
|
||||
num_spatial_dims, self.dilation)
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.conv_transpose2d(
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = torch.nn.functional.conv_transpose2d(
|
||||
input, weight, bias, self.stride, self.padding,
|
||||
output_padding, self.groups, self.dilation)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -238,12 +322,15 @@ class disable_weight_init:
|
||||
input, output_size, self.stride, self.padding, self.kernel_size,
|
||||
num_spatial_dims, self.dilation)
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.conv_transpose1d(
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = torch.nn.functional.conv_transpose1d(
|
||||
input, weight, bias, self.stride, self.padding,
|
||||
output_padding, self.groups, self.dilation)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -258,10 +345,14 @@ class disable_weight_init:
|
||||
output_dtype = out_dtype
|
||||
if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16:
|
||||
out_dtype = None
|
||||
weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype)
|
||||
return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
|
||||
weight, bias, offload_stream = cast_bias_weight(self, device=input.device, dtype=out_dtype, offloadable=True)
|
||||
x = torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
run_every_op()
|
||||
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
@ -312,48 +403,33 @@ class manual_cast(disable_weight_init):
|
||||
|
||||
|
||||
def fp8_linear(self, input):
|
||||
"""
|
||||
Legacy FP8 linear function for backward compatibility.
|
||||
Uses QuantizedTensor subclass for dispatch.
|
||||
"""
|
||||
dtype = self.weight.dtype
|
||||
if dtype not in [torch.float8_e4m3fn]:
|
||||
return None
|
||||
|
||||
tensor_2d = False
|
||||
if len(input.shape) == 2:
|
||||
tensor_2d = True
|
||||
input = input.unsqueeze(1)
|
||||
|
||||
input_shape = input.shape
|
||||
input_dtype = input.dtype
|
||||
if len(input.shape) == 3:
|
||||
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype)
|
||||
w = w.t()
|
||||
|
||||
scale_weight = self.scale_weight
|
||||
scale_input = self.scale_input
|
||||
if scale_weight is None:
|
||||
scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
|
||||
else:
|
||||
scale_weight = scale_weight.to(input.device)
|
||||
if input.ndim == 3 or input.ndim == 2:
|
||||
w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True)
|
||||
scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
|
||||
|
||||
if scale_input is None:
|
||||
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
|
||||
input = torch.clamp(input, min=-448, max=448, out=input)
|
||||
input = input.reshape(-1, input_shape[2]).to(dtype).contiguous()
|
||||
else:
|
||||
scale_input = scale_input.to(input.device)
|
||||
input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype).contiguous()
|
||||
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
|
||||
input = torch.clamp(input, min=-448, max=448, out=input)
|
||||
layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype}
|
||||
quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight)
|
||||
|
||||
if bias is not None:
|
||||
o = torch._scaled_mm(input, w, out_dtype=input_dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
|
||||
else:
|
||||
o = torch._scaled_mm(input, w, out_dtype=input_dtype, scale_a=scale_input, scale_b=scale_weight)
|
||||
# Wrap weight in QuantizedTensor - this enables unified dispatch
|
||||
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
|
||||
layout_params_weight = {'scale': scale_weight, 'orig_dtype': input_dtype}
|
||||
quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight)
|
||||
o = torch.nn.functional.linear(quantized_input, quantized_weight, bias)
|
||||
|
||||
if isinstance(o, tuple):
|
||||
o = o[0]
|
||||
|
||||
if tensor_2d:
|
||||
return o.reshape(input_shape[0], -1)
|
||||
|
||||
return o.reshape((-1, input_shape[1], self.weight.shape[0]))
|
||||
uncast_bias_weight(self, w, bias, offload_stream)
|
||||
return o
|
||||
|
||||
return None
|
||||
|
||||
@ -365,7 +441,7 @@ class fp8_ops(manual_cast):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
if not self.training:
|
||||
if len(self.weight_function) == 0 and len(self.bias_function) == 0:
|
||||
try:
|
||||
out = fp8_linear(self, input)
|
||||
if out is not None:
|
||||
@ -373,57 +449,10 @@ class fp8_ops(manual_cast):
|
||||
except Exception as e:
|
||||
logging.info("Exception during fp8 op: {}".format(e))
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
|
||||
logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input))
|
||||
class scaled_fp8_op(manual_cast):
|
||||
class Linear(manual_cast.Linear):
|
||||
def __init__(self, *args, **kwargs):
|
||||
if override_dtype is not None:
|
||||
kwargs['dtype'] = override_dtype
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def reset_parameters(self):
|
||||
if not hasattr(self, 'scale_weight'):
|
||||
self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
|
||||
|
||||
if not scale_input:
|
||||
self.scale_input = None
|
||||
|
||||
if not hasattr(self, 'scale_input'):
|
||||
self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
if fp8_matrix_mult:
|
||||
out = fp8_linear(self, input)
|
||||
if out is not None:
|
||||
return out
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
|
||||
if weight.numel() < input.numel(): #TODO: optimize
|
||||
return torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
|
||||
else:
|
||||
return torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
|
||||
|
||||
def convert_weight(self, weight, inplace=False, **kwargs):
|
||||
if inplace:
|
||||
weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype)
|
||||
return weight
|
||||
else:
|
||||
return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype)
|
||||
|
||||
def set_weight(self, weight, inplace_update=False, seed=None, **kwargs):
|
||||
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
|
||||
if inplace_update:
|
||||
self.weight.data.copy_(weight)
|
||||
else:
|
||||
self.weight = torch.nn.Parameter(weight, requires_grad=False)
|
||||
|
||||
return scaled_fp8_op
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = torch.nn.functional.linear(input, weight, bias)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
CUBLAS_IS_AVAILABLE = False
|
||||
try:
|
||||
@ -444,10 +473,186 @@ if CUBLAS_IS_AVAILABLE:
|
||||
def forward(self, *args, **kwargs):
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
|
||||
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
|
||||
if scaled_fp8 is not None:
|
||||
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8)
|
||||
|
||||
# ==============================================================================
|
||||
# Mixed Precision Operations
|
||||
# ==============================================================================
|
||||
from .quant_ops import QuantizedTensor, QUANT_ALGOS
|
||||
|
||||
|
||||
def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False):
|
||||
class MixedPrecisionOps(manual_cast):
|
||||
_quant_config = quant_config
|
||||
_compute_dtype = compute_dtype
|
||||
_full_precision_mm = full_precision_mm
|
||||
|
||||
class Linear(torch.nn.Module, CastWeightBiasOp):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
out_features: int,
|
||||
bias: bool = True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
if dtype is None:
|
||||
dtype = MixedPrecisionOps._compute_dtype
|
||||
|
||||
self.factory_kwargs = {"device": device, "dtype": dtype}
|
||||
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
self._has_bias = bias
|
||||
|
||||
self.tensor_class = None
|
||||
self._full_precision_mm = MixedPrecisionOps._full_precision_mm
|
||||
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
|
||||
strict, missing_keys, unexpected_keys, error_msgs):
|
||||
|
||||
device = self.factory_kwargs["device"]
|
||||
layer_name = prefix.rstrip('.')
|
||||
weight_key = f"{prefix}weight"
|
||||
weight = state_dict.pop(weight_key, None)
|
||||
if weight is None:
|
||||
raise ValueError(f"Missing weight for layer {layer_name}")
|
||||
|
||||
manually_loaded_keys = [weight_key]
|
||||
|
||||
layer_conf = state_dict.pop(f"{prefix}comfy_quant", None)
|
||||
if layer_conf is not None:
|
||||
layer_conf = json.loads(layer_conf.numpy().tobytes())
|
||||
|
||||
if layer_conf is None:
|
||||
dtype = self.factory_kwargs["dtype"]
|
||||
self.weight = torch.nn.Parameter(weight.to(device=device, dtype=dtype), requires_grad=False)
|
||||
if dtype != MixedPrecisionOps._compute_dtype:
|
||||
self.comfy_cast_weights = True
|
||||
if self._has_bias:
|
||||
self.bias = torch.nn.Parameter(torch.empty(self.out_features, device=device, dtype=dtype))
|
||||
else:
|
||||
self.register_parameter("bias", None)
|
||||
else:
|
||||
self.quant_format = layer_conf.get("format", None)
|
||||
if not self._full_precision_mm:
|
||||
self._full_precision_mm = layer_conf.get("full_precision_matrix_mult", False)
|
||||
|
||||
if self.quant_format is None:
|
||||
raise ValueError(f"Unknown quantization format for layer {layer_name}")
|
||||
|
||||
qconfig = QUANT_ALGOS[self.quant_format]
|
||||
self.layout_type = qconfig["comfy_tensor_layout"]
|
||||
|
||||
weight_scale_key = f"{prefix}weight_scale"
|
||||
scale = state_dict.pop(weight_scale_key, None)
|
||||
if scale is not None:
|
||||
scale = scale.to(device)
|
||||
layout_params = {
|
||||
'scale': scale,
|
||||
'orig_dtype': MixedPrecisionOps._compute_dtype,
|
||||
'block_size': qconfig.get("group_size", None),
|
||||
}
|
||||
|
||||
if scale is not None:
|
||||
manually_loaded_keys.append(weight_scale_key)
|
||||
|
||||
self.weight = torch.nn.Parameter(
|
||||
QuantizedTensor(weight.to(device=device, dtype=qconfig.get("storage_t", None)), self.layout_type, layout_params),
|
||||
requires_grad=False
|
||||
)
|
||||
|
||||
if self._has_bias:
|
||||
self.bias = torch.nn.Parameter(torch.empty(self.out_features, device=device, dtype=MixedPrecisionOps._compute_dtype))
|
||||
else:
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
for param_name in qconfig["parameters"]:
|
||||
param_key = f"{prefix}{param_name}"
|
||||
_v = state_dict.pop(param_key, None)
|
||||
if _v is None:
|
||||
continue
|
||||
self.register_parameter(param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False))
|
||||
manually_loaded_keys.append(param_key)
|
||||
|
||||
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
||||
|
||||
for key in manually_loaded_keys:
|
||||
if key in missing_keys:
|
||||
missing_keys.remove(key)
|
||||
|
||||
def state_dict(self, *args, destination=None, prefix="", **kwargs):
|
||||
sd = super().state_dict(*args, destination=destination, prefix=prefix, **kwargs)
|
||||
if isinstance(self.weight, QuantizedTensor):
|
||||
sd["{}weight_scale".format(prefix)] = self.weight._layout_params['scale']
|
||||
quant_conf = {"format": self.quant_format}
|
||||
if self._full_precision_mm:
|
||||
quant_conf["full_precision_matrix_mult"] = True
|
||||
sd["{}comfy_quant".format(prefix)] = torch.tensor(list(json.dumps(quant_conf).encode('utf-8')), dtype=torch.uint8)
|
||||
return sd
|
||||
|
||||
def _forward(self, input, weight, bias):
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
||||
x = self._forward(input, weight, bias)
|
||||
uncast_bias_weight(self, weight, bias, offload_stream)
|
||||
return x
|
||||
|
||||
def forward(self, input, *args, **kwargs):
|
||||
run_every_op()
|
||||
|
||||
if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(input, *args, **kwargs)
|
||||
if (getattr(self, 'layout_type', None) is not None and
|
||||
not isinstance(input, QuantizedTensor)):
|
||||
input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None), dtype=self.weight.dtype)
|
||||
return self._forward(input, self.weight, self.bias)
|
||||
|
||||
def convert_weight(self, weight, inplace=False, **kwargs):
|
||||
if isinstance(weight, QuantizedTensor):
|
||||
return weight.dequantize()
|
||||
else:
|
||||
return weight
|
||||
|
||||
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
|
||||
if getattr(self, 'layout_type', None) is not None:
|
||||
weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", dtype=self.weight.dtype, stochastic_rounding=seed, inplace_ops=True)
|
||||
else:
|
||||
weight = weight.to(self.weight.dtype)
|
||||
if return_weight:
|
||||
return weight
|
||||
|
||||
assert inplace_update is False # TODO: eventually remove the inplace_update stuff
|
||||
self.weight = torch.nn.Parameter(weight, requires_grad=False)
|
||||
|
||||
def _apply(self, fn, recurse=True): # This is to get torch.compile + moving weights to another device working
|
||||
if recurse:
|
||||
for module in self.children():
|
||||
module._apply(fn)
|
||||
|
||||
for key, param in self._parameters.items():
|
||||
if param is None:
|
||||
continue
|
||||
self.register_parameter(key, torch.nn.Parameter(fn(param), requires_grad=False))
|
||||
for key, buf in self._buffers.items():
|
||||
if buf is not None:
|
||||
self._buffers[key] = fn(buf)
|
||||
return self
|
||||
|
||||
return MixedPrecisionOps
|
||||
|
||||
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, model_config=None):
|
||||
fp8_compute = comfy.model_management.supports_fp8_compute(load_device) # TODO: if we support more ops this needs to be more granular
|
||||
|
||||
if model_config and hasattr(model_config, 'quant_config') and model_config.quant_config:
|
||||
logging.info("Using mixed precision operations")
|
||||
return mixed_precision_ops(model_config.quant_config, compute_dtype, full_precision_mm=not fp8_compute)
|
||||
|
||||
if (
|
||||
fp8_compute and
|
||||
|
||||
@ -150,7 +150,7 @@ def merge_nested_dicts(dict1: dict, dict2: dict, copy_dict1=True):
|
||||
for key, value in dict2.items():
|
||||
if isinstance(value, dict):
|
||||
curr_value = merged_dict.setdefault(key, {})
|
||||
merged_dict[key] = merge_nested_dicts(value, curr_value)
|
||||
merged_dict[key] = merge_nested_dicts(curr_value, value)
|
||||
elif isinstance(value, list):
|
||||
merged_dict.setdefault(key, []).extend(value)
|
||||
else:
|
||||
|
||||
580
comfy/quant_ops.py
Normal file
580
comfy/quant_ops.py
Normal file
@ -0,0 +1,580 @@
|
||||
import torch
|
||||
import logging
|
||||
from typing import Tuple, Dict
|
||||
import comfy.float
|
||||
|
||||
_LAYOUT_REGISTRY = {}
|
||||
_GENERIC_UTILS = {}
|
||||
|
||||
|
||||
def register_layout_op(torch_op, layout_type):
|
||||
"""
|
||||
Decorator to register a layout-specific operation handler.
|
||||
Args:
|
||||
torch_op: PyTorch operation (e.g., torch.ops.aten.linear.default)
|
||||
layout_type: Layout class (e.g., TensorCoreFP8Layout)
|
||||
Example:
|
||||
@register_layout_op(torch.ops.aten.linear.default, TensorCoreFP8Layout)
|
||||
def fp8_linear(func, args, kwargs):
|
||||
# FP8-specific linear implementation
|
||||
...
|
||||
"""
|
||||
def decorator(handler_func):
|
||||
if torch_op not in _LAYOUT_REGISTRY:
|
||||
_LAYOUT_REGISTRY[torch_op] = {}
|
||||
_LAYOUT_REGISTRY[torch_op][layout_type] = handler_func
|
||||
return handler_func
|
||||
return decorator
|
||||
|
||||
|
||||
def register_generic_util(torch_op):
|
||||
"""
|
||||
Decorator to register a generic utility that works for all layouts.
|
||||
Args:
|
||||
torch_op: PyTorch operation (e.g., torch.ops.aten.detach.default)
|
||||
|
||||
Example:
|
||||
@register_generic_util(torch.ops.aten.detach.default)
|
||||
def generic_detach(func, args, kwargs):
|
||||
# Works for any layout
|
||||
...
|
||||
"""
|
||||
def decorator(handler_func):
|
||||
_GENERIC_UTILS[torch_op] = handler_func
|
||||
return handler_func
|
||||
return decorator
|
||||
|
||||
|
||||
def _get_layout_from_args(args):
|
||||
for arg in args:
|
||||
if isinstance(arg, QuantizedTensor):
|
||||
return arg._layout_type
|
||||
elif isinstance(arg, (list, tuple)):
|
||||
for item in arg:
|
||||
if isinstance(item, QuantizedTensor):
|
||||
return item._layout_type
|
||||
return None
|
||||
|
||||
|
||||
def _move_layout_params_to_device(params, device):
|
||||
new_params = {}
|
||||
for k, v in params.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
new_params[k] = v.to(device=device)
|
||||
else:
|
||||
new_params[k] = v
|
||||
return new_params
|
||||
|
||||
|
||||
def _copy_layout_params(params):
|
||||
new_params = {}
|
||||
for k, v in params.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
new_params[k] = v.clone()
|
||||
else:
|
||||
new_params[k] = v
|
||||
return new_params
|
||||
|
||||
def _copy_layout_params_inplace(src, dst, non_blocking=False):
|
||||
for k, v in src.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
dst[k].copy_(v, non_blocking=non_blocking)
|
||||
else:
|
||||
dst[k] = v
|
||||
|
||||
class QuantizedLayout:
|
||||
"""
|
||||
Base class for quantization layouts.
|
||||
|
||||
A layout encapsulates the format-specific logic for quantization/dequantization
|
||||
and provides a uniform interface for extracting raw tensors needed for computation.
|
||||
|
||||
New quantization formats should subclass this and implement the required methods.
|
||||
"""
|
||||
@classmethod
|
||||
def quantize(cls, tensor, **kwargs) -> Tuple[torch.Tensor, Dict]:
|
||||
raise NotImplementedError(f"{cls.__name__} must implement quantize()")
|
||||
|
||||
@staticmethod
|
||||
def dequantize(qdata, **layout_params) -> torch.Tensor:
|
||||
raise NotImplementedError("TensorLayout must implement dequantize()")
|
||||
|
||||
@classmethod
|
||||
def get_plain_tensors(cls, qtensor) -> torch.Tensor:
|
||||
raise NotImplementedError(f"{cls.__name__} must implement get_plain_tensors()")
|
||||
|
||||
|
||||
class QuantizedTensor(torch.Tensor):
|
||||
"""
|
||||
Universal quantized tensor that works with any layout.
|
||||
|
||||
This tensor subclass uses a pluggable layout system to support multiple
|
||||
quantization formats (FP8, INT4, INT8, etc.) without code duplication.
|
||||
|
||||
The layout_type determines format-specific behavior, while common operations
|
||||
(detach, clone, to) are handled generically.
|
||||
|
||||
Attributes:
|
||||
_qdata: The quantized tensor data
|
||||
_layout_type: Layout class (e.g., TensorCoreFP8Layout)
|
||||
_layout_params: Dict with layout-specific params (scale, zero_point, etc.)
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def __new__(cls, qdata, layout_type, layout_params):
|
||||
"""
|
||||
Create a quantized tensor.
|
||||
|
||||
Args:
|
||||
qdata: The quantized data tensor
|
||||
layout_type: Layout class (subclass of QuantizedLayout)
|
||||
layout_params: Dict with layout-specific parameters
|
||||
"""
|
||||
return torch.Tensor._make_wrapper_subclass(cls, qdata.shape, device=qdata.device, dtype=qdata.dtype, requires_grad=False)
|
||||
|
||||
def __init__(self, qdata, layout_type, layout_params):
|
||||
self._qdata = qdata
|
||||
self._layout_type = layout_type
|
||||
self._layout_params = layout_params
|
||||
|
||||
def __repr__(self):
|
||||
layout_name = self._layout_type
|
||||
param_str = ", ".join(f"{k}={v}" for k, v in list(self._layout_params.items())[:2])
|
||||
return f"QuantizedTensor(shape={self.shape}, layout={layout_name}, {param_str})"
|
||||
|
||||
@property
|
||||
def layout_type(self):
|
||||
return self._layout_type
|
||||
|
||||
def __tensor_flatten__(self):
|
||||
"""
|
||||
Tensor flattening protocol for proper device movement.
|
||||
"""
|
||||
inner_tensors = ["_qdata"]
|
||||
ctx = {
|
||||
"layout_type": self._layout_type,
|
||||
}
|
||||
|
||||
tensor_params = {}
|
||||
non_tensor_params = {}
|
||||
for k, v in self._layout_params.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
tensor_params[k] = v
|
||||
else:
|
||||
non_tensor_params[k] = v
|
||||
|
||||
ctx["tensor_param_keys"] = list(tensor_params.keys())
|
||||
ctx["non_tensor_params"] = non_tensor_params
|
||||
|
||||
for k, v in tensor_params.items():
|
||||
attr_name = f"_layout_param_{k}"
|
||||
object.__setattr__(self, attr_name, v)
|
||||
inner_tensors.append(attr_name)
|
||||
|
||||
return inner_tensors, ctx
|
||||
|
||||
@staticmethod
|
||||
def __tensor_unflatten__(inner_tensors, ctx, outer_size, outer_stride):
|
||||
"""
|
||||
Tensor unflattening protocol for proper device movement.
|
||||
Reconstructs the QuantizedTensor after device movement.
|
||||
"""
|
||||
layout_type = ctx["layout_type"]
|
||||
layout_params = dict(ctx["non_tensor_params"])
|
||||
|
||||
for key in ctx["tensor_param_keys"]:
|
||||
attr_name = f"_layout_param_{key}"
|
||||
layout_params[key] = inner_tensors[attr_name]
|
||||
|
||||
return QuantizedTensor(inner_tensors["_qdata"], layout_type, layout_params)
|
||||
|
||||
@classmethod
|
||||
def from_float(cls, tensor, layout_type, **quantize_kwargs) -> 'QuantizedTensor':
|
||||
qdata, layout_params = LAYOUTS[layout_type].quantize(tensor, **quantize_kwargs)
|
||||
return cls(qdata, layout_type, layout_params)
|
||||
|
||||
def dequantize(self) -> torch.Tensor:
|
||||
return LAYOUTS[self._layout_type].dequantize(self._qdata, **self._layout_params)
|
||||
|
||||
@classmethod
|
||||
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
||||
kwargs = kwargs or {}
|
||||
|
||||
# Step 1: Check generic utilities first (detach, clone, to, etc.)
|
||||
if func in _GENERIC_UTILS:
|
||||
return _GENERIC_UTILS[func](func, args, kwargs)
|
||||
|
||||
# Step 2: Check layout-specific handlers (linear, matmul, etc.)
|
||||
layout_type = _get_layout_from_args(args)
|
||||
if layout_type and func in _LAYOUT_REGISTRY:
|
||||
handler = _LAYOUT_REGISTRY[func].get(layout_type)
|
||||
if handler:
|
||||
return handler(func, args, kwargs)
|
||||
|
||||
# Step 3: Fallback to dequantization
|
||||
if isinstance(args[0] if args else None, QuantizedTensor):
|
||||
logging.info(f"QuantizedTensor: Unhandled operation {func}, falling back to dequantization. kwargs={kwargs}")
|
||||
return cls._dequant_and_fallback(func, args, kwargs)
|
||||
|
||||
@classmethod
|
||||
def _dequant_and_fallback(cls, func, args, kwargs):
|
||||
def dequant_arg(arg):
|
||||
if isinstance(arg, QuantizedTensor):
|
||||
return arg.dequantize()
|
||||
elif isinstance(arg, (list, tuple)):
|
||||
return type(arg)(dequant_arg(a) for a in arg)
|
||||
return arg
|
||||
|
||||
new_args = dequant_arg(args)
|
||||
new_kwargs = dequant_arg(kwargs)
|
||||
return func(*new_args, **new_kwargs)
|
||||
|
||||
def data_ptr(self):
|
||||
return self._qdata.data_ptr()
|
||||
|
||||
def is_pinned(self):
|
||||
return self._qdata.is_pinned()
|
||||
|
||||
def is_contiguous(self, *arg, **kwargs):
|
||||
return self._qdata.is_contiguous(*arg, **kwargs)
|
||||
|
||||
def storage(self):
|
||||
return self._qdata.storage()
|
||||
|
||||
# ==============================================================================
|
||||
# Generic Utilities (Layout-Agnostic Operations)
|
||||
# ==============================================================================
|
||||
|
||||
def _create_transformed_qtensor(qt, transform_fn):
|
||||
new_data = transform_fn(qt._qdata)
|
||||
new_params = _copy_layout_params(qt._layout_params)
|
||||
return QuantizedTensor(new_data, qt._layout_type, new_params)
|
||||
|
||||
|
||||
def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout=None, op_name="to"):
|
||||
if target_layout is not None and target_layout != torch.strided:
|
||||
logging.warning(
|
||||
f"QuantizedTensor: layout change requested to {target_layout}, "
|
||||
f"but not supported. Ignoring layout."
|
||||
)
|
||||
|
||||
# Handle device transfer
|
||||
current_device = qt._qdata.device
|
||||
if target_device is not None:
|
||||
# Normalize device for comparison
|
||||
if isinstance(target_device, str):
|
||||
target_device = torch.device(target_device)
|
||||
if isinstance(current_device, str):
|
||||
current_device = torch.device(current_device)
|
||||
|
||||
if target_device != current_device:
|
||||
logging.debug(f"QuantizedTensor.{op_name}: Moving from {current_device} to {target_device}")
|
||||
new_q_data = qt._qdata.to(device=target_device)
|
||||
new_params = _move_layout_params_to_device(qt._layout_params, target_device)
|
||||
if target_dtype is not None:
|
||||
new_params["orig_dtype"] = target_dtype
|
||||
new_qt = QuantizedTensor(new_q_data, qt._layout_type, new_params)
|
||||
logging.debug(f"QuantizedTensor.{op_name}: Created new tensor on {target_device}")
|
||||
return new_qt
|
||||
|
||||
logging.debug(f"QuantizedTensor.{op_name}: No device change needed, returning original")
|
||||
return qt
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten.detach.default)
|
||||
def generic_detach(func, args, kwargs):
|
||||
"""Detach operation - creates a detached copy of the quantized tensor."""
|
||||
qt = args[0]
|
||||
if isinstance(qt, QuantizedTensor):
|
||||
return _create_transformed_qtensor(qt, lambda x: x.detach())
|
||||
return func(*args, **kwargs)
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten.clone.default)
|
||||
def generic_clone(func, args, kwargs):
|
||||
"""Clone operation - creates a deep copy of the quantized tensor."""
|
||||
qt = args[0]
|
||||
if isinstance(qt, QuantizedTensor):
|
||||
return _create_transformed_qtensor(qt, lambda x: x.clone())
|
||||
return func(*args, **kwargs)
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten._to_copy.default)
|
||||
def generic_to_copy(func, args, kwargs):
|
||||
"""Device/dtype transfer operation - handles .to(device) calls."""
|
||||
qt = args[0]
|
||||
if isinstance(qt, QuantizedTensor):
|
||||
return _handle_device_transfer(
|
||||
qt,
|
||||
target_device=kwargs.get('device', None),
|
||||
target_dtype=kwargs.get('dtype', None),
|
||||
op_name="_to_copy"
|
||||
)
|
||||
return func(*args, **kwargs)
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten.to.dtype_layout)
|
||||
def generic_to_dtype_layout(func, args, kwargs):
|
||||
"""Handle .to(device) calls using the dtype_layout variant."""
|
||||
qt = args[0]
|
||||
if isinstance(qt, QuantizedTensor):
|
||||
return _handle_device_transfer(
|
||||
qt,
|
||||
target_device=kwargs.get('device', None),
|
||||
target_dtype=kwargs.get('dtype', None),
|
||||
target_layout=kwargs.get('layout', None),
|
||||
op_name="to"
|
||||
)
|
||||
return func(*args, **kwargs)
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten.copy_.default)
|
||||
def generic_copy_(func, args, kwargs):
|
||||
qt_dest = args[0]
|
||||
src = args[1]
|
||||
non_blocking = args[2] if len(args) > 2 else False
|
||||
if isinstance(qt_dest, QuantizedTensor):
|
||||
if isinstance(src, QuantizedTensor):
|
||||
# Copy from another quantized tensor
|
||||
qt_dest._qdata.copy_(src._qdata, non_blocking=non_blocking)
|
||||
qt_dest._layout_type = src._layout_type
|
||||
orig_dtype = qt_dest._layout_params["orig_dtype"]
|
||||
_copy_layout_params_inplace(src._layout_params, qt_dest._layout_params, non_blocking=non_blocking)
|
||||
qt_dest._layout_params["orig_dtype"] = orig_dtype
|
||||
else:
|
||||
# Copy from regular tensor - just copy raw data
|
||||
qt_dest._qdata.copy_(src)
|
||||
return qt_dest
|
||||
return func(*args, **kwargs)
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten.to.dtype)
|
||||
def generic_to_dtype(func, args, kwargs):
|
||||
"""Handle .to(dtype) calls - dtype conversion only."""
|
||||
src = args[0]
|
||||
if isinstance(src, QuantizedTensor):
|
||||
# For dtype-only conversion, just change the orig_dtype, no real cast is needed
|
||||
target_dtype = args[1] if len(args) > 1 else kwargs.get('dtype')
|
||||
src._layout_params["orig_dtype"] = target_dtype
|
||||
return src
|
||||
return func(*args, **kwargs)
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten._has_compatible_shallow_copy_type.default)
|
||||
def generic_has_compatible_shallow_copy_type(func, args, kwargs):
|
||||
return True
|
||||
|
||||
|
||||
@register_generic_util(torch.ops.aten.empty_like.default)
|
||||
def generic_empty_like(func, args, kwargs):
|
||||
"""Empty_like operation - creates an empty tensor with the same quantized structure."""
|
||||
qt = args[0]
|
||||
if isinstance(qt, QuantizedTensor):
|
||||
# Create empty tensor with same shape and dtype as the quantized data
|
||||
hp_dtype = kwargs.pop('dtype', qt._layout_params["orig_dtype"])
|
||||
new_qdata = torch.empty_like(qt._qdata, **kwargs)
|
||||
|
||||
# Handle device transfer for layout params
|
||||
target_device = kwargs.get('device', new_qdata.device)
|
||||
new_params = _move_layout_params_to_device(qt._layout_params, target_device)
|
||||
|
||||
# Update orig_dtype if dtype is specified
|
||||
new_params['orig_dtype'] = hp_dtype
|
||||
|
||||
return QuantizedTensor(new_qdata, qt._layout_type, new_params)
|
||||
return func(*args, **kwargs)
|
||||
|
||||
# ==============================================================================
|
||||
# FP8 Layout + Operation Handlers
|
||||
# ==============================================================================
|
||||
class TensorCoreFP8Layout(QuantizedLayout):
|
||||
"""
|
||||
Storage format:
|
||||
- qdata: FP8 tensor (torch.float8_e4m3fn or torch.float8_e5m2)
|
||||
- scale: Scalar tensor (float32) for dequantization
|
||||
- orig_dtype: Original dtype before quantization (for casting back)
|
||||
"""
|
||||
@classmethod
|
||||
def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn, stochastic_rounding=0, inplace_ops=False):
|
||||
orig_dtype = tensor.dtype
|
||||
|
||||
if isinstance(scale, str) and scale == "recalculate":
|
||||
scale = torch.amax(tensor.abs()).to(dtype=torch.float32) / torch.finfo(dtype).max
|
||||
if tensor.dtype not in [torch.float32, torch.bfloat16]: # Prevent scale from being too small
|
||||
tensor_info = torch.finfo(tensor.dtype)
|
||||
scale = (1.0 / torch.clamp((1.0 / scale), min=tensor_info.min, max=tensor_info.max))
|
||||
|
||||
if scale is not None:
|
||||
if not isinstance(scale, torch.Tensor):
|
||||
scale = torch.tensor(scale)
|
||||
scale = scale.to(device=tensor.device, dtype=torch.float32)
|
||||
|
||||
if inplace_ops:
|
||||
tensor *= (1.0 / scale).to(tensor.dtype)
|
||||
else:
|
||||
tensor = tensor * (1.0 / scale).to(tensor.dtype)
|
||||
else:
|
||||
scale = torch.ones((), device=tensor.device, dtype=torch.float32)
|
||||
|
||||
if stochastic_rounding > 0:
|
||||
tensor = comfy.float.stochastic_rounding(tensor, dtype=dtype, seed=stochastic_rounding)
|
||||
else:
|
||||
lp_amax = torch.finfo(dtype).max
|
||||
torch.clamp(tensor, min=-lp_amax, max=lp_amax, out=tensor)
|
||||
tensor = tensor.to(dtype, memory_format=torch.contiguous_format)
|
||||
|
||||
layout_params = {
|
||||
'scale': scale,
|
||||
'orig_dtype': orig_dtype
|
||||
}
|
||||
return tensor, layout_params
|
||||
|
||||
@staticmethod
|
||||
def dequantize(qdata, scale, orig_dtype, **kwargs):
|
||||
plain_tensor = torch.ops.aten._to_copy.default(qdata, dtype=orig_dtype)
|
||||
plain_tensor.mul_(scale)
|
||||
return plain_tensor
|
||||
|
||||
@classmethod
|
||||
def get_plain_tensors(cls, qtensor):
|
||||
return qtensor._qdata, qtensor._layout_params['scale']
|
||||
|
||||
QUANT_ALGOS = {
|
||||
"float8_e4m3fn": {
|
||||
"storage_t": torch.float8_e4m3fn,
|
||||
"parameters": {"weight_scale", "input_scale"},
|
||||
"comfy_tensor_layout": "TensorCoreFP8Layout",
|
||||
},
|
||||
}
|
||||
|
||||
LAYOUTS = {
|
||||
"TensorCoreFP8Layout": TensorCoreFP8Layout,
|
||||
}
|
||||
|
||||
|
||||
@register_layout_op(torch.ops.aten.linear.default, "TensorCoreFP8Layout")
|
||||
def fp8_linear(func, args, kwargs):
|
||||
input_tensor = args[0]
|
||||
weight = args[1]
|
||||
bias = args[2] if len(args) > 2 else None
|
||||
|
||||
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
|
||||
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
|
||||
plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight)
|
||||
|
||||
out_dtype = kwargs.get("out_dtype")
|
||||
if out_dtype is None:
|
||||
out_dtype = input_tensor._layout_params['orig_dtype']
|
||||
|
||||
weight_t = plain_weight.t()
|
||||
|
||||
tensor_2d = False
|
||||
if len(plain_input.shape) == 2:
|
||||
tensor_2d = True
|
||||
plain_input = plain_input.unsqueeze(1)
|
||||
|
||||
input_shape = plain_input.shape
|
||||
if len(input_shape) != 3:
|
||||
return None
|
||||
|
||||
try:
|
||||
output = torch._scaled_mm(
|
||||
plain_input.reshape(-1, input_shape[2]).contiguous(),
|
||||
weight_t,
|
||||
bias=bias,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=out_dtype,
|
||||
)
|
||||
|
||||
if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4
|
||||
output = output[0]
|
||||
|
||||
if not tensor_2d:
|
||||
output = output.reshape((-1, input_shape[1], weight.shape[0]))
|
||||
|
||||
if output.dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
|
||||
output_scale = scale_a * scale_b
|
||||
output_params = {
|
||||
'scale': output_scale,
|
||||
'orig_dtype': input_tensor._layout_params['orig_dtype']
|
||||
}
|
||||
return QuantizedTensor(output, "TensorCoreFP8Layout", output_params)
|
||||
else:
|
||||
return output
|
||||
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"FP8 _scaled_mm failed, falling back to dequantization: {e}")
|
||||
|
||||
# Case 2: DQ Fallback
|
||||
if isinstance(weight, QuantizedTensor):
|
||||
weight = weight.dequantize()
|
||||
if isinstance(input_tensor, QuantizedTensor):
|
||||
input_tensor = input_tensor.dequantize()
|
||||
|
||||
return torch.nn.functional.linear(input_tensor, weight, bias)
|
||||
|
||||
def fp8_mm_(input_tensor, weight, bias=None, out_dtype=None):
|
||||
if out_dtype is None:
|
||||
out_dtype = input_tensor._layout_params['orig_dtype']
|
||||
|
||||
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
|
||||
plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight)
|
||||
|
||||
output = torch._scaled_mm(
|
||||
plain_input.contiguous(),
|
||||
plain_weight,
|
||||
bias=bias,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=out_dtype,
|
||||
)
|
||||
|
||||
if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4
|
||||
output = output[0]
|
||||
return output
|
||||
|
||||
@register_layout_op(torch.ops.aten.addmm.default, "TensorCoreFP8Layout")
|
||||
def fp8_addmm(func, args, kwargs):
|
||||
input_tensor = args[1]
|
||||
weight = args[2]
|
||||
bias = args[0]
|
||||
|
||||
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
|
||||
return fp8_mm_(input_tensor, weight, bias=bias, out_dtype=kwargs.get("out_dtype", None))
|
||||
|
||||
a = list(args)
|
||||
if isinstance(args[0], QuantizedTensor):
|
||||
a[0] = args[0].dequantize()
|
||||
if isinstance(args[1], QuantizedTensor):
|
||||
a[1] = args[1].dequantize()
|
||||
if isinstance(args[2], QuantizedTensor):
|
||||
a[2] = args[2].dequantize()
|
||||
|
||||
return func(*a, **kwargs)
|
||||
|
||||
@register_layout_op(torch.ops.aten.mm.default, "TensorCoreFP8Layout")
|
||||
def fp8_mm(func, args, kwargs):
|
||||
input_tensor = args[0]
|
||||
weight = args[1]
|
||||
|
||||
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
|
||||
return fp8_mm_(input_tensor, weight, bias=None, out_dtype=kwargs.get("out_dtype", None))
|
||||
|
||||
a = list(args)
|
||||
if isinstance(args[0], QuantizedTensor):
|
||||
a[0] = args[0].dequantize()
|
||||
if isinstance(args[1], QuantizedTensor):
|
||||
a[1] = args[1].dequantize()
|
||||
return func(*a, **kwargs)
|
||||
|
||||
@register_layout_op(torch.ops.aten.view.default, "TensorCoreFP8Layout")
|
||||
@register_layout_op(torch.ops.aten.t.default, "TensorCoreFP8Layout")
|
||||
def fp8_func(func, args, kwargs):
|
||||
input_tensor = args[0]
|
||||
if isinstance(input_tensor, QuantizedTensor):
|
||||
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
|
||||
ar = list(args)
|
||||
ar[0] = plain_input
|
||||
return QuantizedTensor(func(*ar, **kwargs), "TensorCoreFP8Layout", input_tensor._layout_params)
|
||||
return func(*args, **kwargs)
|
||||
@ -4,13 +4,9 @@ import comfy.samplers
|
||||
import comfy.utils
|
||||
import numpy as np
|
||||
import logging
|
||||
import comfy.nested_tensor
|
||||
|
||||
def prepare_noise(latent_image, seed, noise_inds=None):
|
||||
"""
|
||||
creates random noise given a latent image and a seed.
|
||||
optional arg skip can be used to skip and discard x number of noise generations for a given seed
|
||||
"""
|
||||
generator = torch.manual_seed(seed)
|
||||
def prepare_noise_inner(latent_image, generator, noise_inds=None):
|
||||
if noise_inds is None:
|
||||
return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
||||
|
||||
@ -21,10 +17,29 @@ def prepare_noise(latent_image, seed, noise_inds=None):
|
||||
if i in unique_inds:
|
||||
noises.append(noise)
|
||||
noises = [noises[i] for i in inverse]
|
||||
noises = torch.cat(noises, axis=0)
|
||||
return torch.cat(noises, axis=0)
|
||||
|
||||
def prepare_noise(latent_image, seed, noise_inds=None):
|
||||
"""
|
||||
creates random noise given a latent image and a seed.
|
||||
optional arg skip can be used to skip and discard x number of noise generations for a given seed
|
||||
"""
|
||||
generator = torch.manual_seed(seed)
|
||||
|
||||
if latent_image.is_nested:
|
||||
tensors = latent_image.unbind()
|
||||
noises = []
|
||||
for t in tensors:
|
||||
noises.append(prepare_noise_inner(t, generator, noise_inds))
|
||||
noises = comfy.nested_tensor.NestedTensor(noises)
|
||||
else:
|
||||
noises = prepare_noise_inner(latent_image, generator, noise_inds)
|
||||
|
||||
return noises
|
||||
|
||||
def fix_empty_latent_channels(model, latent_image):
|
||||
if latent_image.is_nested:
|
||||
return latent_image
|
||||
latent_format = model.get_model_object("latent_format") #Resize the empty latent image so it has the right number of channels
|
||||
if latent_format.latent_channels != latent_image.shape[1] and torch.count_nonzero(latent_image) == 0:
|
||||
latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_format.latent_channels, dim=1)
|
||||
|
||||
@ -122,20 +122,20 @@ def estimate_memory(model, noise_shape, conds):
|
||||
minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min)
|
||||
return memory_required, minimum_memory_required
|
||||
|
||||
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
|
||||
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False):
|
||||
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
|
||||
_prepare_sampling,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
|
||||
)
|
||||
return executor.execute(model, noise_shape, conds, model_options=model_options)
|
||||
return executor.execute(model, noise_shape, conds, model_options=model_options, force_full_load=force_full_load)
|
||||
|
||||
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
|
||||
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False):
|
||||
real_model: BaseModel = None
|
||||
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
||||
models += get_additional_models_from_model_options(model_options)
|
||||
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
|
||||
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
|
||||
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory)
|
||||
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory, force_full_load=force_full_load)
|
||||
real_model = model.model
|
||||
|
||||
return real_model, conds, models
|
||||
|
||||
@ -306,17 +306,10 @@ def _calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tens
|
||||
copy_dict1=False)
|
||||
|
||||
if patches is not None:
|
||||
# TODO: replace with merge_nested_dicts function
|
||||
if "patches" in transformer_options:
|
||||
cur_patches = transformer_options["patches"].copy()
|
||||
for p in patches:
|
||||
if p in cur_patches:
|
||||
cur_patches[p] = cur_patches[p] + patches[p]
|
||||
else:
|
||||
cur_patches[p] = patches[p]
|
||||
transformer_options["patches"] = cur_patches
|
||||
else:
|
||||
transformer_options["patches"] = patches
|
||||
transformer_options["patches"] = comfy.patcher_extension.merge_nested_dicts(
|
||||
transformer_options.get("patches", {}),
|
||||
patches
|
||||
)
|
||||
|
||||
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
|
||||
transformer_options["uuids"] = uuids[:]
|
||||
@ -727,7 +720,7 @@ class Sampler:
|
||||
sigma = float(sigmas[0])
|
||||
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
|
||||
|
||||
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
||||
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2", "exp_heun_2_x0", "exp_heun_2_x0_sde", "dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_2m_sde_heun", "dpmpp_2m_sde_heun_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
|
||||
@ -789,7 +782,7 @@ def ksampler(sampler_name, extra_options={}, inpaint_options={}):
|
||||
return KSAMPLER(sampler_function, extra_options, inpaint_options)
|
||||
|
||||
|
||||
def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None):
|
||||
def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None, latent_shapes=None):
|
||||
for k in conds:
|
||||
conds[k] = conds[k][:]
|
||||
resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device)
|
||||
@ -799,7 +792,7 @@ def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=N
|
||||
|
||||
if hasattr(model, 'extra_conds'):
|
||||
for k in conds:
|
||||
conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
|
||||
conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed, latent_shapes=latent_shapes)
|
||||
|
||||
#make sure each cond area has an opposite one with the same area
|
||||
for k in conds:
|
||||
@ -969,11 +962,11 @@ class CFGGuider:
|
||||
def predict_noise(self, x, timestep, model_options={}, seed=None):
|
||||
return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed)
|
||||
|
||||
def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed):
|
||||
def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed, latent_shapes=None):
|
||||
if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
|
||||
latent_image = self.inner_model.process_latent_in(latent_image)
|
||||
|
||||
self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed)
|
||||
self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed, latent_shapes=latent_shapes)
|
||||
|
||||
extra_model_options = comfy.model_patcher.create_model_options_clone(self.model_options)
|
||||
extra_model_options.setdefault("transformer_options", {})["sample_sigmas"] = sigmas
|
||||
@ -987,13 +980,10 @@ class CFGGuider:
|
||||
samples = executor.execute(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
|
||||
return self.inner_model.process_latent_out(samples.to(torch.float32))
|
||||
|
||||
def outer_sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||
def outer_sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None, latent_shapes=None):
|
||||
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options)
|
||||
device = self.model_patcher.load_device
|
||||
|
||||
if denoise_mask is not None:
|
||||
denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
|
||||
|
||||
noise = noise.to(device)
|
||||
latent_image = latent_image.to(device)
|
||||
sigmas = sigmas.to(device)
|
||||
@ -1001,7 +991,7 @@ class CFGGuider:
|
||||
|
||||
try:
|
||||
self.model_patcher.pre_run()
|
||||
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
||||
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed, latent_shapes=latent_shapes)
|
||||
finally:
|
||||
self.model_patcher.cleanup()
|
||||
|
||||
@ -1014,6 +1004,30 @@ class CFGGuider:
|
||||
if sigmas.shape[-1] == 0:
|
||||
return latent_image
|
||||
|
||||
if latent_image.is_nested:
|
||||
latent_image, latent_shapes = comfy.utils.pack_latents(latent_image.unbind())
|
||||
noise, _ = comfy.utils.pack_latents(noise.unbind())
|
||||
else:
|
||||
latent_shapes = [latent_image.shape]
|
||||
|
||||
if denoise_mask is not None:
|
||||
if denoise_mask.is_nested:
|
||||
denoise_masks = denoise_mask.unbind()
|
||||
denoise_masks = denoise_masks[:len(latent_shapes)]
|
||||
else:
|
||||
denoise_masks = [denoise_mask]
|
||||
|
||||
for i in range(len(denoise_masks), len(latent_shapes)):
|
||||
denoise_masks.append(torch.ones(latent_shapes[i]))
|
||||
|
||||
for i in range(len(denoise_masks)):
|
||||
denoise_masks[i] = comfy.sampler_helpers.prepare_mask(denoise_masks[i], latent_shapes[i], self.model_patcher.load_device)
|
||||
|
||||
if len(denoise_masks) > 1:
|
||||
denoise_mask, _ = comfy.utils.pack_latents(denoise_masks)
|
||||
else:
|
||||
denoise_mask = denoise_masks[0]
|
||||
|
||||
self.conds = {}
|
||||
for k in self.original_conds:
|
||||
self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))
|
||||
@ -1033,7 +1047,7 @@ class CFGGuider:
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.OUTER_SAMPLE, self.model_options, is_model_options=True)
|
||||
)
|
||||
output = executor.execute(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
||||
output = executor.execute(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed, latent_shapes=latent_shapes)
|
||||
finally:
|
||||
cast_to_load_options(self.model_options, device=self.model_patcher.offload_device)
|
||||
self.model_options = orig_model_options
|
||||
@ -1041,6 +1055,9 @@ class CFGGuider:
|
||||
self.model_patcher.restore_hook_patches()
|
||||
|
||||
del self.conds
|
||||
|
||||
if len(latent_shapes) > 1:
|
||||
output = comfy.nested_tensor.NestedTensor(comfy.utils.unpack_latents(output, latent_shapes))
|
||||
return output
|
||||
|
||||
|
||||
|
||||
340
comfy/sd.py
340
comfy/sd.py
@ -18,6 +18,7 @@ import comfy.ldm.wan.vae2_2
|
||||
import comfy.ldm.hunyuan3d.vae
|
||||
import comfy.ldm.ace.vae.music_dcae_pipeline
|
||||
import comfy.ldm.hunyuan_video.vae
|
||||
import comfy.ldm.mmaudio.vae.autoencoder
|
||||
import comfy.pixel_space_convert
|
||||
import yaml
|
||||
import math
|
||||
@ -51,6 +52,11 @@ import comfy.text_encoders.ace
|
||||
import comfy.text_encoders.omnigen2
|
||||
import comfy.text_encoders.qwen_image
|
||||
import comfy.text_encoders.hunyuan_image
|
||||
import comfy.text_encoders.z_image
|
||||
import comfy.text_encoders.ovis
|
||||
import comfy.text_encoders.kandinsky5
|
||||
import comfy.text_encoders.jina_clip_2
|
||||
import comfy.text_encoders.newbie
|
||||
|
||||
import comfy.model_patcher
|
||||
import comfy.lora
|
||||
@ -58,6 +64,8 @@ import comfy.lora_convert
|
||||
import comfy.hooks
|
||||
import comfy.t2i_adapter.adapter
|
||||
import comfy.taesd.taesd
|
||||
import comfy.taesd.taehv
|
||||
import comfy.latent_formats
|
||||
|
||||
import comfy.ldm.flux.redux
|
||||
|
||||
@ -93,7 +101,7 @@ def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
|
||||
|
||||
|
||||
class CLIP:
|
||||
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}):
|
||||
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, state_dict=[], model_options={}):
|
||||
if no_init:
|
||||
return
|
||||
params = target.params.copy()
|
||||
@ -121,9 +129,32 @@ class CLIP:
|
||||
|
||||
self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
||||
#Match torch.float32 hardcode upcast in TE implemention
|
||||
self.patcher.set_model_compute_dtype(torch.float32)
|
||||
self.patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram
|
||||
self.patcher.is_clip = True
|
||||
self.apply_hooks_to_conds = None
|
||||
if len(state_dict) > 0:
|
||||
if isinstance(state_dict, list):
|
||||
for c in state_dict:
|
||||
m, u = self.load_sd(c)
|
||||
if len(m) > 0:
|
||||
logging.warning("clip missing: {}".format(m))
|
||||
|
||||
if len(u) > 0:
|
||||
logging.debug("clip unexpected: {}".format(u))
|
||||
else:
|
||||
m, u = self.load_sd(state_dict, full_model=True)
|
||||
if len(m) > 0:
|
||||
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
|
||||
if len(m_filter) > 0:
|
||||
logging.warning("clip missing: {}".format(m))
|
||||
else:
|
||||
logging.debug("clip missing: {}".format(m))
|
||||
|
||||
if len(u) > 0:
|
||||
logging.debug("clip unexpected {}:".format(u))
|
||||
|
||||
if params['device'] == load_device:
|
||||
model_management.load_models_gpu([self.patcher], force_full_load=True)
|
||||
self.layer_idx = None
|
||||
@ -142,6 +173,9 @@ class CLIP:
|
||||
n.apply_hooks_to_conds = self.apply_hooks_to_conds
|
||||
return n
|
||||
|
||||
def get_ram_usage(self):
|
||||
return self.patcher.get_ram_usage()
|
||||
|
||||
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
||||
return self.patcher.add_patches(patches, strength_patch, strength_model)
|
||||
|
||||
@ -185,6 +219,7 @@ class CLIP:
|
||||
self.cond_stage_model.set_clip_options({"projected_pooled": False})
|
||||
|
||||
self.load_model()
|
||||
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
|
||||
all_hooks.reset()
|
||||
self.patcher.patch_hooks(None)
|
||||
if show_pbar:
|
||||
@ -232,6 +267,7 @@ class CLIP:
|
||||
self.cond_stage_model.set_clip_options({"projected_pooled": False})
|
||||
|
||||
self.load_model()
|
||||
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
|
||||
o = self.cond_stage_model.encode_token_weights(tokens)
|
||||
cond, pooled = o[:2]
|
||||
if return_dict:
|
||||
@ -275,22 +311,30 @@ class VAE:
|
||||
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
|
||||
sd = diffusers_convert.convert_vae_state_dict(sd)
|
||||
|
||||
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
|
||||
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
|
||||
if model_management.is_amd():
|
||||
VAE_KL_MEM_RATIO = 2.73
|
||||
else:
|
||||
VAE_KL_MEM_RATIO = 1.0
|
||||
|
||||
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) * VAE_KL_MEM_RATIO #These are for AutoencoderKL and need tweaking (should be lower)
|
||||
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype) * VAE_KL_MEM_RATIO
|
||||
self.downscale_ratio = 8
|
||||
self.upscale_ratio = 8
|
||||
self.latent_channels = 4
|
||||
self.latent_dim = 2
|
||||
self.output_channels = 3
|
||||
self.pad_channel_value = None
|
||||
self.process_input = lambda image: image * 2.0 - 1.0
|
||||
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float32]
|
||||
self.disable_offload = False
|
||||
self.not_video = False
|
||||
self.size = None
|
||||
|
||||
self.downscale_index_formula = None
|
||||
self.upscale_index_formula = None
|
||||
self.extra_1d_channel = None
|
||||
self.crop_input = True
|
||||
|
||||
if config is None:
|
||||
if "decoder.mid.block_1.mix_factor" in sd:
|
||||
@ -345,7 +389,7 @@ class VAE:
|
||||
|
||||
self.memory_used_encode = lambda shape, dtype: (700 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (700 * shape[2] * shape[3] * 32 * 32) * model_management.dtype_size(dtype)
|
||||
elif sd['decoder.conv_in.weight'].shape[1] == 32:
|
||||
elif sd['decoder.conv_in.weight'].shape[1] == 32 and sd['decoder.conv_in.weight'].ndim == 5:
|
||||
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True, "refiner_vae": False}
|
||||
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
|
||||
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
@ -371,6 +415,17 @@ class VAE:
|
||||
self.upscale_ratio = 4
|
||||
|
||||
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
|
||||
if 'decoder.post_quant_conv.weight' in sd:
|
||||
sd = comfy.utils.state_dict_prefix_replace(sd, {"decoder.post_quant_conv.": "post_quant_conv.", "encoder.quant_conv.": "quant_conv."})
|
||||
|
||||
if 'bn.running_mean' in sd:
|
||||
ddconfig["batch_norm_latent"] = True
|
||||
self.downscale_ratio *= 2
|
||||
self.upscale_ratio *= 2
|
||||
self.latent_channels *= 4
|
||||
old_memory_used_decode = self.memory_used_decode
|
||||
self.memory_used_decode = lambda shape, dtype: old_memory_used_decode(shape, dtype) * 4.0
|
||||
|
||||
if 'post_quant_conv.weight' in sd:
|
||||
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
|
||||
else:
|
||||
@ -383,6 +438,7 @@ class VAE:
|
||||
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype)
|
||||
self.latent_channels = 64
|
||||
self.output_channels = 2
|
||||
self.pad_channel_value = "replicate"
|
||||
self.upscale_ratio = 2048
|
||||
self.downscale_ratio = 2048
|
||||
self.latent_dim = 1
|
||||
@ -430,20 +486,20 @@ class VAE:
|
||||
elif "decoder.conv_in.conv.weight" in sd and sd['decoder.conv_in.conv.weight'].shape[1] == 32:
|
||||
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True}
|
||||
ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
|
||||
self.latent_channels = 64
|
||||
self.latent_channels = 32
|
||||
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
|
||||
self.upscale_index_formula = (4, 16, 16)
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
|
||||
self.downscale_index_formula = (4, 16, 16)
|
||||
self.latent_dim = 3
|
||||
self.not_video = True
|
||||
self.not_video = False
|
||||
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.EmptyRegularizer"},
|
||||
encoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Encoder", 'params': ddconfig},
|
||||
decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig})
|
||||
|
||||
self.memory_used_encode = lambda shape, dtype: (1400 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (1400 * shape[-3] * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
|
||||
self.memory_used_encode = lambda shape, dtype: (1400 * 9 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (3600 * 4 * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
|
||||
elif "decoder.conv_in.conv.weight" in sd:
|
||||
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
||||
ddconfig["conv3d"] = True
|
||||
@ -455,8 +511,10 @@ class VAE:
|
||||
self.latent_dim = 3
|
||||
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
|
||||
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
|
||||
self.memory_used_decode = lambda shape, dtype: (1500 * shape[2] * shape[3] * shape[4] * (4 * 8 * 8)) * model_management.dtype_size(dtype)
|
||||
self.memory_used_encode = lambda shape, dtype: (900 * max(shape[2], 2) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
|
||||
#This is likely to significantly over-estimate with single image or low frame counts as the
|
||||
#implementation is able to completely skip caching. Rework if used as an image only VAE
|
||||
self.memory_used_decode = lambda shape, dtype: (2800 * min(8, ((shape[2] - 1) * 4) + 1) * shape[3] * shape[4] * (8 * 8)) * model_management.dtype_size(dtype)
|
||||
self.memory_used_encode = lambda shape, dtype: (1400 * min(9, shape[2]) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
elif "decoder.unpatcher3d.wavelets" in sd:
|
||||
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 8, 8)
|
||||
@ -485,17 +543,22 @@ class VAE:
|
||||
self.memory_used_encode = lambda shape, dtype: 3300 * shape[3] * shape[4] * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: 8000 * shape[3] * shape[4] * (16 * 16) * model_management.dtype_size(dtype)
|
||||
else: # Wan 2.1 VAE
|
||||
dim = sd["decoder.head.0.gamma"].shape[0]
|
||||
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
|
||||
self.upscale_index_formula = (4, 8, 8)
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
|
||||
self.downscale_index_formula = (4, 8, 8)
|
||||
self.latent_dim = 3
|
||||
self.latent_channels = 16
|
||||
ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
|
||||
self.output_channels = sd["encoder.conv1.weight"].shape[1]
|
||||
self.pad_channel_value = 1.0
|
||||
ddconfig = {"dim": dim, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "image_channels": self.output_channels, "dropout": 0.0}
|
||||
self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
|
||||
self.memory_used_encode = lambda shape, dtype: (1500 if shape[2]<=4 else 6000) * shape[3] * shape[4] * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (2200 if shape[2]<=4 else 7000) * shape[3] * shape[4] * (8*8) * model_management.dtype_size(dtype)
|
||||
|
||||
|
||||
# Hunyuan 3d v2 2.0 & 2.1
|
||||
elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd:
|
||||
|
||||
@ -525,6 +588,7 @@ class VAE:
|
||||
self.memory_used_decode = lambda shape, dtype: (shape[2] * shape[3] * 87000) * model_management.dtype_size(dtype)
|
||||
self.latent_channels = 8
|
||||
self.output_channels = 2
|
||||
self.pad_channel_value = "replicate"
|
||||
self.upscale_ratio = 4096
|
||||
self.downscale_ratio = 4096
|
||||
self.latent_dim = 2
|
||||
@ -542,6 +606,54 @@ class VAE:
|
||||
self.latent_channels = 3
|
||||
self.latent_dim = 2
|
||||
self.output_channels = 3
|
||||
elif "vocoder.activation_post.downsample.lowpass.filter" in sd: #MMAudio VAE
|
||||
sample_rate = 16000
|
||||
if sample_rate == 16000:
|
||||
mode = '16k'
|
||||
else:
|
||||
mode = '44k'
|
||||
|
||||
self.first_stage_model = comfy.ldm.mmaudio.vae.autoencoder.AudioAutoencoder(mode=mode)
|
||||
self.memory_used_encode = lambda shape, dtype: (30 * shape[2]) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (90 * shape[2] * 1411.2) * model_management.dtype_size(dtype)
|
||||
self.latent_channels = 20
|
||||
self.output_channels = 2
|
||||
self.upscale_ratio = 512 * (44100 / sample_rate)
|
||||
self.downscale_ratio = 512 * (44100 / sample_rate)
|
||||
self.latent_dim = 1
|
||||
self.process_output = lambda audio: audio
|
||||
self.process_input = lambda audio: audio
|
||||
self.working_dtypes = [torch.float32]
|
||||
self.crop_input = False
|
||||
elif "decoder.22.bias" in sd: # taehv, taew and lighttae
|
||||
self.latent_channels = sd["decoder.1.weight"].shape[1]
|
||||
self.latent_dim = 3
|
||||
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
|
||||
self.upscale_index_formula = (4, 16, 16)
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
|
||||
self.downscale_index_formula = (4, 16, 16)
|
||||
if self.latent_channels == 48: # Wan 2.2
|
||||
self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=None) # taehv doesn't need scaling
|
||||
self.process_input = lambda image: (_ for _ in ()).throw(NotImplementedError("This light tae doesn't support encoding currently"))
|
||||
self.process_output = lambda image: image
|
||||
self.memory_used_decode = lambda shape, dtype: (1800 * (max(1, (shape[-3] ** 0.7 * 0.1)) * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype))
|
||||
elif self.latent_channels == 32 and sd["decoder.22.bias"].shape[0] == 12: # lighttae_hv15
|
||||
self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=comfy.latent_formats.HunyuanVideo15)
|
||||
self.process_input = lambda image: (_ for _ in ()).throw(NotImplementedError("This light tae doesn't support encoding currently"))
|
||||
self.memory_used_decode = lambda shape, dtype: (1200 * (max(1, (shape[-3] ** 0.7 * 0.05)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype))
|
||||
else:
|
||||
if sd["decoder.1.weight"].dtype == torch.float16: # taehv currently only available in float16, so assume it's not lighttaew2_1 as otherwise state dicts are identical
|
||||
latent_format=comfy.latent_formats.HunyuanVideo
|
||||
else:
|
||||
latent_format=None # lighttaew2_1 doesn't need scaling
|
||||
self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=latent_format)
|
||||
self.process_input = self.process_output = lambda image: image
|
||||
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
|
||||
self.upscale_index_formula = (4, 8, 8)
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
|
||||
self.downscale_index_formula = (4, 8, 8)
|
||||
self.memory_used_encode = lambda shape, dtype: (700 * (max(1, (shape[-3] ** 0.66 * 0.11)) * shape[-2] * shape[-1]) * model_management.dtype_size(dtype))
|
||||
self.memory_used_decode = lambda shape, dtype: (50 * (max(1, (shape[-3] ** 0.65 * 0.26)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype))
|
||||
else:
|
||||
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
|
||||
self.first_stage_model = None
|
||||
@ -569,20 +681,44 @@ class VAE:
|
||||
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
|
||||
logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
|
||||
self.model_size()
|
||||
|
||||
def model_size(self):
|
||||
if self.size is not None:
|
||||
return self.size
|
||||
self.size = comfy.model_management.module_size(self.first_stage_model)
|
||||
return self.size
|
||||
|
||||
def get_ram_usage(self):
|
||||
return self.model_size()
|
||||
|
||||
def throw_exception_if_invalid(self):
|
||||
if self.first_stage_model is None:
|
||||
raise RuntimeError("ERROR: VAE is invalid: None\n\nIf the VAE is from a checkpoint loader node your checkpoint does not contain a valid VAE.")
|
||||
|
||||
def vae_encode_crop_pixels(self, pixels):
|
||||
downscale_ratio = self.spacial_compression_encode()
|
||||
if self.crop_input:
|
||||
downscale_ratio = self.spacial_compression_encode()
|
||||
|
||||
dims = pixels.shape[1:-1]
|
||||
for d in range(len(dims)):
|
||||
x = (dims[d] // downscale_ratio) * downscale_ratio
|
||||
x_offset = (dims[d] % downscale_ratio) // 2
|
||||
if x != dims[d]:
|
||||
pixels = pixels.narrow(d + 1, x_offset, x)
|
||||
dims = pixels.shape[1:-1]
|
||||
for d in range(len(dims)):
|
||||
x = (dims[d] // downscale_ratio) * downscale_ratio
|
||||
x_offset = (dims[d] % downscale_ratio) // 2
|
||||
if x != dims[d]:
|
||||
pixels = pixels.narrow(d + 1, x_offset, x)
|
||||
|
||||
if pixels.shape[-1] > self.output_channels:
|
||||
pixels = pixels[..., :self.output_channels]
|
||||
elif pixels.shape[-1] < self.output_channels:
|
||||
if self.pad_channel_value is not None:
|
||||
if isinstance(self.pad_channel_value, str):
|
||||
mode = self.pad_channel_value
|
||||
value = None
|
||||
else:
|
||||
mode = "constant"
|
||||
value = self.pad_channel_value
|
||||
|
||||
pixels = torch.nn.functional.pad(pixels, (0, self.output_channels - pixels.shape[-1]), mode=mode, value=value)
|
||||
return pixels
|
||||
|
||||
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
||||
@ -653,6 +789,8 @@ class VAE:
|
||||
self.throw_exception_if_invalid()
|
||||
pixel_samples = None
|
||||
do_tile = False
|
||||
if self.latent_dim == 2 and samples_in.ndim == 5:
|
||||
samples_in = samples_in[:, :, 0]
|
||||
try:
|
||||
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
|
||||
@ -868,12 +1006,20 @@ class CLIPType(Enum):
|
||||
OMNIGEN2 = 17
|
||||
QWEN_IMAGE = 18
|
||||
HUNYUAN_IMAGE = 19
|
||||
HUNYUAN_VIDEO_15 = 20
|
||||
OVIS = 21
|
||||
KANDINSKY5 = 22
|
||||
KANDINSKY5_IMAGE = 23
|
||||
NEWBIE = 24
|
||||
|
||||
|
||||
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
clip_data = []
|
||||
for p in ckpt_paths:
|
||||
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
|
||||
sd, metadata = comfy.utils.load_torch_file(p, safe_load=True, return_metadata=True)
|
||||
if model_options.get("custom_operations", None) is None:
|
||||
sd, metadata = comfy.utils.convert_old_quants(sd, model_prefix="", metadata=metadata)
|
||||
clip_data.append(sd)
|
||||
return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options)
|
||||
|
||||
|
||||
@ -890,6 +1036,13 @@ class TEModel(Enum):
|
||||
QWEN25_3B = 10
|
||||
QWEN25_7B = 11
|
||||
BYT5_SMALL_GLYPH = 12
|
||||
GEMMA_3_4B = 13
|
||||
MISTRAL3_24B = 14
|
||||
MISTRAL3_24B_PRUNED_FLUX2 = 15
|
||||
QWEN3_4B = 16
|
||||
QWEN3_2B = 17
|
||||
JINA_CLIP_2 = 18
|
||||
|
||||
|
||||
def detect_te_model(sd):
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
@ -898,6 +1051,8 @@ def detect_te_model(sd):
|
||||
return TEModel.CLIP_H
|
||||
if "text_model.encoder.layers.0.mlp.fc1.weight" in sd:
|
||||
return TEModel.CLIP_L
|
||||
if "model.encoder.layers.0.mixer.Wqkv.weight" in sd:
|
||||
return TEModel.JINA_CLIP_2
|
||||
if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
|
||||
weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
|
||||
if weight.shape[-1] == 4096:
|
||||
@ -912,6 +1067,8 @@ def detect_te_model(sd):
|
||||
return TEModel.BYT5_SMALL_GLYPH
|
||||
return TEModel.T5_BASE
|
||||
if 'model.layers.0.post_feedforward_layernorm.weight' in sd:
|
||||
if 'model.layers.0.self_attn.q_norm.weight' in sd:
|
||||
return TEModel.GEMMA_3_4B
|
||||
return TEModel.GEMMA_2_2B
|
||||
if 'model.layers.0.self_attn.k_proj.bias' in sd:
|
||||
weight = sd['model.layers.0.self_attn.k_proj.bias']
|
||||
@ -920,6 +1077,18 @@ def detect_te_model(sd):
|
||||
if weight.shape[0] == 512:
|
||||
return TEModel.QWEN25_7B
|
||||
if "model.layers.0.post_attention_layernorm.weight" in sd:
|
||||
weight = sd['model.layers.0.post_attention_layernorm.weight']
|
||||
if 'model.layers.0.self_attn.q_norm.weight' in sd:
|
||||
if weight.shape[0] == 2560:
|
||||
return TEModel.QWEN3_4B
|
||||
elif weight.shape[0] == 2048:
|
||||
return TEModel.QWEN3_2B
|
||||
if weight.shape[0] == 5120:
|
||||
if "model.layers.39.post_attention_layernorm.weight" in sd:
|
||||
return TEModel.MISTRAL3_24B
|
||||
else:
|
||||
return TEModel.MISTRAL3_24B_PRUNED_FLUX2
|
||||
|
||||
return TEModel.LLAMA3_8
|
||||
return None
|
||||
|
||||
@ -969,7 +1138,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif clip_type == CLIPType.HIDREAM:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
|
||||
@ -993,7 +1162,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
|
||||
elif clip_type == CLIPType.HIDREAM:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data),
|
||||
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None, llama_scaled_fp8=None)
|
||||
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
else: #CLIPType.MOCHI
|
||||
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
|
||||
@ -1016,9 +1185,13 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.lumina2.LuminaTokenizer
|
||||
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
|
||||
elif te_model == TEModel.GEMMA_3_4B:
|
||||
clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data), model_type="gemma3_4b")
|
||||
clip_target.tokenizer = comfy.text_encoders.lumina2.NTokenizer
|
||||
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
|
||||
elif te_model == TEModel.LLAMA3_8:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data),
|
||||
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None)
|
||||
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
elif te_model == TEModel.QWEN25_3B:
|
||||
clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data))
|
||||
@ -1030,13 +1203,26 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
else:
|
||||
clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer
|
||||
elif te_model == TEModel.MISTRAL3_24B or te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2:
|
||||
clip_target.clip = comfy.text_encoders.flux.flux2_te(**llama_detect(clip_data), pruned=te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2)
|
||||
clip_target.tokenizer = comfy.text_encoders.flux.Flux2Tokenizer
|
||||
tokenizer_data["tekken_model"] = clip_data[0].get("tekken_model", None)
|
||||
elif te_model == TEModel.QWEN3_4B:
|
||||
clip_target.clip = comfy.text_encoders.z_image.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.z_image.ZImageTokenizer
|
||||
elif te_model == TEModel.QWEN3_2B:
|
||||
clip_target.clip = comfy.text_encoders.ovis.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.ovis.OvisTokenizer
|
||||
elif te_model == TEModel.JINA_CLIP_2:
|
||||
clip_target.clip = comfy.text_encoders.jina_clip_2.JinaClip2TextModelWrapper
|
||||
clip_target.tokenizer = comfy.text_encoders.jina_clip_2.JinaClip2TokenizerWrapper
|
||||
else:
|
||||
# clip_l
|
||||
if clip_type == CLIPType.SD3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif clip_type == CLIPType.HIDREAM:
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
|
||||
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None)
|
||||
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
|
||||
else:
|
||||
clip_target.clip = sd1_clip.SD1ClipModel
|
||||
@ -1076,6 +1262,26 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
elif clip_type == CLIPType.HUNYUAN_IMAGE:
|
||||
clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer
|
||||
elif clip_type == CLIPType.HUNYUAN_VIDEO_15:
|
||||
clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer
|
||||
elif clip_type == CLIPType.KANDINSKY5:
|
||||
clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5Tokenizer
|
||||
elif clip_type == CLIPType.KANDINSKY5_IMAGE:
|
||||
clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage
|
||||
elif clip_type == CLIPType.NEWBIE:
|
||||
clip_target.clip = comfy.text_encoders.newbie.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.newbie.NewBieTokenizer
|
||||
if "model.layers.0.self_attn.q_norm.weight" in clip_data[0]:
|
||||
clip_data_gemma = clip_data[0]
|
||||
clip_data_jina = clip_data[1]
|
||||
else:
|
||||
clip_data_gemma = clip_data[1]
|
||||
clip_data_jina = clip_data[0]
|
||||
tokenizer_data["gemma_spiece_model"] = clip_data_gemma.get("spiece_model", None)
|
||||
tokenizer_data["jina_spiece_model"] = clip_data_jina.get("spiece_model", None)
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLClipModel
|
||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||
@ -1091,14 +1297,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
parameters += comfy.utils.calculate_parameters(c)
|
||||
tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options)
|
||||
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, model_options=model_options)
|
||||
for c in clip_data:
|
||||
m, u = clip.load_sd(c)
|
||||
if len(m) > 0:
|
||||
logging.warning("clip missing: {}".format(m))
|
||||
|
||||
if len(u) > 0:
|
||||
logging.debug("clip unexpected: {}".format(u))
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, state_dict=clip_data, model_options=model_options)
|
||||
return clip
|
||||
|
||||
def load_gligen(ckpt_path):
|
||||
@ -1157,6 +1356,10 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
|
||||
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
|
||||
load_device = model_management.get_torch_device()
|
||||
|
||||
custom_operations = model_options.get("custom_operations", None)
|
||||
if custom_operations is None:
|
||||
sd, metadata = comfy.utils.convert_old_quants(sd, diffusion_model_prefix, metadata=metadata)
|
||||
|
||||
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata)
|
||||
if model_config is None:
|
||||
logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.")
|
||||
@ -1165,18 +1368,22 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
|
||||
return None
|
||||
return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used'
|
||||
|
||||
|
||||
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
||||
if model_config.scaled_fp8 is not None:
|
||||
if model_config.quant_config is not None:
|
||||
weight_dtype = None
|
||||
|
||||
model_config.custom_operations = model_options.get("custom_operations", None)
|
||||
if custom_operations is not None:
|
||||
model_config.custom_operations = custom_operations
|
||||
|
||||
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
|
||||
|
||||
if unet_dtype is None:
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype)
|
||||
|
||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
||||
if model_config.quant_config is not None:
|
||||
manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes)
|
||||
else:
|
||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
||||
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
||||
|
||||
if model_config.clip_vision_prefix is not None:
|
||||
@ -1194,22 +1401,33 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
|
||||
vae = VAE(sd=vae_sd, metadata=metadata)
|
||||
|
||||
if output_clip:
|
||||
if te_model_options.get("custom_operations", None) is None:
|
||||
scaled_fp8_list = []
|
||||
for k in list(sd.keys()): # Convert scaled fp8 to mixed ops
|
||||
if k.endswith(".scaled_fp8"):
|
||||
scaled_fp8_list.append(k[:-len("scaled_fp8")])
|
||||
|
||||
if len(scaled_fp8_list) > 0:
|
||||
out_sd = {}
|
||||
for k in sd:
|
||||
skip = False
|
||||
for pref in scaled_fp8_list:
|
||||
skip = skip or k.startswith(pref)
|
||||
if not skip:
|
||||
out_sd[k] = sd[k]
|
||||
|
||||
for pref in scaled_fp8_list:
|
||||
quant_sd, qmetadata = comfy.utils.convert_old_quants(sd, pref, metadata={})
|
||||
for k in quant_sd:
|
||||
out_sd[k] = quant_sd[k]
|
||||
sd = out_sd
|
||||
|
||||
clip_target = model_config.clip_target(state_dict=sd)
|
||||
if clip_target is not None:
|
||||
clip_sd = model_config.process_clip_state_dict(sd)
|
||||
if len(clip_sd) > 0:
|
||||
parameters = comfy.utils.calculate_parameters(clip_sd)
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options)
|
||||
m, u = clip.load_sd(clip_sd, full_model=True)
|
||||
if len(m) > 0:
|
||||
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
|
||||
if len(m_filter) > 0:
|
||||
logging.warning("clip missing: {}".format(m))
|
||||
else:
|
||||
logging.debug("clip missing: {}".format(m))
|
||||
|
||||
if len(u) > 0:
|
||||
logging.debug("clip unexpected {}:".format(u))
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, state_dict=clip_sd, model_options=te_model_options)
|
||||
else:
|
||||
logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
|
||||
|
||||
@ -1226,7 +1444,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
|
||||
return (model_patcher, clip, vae, clipvision)
|
||||
|
||||
|
||||
def load_diffusion_model_state_dict(sd, model_options={}):
|
||||
def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
|
||||
"""
|
||||
Loads a UNet diffusion model from a state dictionary, supporting both diffusers and regular formats.
|
||||
|
||||
@ -1256,11 +1474,14 @@ def load_diffusion_model_state_dict(sd, model_options={}):
|
||||
if len(temp_sd) > 0:
|
||||
sd = temp_sd
|
||||
|
||||
custom_operations = model_options.get("custom_operations", None)
|
||||
if custom_operations is None:
|
||||
sd, metadata = comfy.utils.convert_old_quants(sd, "", metadata=metadata)
|
||||
parameters = comfy.utils.calculate_parameters(sd)
|
||||
weight_dtype = comfy.utils.weight_dtype(sd)
|
||||
|
||||
load_device = model_management.get_torch_device()
|
||||
model_config = model_detection.model_config_from_unet(sd, "")
|
||||
model_config = model_detection.model_config_from_unet(sd, "", metadata=metadata)
|
||||
|
||||
if model_config is not None:
|
||||
new_sd = sd
|
||||
@ -1286,7 +1507,7 @@ def load_diffusion_model_state_dict(sd, model_options={}):
|
||||
|
||||
offload_device = model_management.unet_offload_device()
|
||||
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
||||
if model_config.scaled_fp8 is not None:
|
||||
if model_config.quant_config is not None:
|
||||
weight_dtype = None
|
||||
|
||||
if dtype is None:
|
||||
@ -1294,9 +1515,15 @@ def load_diffusion_model_state_dict(sd, model_options={}):
|
||||
else:
|
||||
unet_dtype = dtype
|
||||
|
||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
||||
if model_config.quant_config is not None:
|
||||
manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes)
|
||||
else:
|
||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
||||
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
||||
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
|
||||
|
||||
if custom_operations is not None:
|
||||
model_config.custom_operations = custom_operations
|
||||
|
||||
if model_options.get("fp8_optimizations", False):
|
||||
model_config.optimizations["fp8"] = True
|
||||
|
||||
@ -1310,8 +1537,8 @@ def load_diffusion_model_state_dict(sd, model_options={}):
|
||||
|
||||
|
||||
def load_diffusion_model(unet_path, model_options={}):
|
||||
sd = comfy.utils.load_torch_file(unet_path)
|
||||
model = load_diffusion_model_state_dict(sd, model_options=model_options)
|
||||
sd, metadata = comfy.utils.load_torch_file(unet_path, return_metadata=True)
|
||||
model = load_diffusion_model_state_dict(sd, model_options=model_options, metadata=metadata)
|
||||
if model is None:
|
||||
logging.error("ERROR UNSUPPORTED DIFFUSION MODEL {}".format(unet_path))
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}\n{}".format(unet_path, model_detection_error_hint(unet_path, sd)))
|
||||
@ -1335,6 +1562,9 @@ def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, m
|
||||
if vae is not None:
|
||||
vae_sd = vae.get_sd()
|
||||
|
||||
if metadata is None:
|
||||
metadata = {}
|
||||
|
||||
model_management.load_models_gpu(load_models, force_patch_weights=True)
|
||||
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
|
||||
sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)
|
||||
|
||||
@ -90,7 +90,6 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False,
|
||||
return_projected_pooled=True, return_attention_masks=False, model_options={}): # clip-vit-base-patch32
|
||||
super().__init__()
|
||||
assert layer in self.LAYERS
|
||||
|
||||
if textmodel_json_config is None:
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
|
||||
@ -108,19 +107,17 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
config[k] = v
|
||||
|
||||
operations = model_options.get("custom_operations", None)
|
||||
scaled_fp8 = None
|
||||
quant_config = model_options.get("quantization_metadata", None)
|
||||
|
||||
if operations is None:
|
||||
scaled_fp8 = model_options.get("scaled_fp8", None)
|
||||
if scaled_fp8 is not None:
|
||||
operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8)
|
||||
if quant_config is not None:
|
||||
operations = comfy.ops.mixed_precision_ops(quant_config, dtype, full_precision_mm=True)
|
||||
logging.info("Using MixedPrecisionOps for text encoder")
|
||||
else:
|
||||
operations = comfy.ops.manual_cast
|
||||
|
||||
self.operations = operations
|
||||
self.transformer = model_class(config, dtype, device, self.operations)
|
||||
if scaled_fp8 is not None:
|
||||
self.transformer.scaled_fp8 = torch.nn.Parameter(torch.tensor([], dtype=scaled_fp8))
|
||||
|
||||
self.num_layers = self.transformer.num_layers
|
||||
|
||||
@ -138,6 +135,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
self.layer_norm_hidden_state = layer_norm_hidden_state
|
||||
self.return_projected_pooled = return_projected_pooled
|
||||
self.return_attention_masks = return_attention_masks
|
||||
self.execution_device = None
|
||||
|
||||
if layer == "hidden":
|
||||
assert layer_idx is not None
|
||||
@ -154,7 +152,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
def set_clip_options(self, options):
|
||||
layer_idx = options.get("layer", self.layer_idx)
|
||||
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
|
||||
if self.layer == "all":
|
||||
self.execution_device = options.get("execution_device", self.execution_device)
|
||||
if isinstance(self.layer, list) or self.layer == "all":
|
||||
pass
|
||||
elif layer_idx is None or abs(layer_idx) > self.num_layers:
|
||||
self.layer = "last"
|
||||
@ -166,6 +165,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
self.layer = self.options_default[0]
|
||||
self.layer_idx = self.options_default[1]
|
||||
self.return_projected_pooled = self.options_default[2]
|
||||
self.execution_device = None
|
||||
|
||||
def process_tokens(self, tokens, device):
|
||||
end_token = self.special_tokens.get("end", None)
|
||||
@ -249,14 +249,20 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens, embeds_info
|
||||
|
||||
def forward(self, tokens):
|
||||
device = self.transformer.get_input_embeddings().weight.device
|
||||
if self.execution_device is None:
|
||||
device = self.transformer.get_input_embeddings().weight.device
|
||||
else:
|
||||
device = self.execution_device
|
||||
|
||||
embeds, attention_mask, num_tokens, embeds_info = self.process_tokens(tokens, device)
|
||||
|
||||
attention_mask_model = None
|
||||
if self.enable_attention_masks:
|
||||
attention_mask_model = attention_mask
|
||||
|
||||
if self.layer == "all":
|
||||
if isinstance(self.layer, list):
|
||||
intermediate_output = self.layer
|
||||
elif self.layer == "all":
|
||||
intermediate_output = "all"
|
||||
else:
|
||||
intermediate_output = self.layer_idx
|
||||
@ -460,7 +466,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
|
||||
return embed_out
|
||||
|
||||
class SDTokenizer:
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, tokenizer_data={}, tokenizer_args={}):
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, pad_left=False, disable_weights=False, tokenizer_data={}, tokenizer_args={}):
|
||||
if tokenizer_path is None:
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
||||
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
|
||||
@ -468,6 +474,7 @@ class SDTokenizer:
|
||||
self.min_length = tokenizer_data.get("{}_min_length".format(embedding_key), min_length)
|
||||
self.end_token = None
|
||||
self.min_padding = min_padding
|
||||
self.pad_left = pad_left
|
||||
|
||||
empty = self.tokenizer('')["input_ids"]
|
||||
self.tokenizer_adds_end_token = has_end_token
|
||||
@ -506,6 +513,8 @@ class SDTokenizer:
|
||||
self.embedding_size = embedding_size
|
||||
self.embedding_key = embedding_key
|
||||
|
||||
self.disable_weights = disable_weights
|
||||
|
||||
def _try_get_embedding(self, embedding_name:str):
|
||||
'''
|
||||
Takes a potential embedding name and tries to retrieve it.
|
||||
@ -522,6 +531,12 @@ class SDTokenizer:
|
||||
return (embed, "{} {}".format(embedding_name[len(stripped):], leftover))
|
||||
return (embed, leftover)
|
||||
|
||||
def pad_tokens(self, tokens, amount):
|
||||
if self.pad_left:
|
||||
for i in range(amount):
|
||||
tokens.insert(0, (self.pad_token, 1.0, 0))
|
||||
else:
|
||||
tokens.extend([(self.pad_token, 1.0, 0)] * amount)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, tokenizer_options={}, **kwargs):
|
||||
'''
|
||||
@ -534,7 +549,7 @@ class SDTokenizer:
|
||||
min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding)
|
||||
|
||||
text = escape_important(text)
|
||||
if kwargs.get("disable_weights", False):
|
||||
if kwargs.get("disable_weights", self.disable_weights):
|
||||
parsed_weights = [(text, 1.0)]
|
||||
else:
|
||||
parsed_weights = token_weights(text, 1.0)
|
||||
@ -600,7 +615,7 @@ class SDTokenizer:
|
||||
if self.end_token is not None:
|
||||
batch.append((self.end_token, 1.0, 0))
|
||||
if self.pad_to_max_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (remaining_length))
|
||||
self.pad_tokens(batch, remaining_length)
|
||||
#start new batch
|
||||
batch = []
|
||||
if self.start_token is not None:
|
||||
@ -614,11 +629,11 @@ class SDTokenizer:
|
||||
if self.end_token is not None:
|
||||
batch.append((self.end_token, 1.0, 0))
|
||||
if min_padding is not None:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * min_padding)
|
||||
self.pad_tokens(batch, min_padding)
|
||||
if self.pad_to_max_length and len(batch) < self.max_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
|
||||
self.pad_tokens(batch, self.max_length - len(batch))
|
||||
if min_length is not None and len(batch) < min_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (min_length - len(batch)))
|
||||
self.pad_tokens(batch, min_length - len(batch))
|
||||
|
||||
if not return_word_ids:
|
||||
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
|
||||
|
||||
@ -21,11 +21,14 @@ import comfy.text_encoders.ace
|
||||
import comfy.text_encoders.omnigen2
|
||||
import comfy.text_encoders.qwen_image
|
||||
import comfy.text_encoders.hunyuan_image
|
||||
import comfy.text_encoders.kandinsky5
|
||||
import comfy.text_encoders.z_image
|
||||
|
||||
from . import supported_models_base
|
||||
from . import latent_formats
|
||||
|
||||
from . import diffusers_convert
|
||||
import comfy.model_management
|
||||
|
||||
class SD15(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
@ -539,7 +542,7 @@ class SD3(supported_models_base.BASE):
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.SD3
|
||||
|
||||
memory_usage_factor = 1.2
|
||||
memory_usage_factor = 1.6
|
||||
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
@ -741,6 +744,37 @@ class FluxSchnell(Flux):
|
||||
out = model_base.Flux(self, model_type=model_base.ModelType.FLOW, device=device)
|
||||
return out
|
||||
|
||||
class Flux2(Flux):
|
||||
unet_config = {
|
||||
"image_model": "flux2",
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 2.02,
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Flux2
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
self.memory_usage_factor = self.memory_usage_factor * (2.0 * 2.0) * 2.36
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Flux2(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return None # TODO
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect))
|
||||
|
||||
class GenmoMochi(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "mochi_preview",
|
||||
@ -932,7 +966,7 @@ class CosmosT2IPredict2(supported_models_base.BASE):
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.9
|
||||
self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.95
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.CosmosPredict2(self, device=device)
|
||||
@ -963,7 +997,7 @@ class Lumina2(supported_models_base.BASE):
|
||||
"shift": 6.0,
|
||||
}
|
||||
|
||||
memory_usage_factor = 1.2
|
||||
memory_usage_factor = 1.4
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Flux
|
||||
@ -982,6 +1016,32 @@ class Lumina2(supported_models_base.BASE):
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}gemma2_2b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.lumina2.LuminaTokenizer, comfy.text_encoders.lumina2.te(**hunyuan_detect))
|
||||
|
||||
class ZImage(Lumina2):
|
||||
unet_config = {
|
||||
"image_model": "lumina2",
|
||||
"dim": 3840,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"multiplier": 1.0,
|
||||
"shift": 3.0,
|
||||
}
|
||||
|
||||
memory_usage_factor = 2.0
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
if comfy.model_management.extended_fp16_support():
|
||||
self.supported_inference_dtypes = self.supported_inference_dtypes.copy()
|
||||
self.supported_inference_dtypes.insert(1, torch.float16)
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_4b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.z_image.ZImageTokenizer, comfy.text_encoders.z_image.te(**hunyuan_detect))
|
||||
|
||||
class WAN21_T2V(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
@ -1236,7 +1296,7 @@ class ChromaRadiance(Chroma):
|
||||
latent_format = comfy.latent_formats.ChromaRadiance
|
||||
|
||||
# Pixel-space model, no spatial compression for model input.
|
||||
memory_usage_factor = 0.038
|
||||
memory_usage_factor = 0.044
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
return model_base.ChromaRadiance(self, device=device)
|
||||
@ -1279,7 +1339,7 @@ class Omnigen2(supported_models_base.BASE):
|
||||
"shift": 2.6,
|
||||
}
|
||||
|
||||
memory_usage_factor = 1.65 #TODO
|
||||
memory_usage_factor = 1.95 #TODO
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Flux
|
||||
@ -1344,7 +1404,7 @@ class HunyuanImage21(HunyuanVideo):
|
||||
|
||||
latent_format = latent_formats.HunyuanImage21
|
||||
|
||||
memory_usage_factor = 7.7
|
||||
memory_usage_factor = 8.7
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
@ -1374,6 +1434,108 @@ class HunyuanImage21Refiner(HunyuanVideo):
|
||||
out = model_base.HunyuanImage21Refiner(self, device=device)
|
||||
return out
|
||||
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage]
|
||||
class HunyuanVideo15(HunyuanVideo):
|
||||
unet_config = {
|
||||
"image_model": "hunyuan_video",
|
||||
"vision_in_dim": 1152,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 7.0,
|
||||
}
|
||||
memory_usage_factor = 4.0 #TODO
|
||||
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
|
||||
latent_format = latent_formats.HunyuanVideo15
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.HunyuanVideo15(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect))
|
||||
|
||||
|
||||
class HunyuanVideo15_SR_Distilled(HunyuanVideo):
|
||||
unet_config = {
|
||||
"image_model": "hunyuan_video",
|
||||
"vision_in_dim": 1152,
|
||||
"in_channels": 98,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 2.0,
|
||||
}
|
||||
memory_usage_factor = 4.0 #TODO
|
||||
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
|
||||
latent_format = latent_formats.HunyuanVideo15
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.HunyuanVideo15_SR_Distilled(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect))
|
||||
|
||||
|
||||
class Kandinsky5(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "kandinsky5",
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 10.0,
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.HunyuanVideo
|
||||
|
||||
memory_usage_factor = 1.25 #TODO
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Kandinsky5(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5Tokenizer, comfy.text_encoders.kandinsky5.te(**hunyuan_detect))
|
||||
|
||||
|
||||
class Kandinsky5Image(Kandinsky5):
|
||||
unet_config = {
|
||||
"image_model": "kandinsky5",
|
||||
"model_dim": 2560,
|
||||
"visual_embed_dim": 64,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 3.0,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.Flux
|
||||
memory_usage_factor = 1.25 #TODO
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Kandinsky5Image(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect))
|
||||
|
||||
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5]
|
||||
|
||||
models += [SVD_img2vid]
|
||||
|
||||
@ -17,6 +17,7 @@
|
||||
"""
|
||||
|
||||
import torch
|
||||
import logging
|
||||
from . import model_base
|
||||
from . import utils
|
||||
from . import latent_formats
|
||||
@ -49,7 +50,7 @@ class BASE:
|
||||
|
||||
manual_cast_dtype = None
|
||||
custom_operations = None
|
||||
scaled_fp8 = None
|
||||
quant_config = None # quantization configuration for mixed precision
|
||||
optimizations = {"fp8": False}
|
||||
|
||||
@classmethod
|
||||
@ -117,3 +118,7 @@ class BASE:
|
||||
def set_inference_dtype(self, dtype, manual_cast_dtype):
|
||||
self.unet_config['dtype'] = dtype
|
||||
self.manual_cast_dtype = manual_cast_dtype
|
||||
|
||||
def __getattr__(self, name):
|
||||
logging.warning("\nWARNING, you accessed {} from the model config object which doesn't exist. Please fix your code.\n".format(name))
|
||||
return None
|
||||
|
||||
171
comfy/taesd/taehv.py
Normal file
171
comfy/taesd/taehv.py
Normal file
@ -0,0 +1,171 @@
|
||||
# Tiny AutoEncoder for HunyuanVideo and WanVideo https://github.com/madebyollin/taehv
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from tqdm.auto import tqdm
|
||||
from collections import namedtuple, deque
|
||||
|
||||
import comfy.ops
|
||||
operations=comfy.ops.disable_weight_init
|
||||
|
||||
DecoderResult = namedtuple("DecoderResult", ("frame", "memory"))
|
||||
TWorkItem = namedtuple("TWorkItem", ("input_tensor", "block_index"))
|
||||
|
||||
def conv(n_in, n_out, **kwargs):
|
||||
return operations.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
|
||||
|
||||
class Clamp(nn.Module):
|
||||
def forward(self, x):
|
||||
return torch.tanh(x / 3) * 3
|
||||
|
||||
class MemBlock(nn.Module):
|
||||
def __init__(self, n_in, n_out, act_func):
|
||||
super().__init__()
|
||||
self.conv = nn.Sequential(conv(n_in * 2, n_out), act_func, conv(n_out, n_out), act_func, conv(n_out, n_out))
|
||||
self.skip = operations.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
|
||||
self.act = act_func
|
||||
def forward(self, x, past):
|
||||
return self.act(self.conv(torch.cat([x, past], 1)) + self.skip(x))
|
||||
|
||||
class TPool(nn.Module):
|
||||
def __init__(self, n_f, stride):
|
||||
super().__init__()
|
||||
self.stride = stride
|
||||
self.conv = operations.Conv2d(n_f*stride,n_f, 1, bias=False)
|
||||
def forward(self, x):
|
||||
_NT, C, H, W = x.shape
|
||||
return self.conv(x.reshape(-1, self.stride * C, H, W))
|
||||
|
||||
class TGrow(nn.Module):
|
||||
def __init__(self, n_f, stride):
|
||||
super().__init__()
|
||||
self.stride = stride
|
||||
self.conv = operations.Conv2d(n_f, n_f*stride, 1, bias=False)
|
||||
def forward(self, x):
|
||||
_NT, C, H, W = x.shape
|
||||
x = self.conv(x)
|
||||
return x.reshape(-1, C, H, W)
|
||||
|
||||
def apply_model_with_memblocks(model, x, parallel, show_progress_bar):
|
||||
|
||||
B, T, C, H, W = x.shape
|
||||
if parallel:
|
||||
x = x.reshape(B*T, C, H, W)
|
||||
# parallel over input timesteps, iterate over blocks
|
||||
for b in tqdm(model, disable=not show_progress_bar):
|
||||
if isinstance(b, MemBlock):
|
||||
BT, C, H, W = x.shape
|
||||
T = BT // B
|
||||
_x = x.reshape(B, T, C, H, W)
|
||||
mem = F.pad(_x, (0,0,0,0,0,0,1,0), value=0)[:,:T].reshape(x.shape)
|
||||
x = b(x, mem)
|
||||
else:
|
||||
x = b(x)
|
||||
BT, C, H, W = x.shape
|
||||
T = BT // B
|
||||
x = x.view(B, T, C, H, W)
|
||||
else:
|
||||
out = []
|
||||
work_queue = deque([TWorkItem(xt, 0) for t, xt in enumerate(x.reshape(B, T * C, H, W).chunk(T, dim=1))])
|
||||
progress_bar = tqdm(range(T), disable=not show_progress_bar)
|
||||
mem = [None] * len(model)
|
||||
while work_queue:
|
||||
xt, i = work_queue.popleft()
|
||||
if i == 0:
|
||||
progress_bar.update(1)
|
||||
if i == len(model):
|
||||
out.append(xt)
|
||||
del xt
|
||||
else:
|
||||
b = model[i]
|
||||
if isinstance(b, MemBlock):
|
||||
if mem[i] is None:
|
||||
xt_new = b(xt, xt * 0)
|
||||
mem[i] = xt.detach().clone()
|
||||
else:
|
||||
xt_new = b(xt, mem[i])
|
||||
mem[i] = xt.detach().clone()
|
||||
del xt
|
||||
work_queue.appendleft(TWorkItem(xt_new, i+1))
|
||||
elif isinstance(b, TPool):
|
||||
if mem[i] is None:
|
||||
mem[i] = []
|
||||
mem[i].append(xt.detach().clone())
|
||||
if len(mem[i]) == b.stride:
|
||||
B, C, H, W = xt.shape
|
||||
xt = b(torch.cat(mem[i], 1).view(B*b.stride, C, H, W))
|
||||
mem[i] = []
|
||||
work_queue.appendleft(TWorkItem(xt, i+1))
|
||||
elif isinstance(b, TGrow):
|
||||
xt = b(xt)
|
||||
NT, C, H, W = xt.shape
|
||||
for xt_next in reversed(xt.view(B, b.stride*C, H, W).chunk(b.stride, 1)):
|
||||
work_queue.appendleft(TWorkItem(xt_next, i+1))
|
||||
del xt
|
||||
else:
|
||||
xt = b(xt)
|
||||
work_queue.appendleft(TWorkItem(xt, i+1))
|
||||
progress_bar.close()
|
||||
x = torch.stack(out, 1)
|
||||
return x
|
||||
|
||||
|
||||
class TAEHV(nn.Module):
|
||||
def __init__(self, latent_channels, parallel=False, decoder_time_upscale=(True, True), decoder_space_upscale=(True, True, True), latent_format=None, show_progress_bar=True):
|
||||
super().__init__()
|
||||
self.image_channels = 3
|
||||
self.patch_size = 1
|
||||
self.latent_channels = latent_channels
|
||||
self.parallel = parallel
|
||||
self.latent_format = latent_format
|
||||
self.show_progress_bar = show_progress_bar
|
||||
self.process_in = latent_format().process_in if latent_format is not None else (lambda x: x)
|
||||
self.process_out = latent_format().process_out if latent_format is not None else (lambda x: x)
|
||||
if self.latent_channels in [48, 32]: # Wan 2.2 and HunyuanVideo1.5
|
||||
self.patch_size = 2
|
||||
if self.latent_channels == 32: # HunyuanVideo1.5
|
||||
act_func = nn.LeakyReLU(0.2, inplace=True)
|
||||
else: # HunyuanVideo, Wan 2.1
|
||||
act_func = nn.ReLU(inplace=True)
|
||||
|
||||
self.encoder = nn.Sequential(
|
||||
conv(self.image_channels*self.patch_size**2, 64), act_func,
|
||||
TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func),
|
||||
TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func),
|
||||
TPool(64, 1), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func),
|
||||
conv(64, self.latent_channels),
|
||||
)
|
||||
n_f = [256, 128, 64, 64]
|
||||
self.frames_to_trim = 2**sum(decoder_time_upscale) - 1
|
||||
self.decoder = nn.Sequential(
|
||||
Clamp(), conv(self.latent_channels, n_f[0]), act_func,
|
||||
MemBlock(n_f[0], n_f[0], act_func), MemBlock(n_f[0], n_f[0], act_func), MemBlock(n_f[0], n_f[0], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[0] else 1), TGrow(n_f[0], 1), conv(n_f[0], n_f[1], bias=False),
|
||||
MemBlock(n_f[1], n_f[1], act_func), MemBlock(n_f[1], n_f[1], act_func), MemBlock(n_f[1], n_f[1], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[1] else 1), TGrow(n_f[1], 2 if decoder_time_upscale[0] else 1), conv(n_f[1], n_f[2], bias=False),
|
||||
MemBlock(n_f[2], n_f[2], act_func), MemBlock(n_f[2], n_f[2], act_func), MemBlock(n_f[2], n_f[2], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[2] else 1), TGrow(n_f[2], 2 if decoder_time_upscale[1] else 1), conv(n_f[2], n_f[3], bias=False),
|
||||
act_func, conv(n_f[3], self.image_channels*self.patch_size**2),
|
||||
)
|
||||
@property
|
||||
def show_progress_bar(self):
|
||||
return self._show_progress_bar
|
||||
|
||||
@show_progress_bar.setter
|
||||
def show_progress_bar(self, value):
|
||||
self._show_progress_bar = value
|
||||
|
||||
def encode(self, x, **kwargs):
|
||||
if self.patch_size > 1: x = F.pixel_unshuffle(x, self.patch_size)
|
||||
x = x.movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W]
|
||||
if x.shape[1] % 4 != 0:
|
||||
# pad at end to multiple of 4
|
||||
n_pad = 4 - x.shape[1] % 4
|
||||
padding = x[:, -1:].repeat_interleave(n_pad, dim=1)
|
||||
x = torch.cat([x, padding], 1)
|
||||
x = apply_model_with_memblocks(self.encoder, x, self.parallel, self.show_progress_bar).movedim(2, 1)
|
||||
return self.process_out(x)
|
||||
|
||||
def decode(self, x, **kwargs):
|
||||
x = self.process_in(x).movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W]
|
||||
x = apply_model_with_memblocks(self.decoder, x, self.parallel, self.show_progress_bar)
|
||||
if self.patch_size > 1: x = F.pixel_shuffle(x, self.patch_size)
|
||||
return x[:, self.frames_to_trim:].movedim(2, 1)
|
||||
@ -7,10 +7,10 @@ from transformers import T5TokenizerFast
|
||||
class T5XXLModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_old_config_xxl.json")
|
||||
t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None)
|
||||
if t5xxl_scaled_fp8 is not None:
|
||||
t5xxl_quantization_metadata = model_options.get("t5xxl_quantization_metadata", None)
|
||||
if t5xxl_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = t5xxl_scaled_fp8
|
||||
model_options["quantization_metadata"] = t5xxl_quantization_metadata
|
||||
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, zero_out_masked=attention_mask, model_options=model_options)
|
||||
|
||||
@ -30,12 +30,12 @@ class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
|
||||
|
||||
|
||||
def te(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||||
def te(dtype_t5=None, t5_quantization_metadata=None):
|
||||
class CosmosTEModel_(CosmosT5XXL):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
if t5_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
|
||||
if dtype is None:
|
||||
dtype = dtype_t5
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
|
||||
@ -1,10 +1,13 @@
|
||||
from comfy import sd1_clip
|
||||
import comfy.text_encoders.t5
|
||||
import comfy.text_encoders.sd3_clip
|
||||
import comfy.text_encoders.llama
|
||||
import comfy.model_management
|
||||
from transformers import T5TokenizerFast
|
||||
from transformers import T5TokenizerFast, LlamaTokenizerFast
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
import base64
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
@ -60,11 +63,112 @@ class FluxClipModel(torch.nn.Module):
|
||||
else:
|
||||
return self.t5xxl.load_sd(sd)
|
||||
|
||||
def flux_clip(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||||
def flux_clip(dtype_t5=None, t5_quantization_metadata=None):
|
||||
class FluxClipModel_(FluxClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
if t5_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
|
||||
super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options)
|
||||
return FluxClipModel_
|
||||
|
||||
def load_mistral_tokenizer(data):
|
||||
if torch.is_tensor(data):
|
||||
data = data.numpy().tobytes()
|
||||
|
||||
try:
|
||||
from transformers.integrations.mistral import MistralConverter
|
||||
except ModuleNotFoundError:
|
||||
from transformers.models.pixtral.convert_pixtral_weights_to_hf import MistralConverter
|
||||
|
||||
mistral_vocab = json.loads(data)
|
||||
|
||||
special_tokens = {}
|
||||
vocab = {}
|
||||
|
||||
max_vocab = mistral_vocab["config"]["default_vocab_size"]
|
||||
max_vocab -= len(mistral_vocab["special_tokens"])
|
||||
|
||||
for w in mistral_vocab["vocab"]:
|
||||
r = w["rank"]
|
||||
if r >= max_vocab:
|
||||
continue
|
||||
|
||||
vocab[base64.b64decode(w["token_bytes"])] = r
|
||||
|
||||
for w in mistral_vocab["special_tokens"]:
|
||||
if "token_bytes" in w:
|
||||
special_tokens[base64.b64decode(w["token_bytes"])] = w["rank"]
|
||||
else:
|
||||
special_tokens[w["token_str"]] = w["rank"]
|
||||
|
||||
all_special = []
|
||||
for v in special_tokens:
|
||||
all_special.append(v)
|
||||
|
||||
special_tokens.update(vocab)
|
||||
vocab = special_tokens
|
||||
return {"tokenizer_object": MistralConverter(vocab=vocab, additional_special_tokens=all_special).converted(), "legacy": False}
|
||||
|
||||
class MistralTokenizerClass:
|
||||
@staticmethod
|
||||
def from_pretrained(path, **kwargs):
|
||||
return LlamaTokenizerFast(**kwargs)
|
||||
|
||||
class Mistral3Tokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
self.tekken_data = tokenizer_data.get("tekken_model", None)
|
||||
super().__init__("", pad_with_end=False, embedding_size=5120, embedding_key='mistral3_24b', tokenizer_class=MistralTokenizerClass, has_end_token=False, pad_to_max_length=False, pad_token=11, max_length=99999999, min_length=1, pad_left=True, tokenizer_args=load_mistral_tokenizer(self.tekken_data), tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"tekken_model": self.tekken_data}
|
||||
|
||||
class Flux2Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="mistral3_24b", tokenizer=Mistral3Tokenizer)
|
||||
self.llama_template = '[SYSTEM_PROMPT]You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object\nattribution and actions without speculation.[/SYSTEM_PROMPT][INST]{}[/INST]'
|
||||
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs):
|
||||
if llama_template is None:
|
||||
llama_text = self.llama_template.format(text)
|
||||
else:
|
||||
llama_text = llama_template.format(text)
|
||||
|
||||
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs)
|
||||
return tokens
|
||||
|
||||
class Mistral3_24BModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer=[10, 20, 30], layer_idx=None, dtype=None, attention_mask=True, model_options={}):
|
||||
textmodel_json_config = {}
|
||||
num_layers = model_options.get("num_layers", None)
|
||||
if num_layers is not None:
|
||||
textmodel_json_config["num_hidden_layers"] = num_layers
|
||||
if num_layers < 40:
|
||||
textmodel_json_config["final_norm"] = False
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 1, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Mistral3Small24B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
class Flux2TEModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, name="mistral3_24b", clip_model=Mistral3_24BModel):
|
||||
super().__init__(device=device, dtype=dtype, name=name, clip_model=clip_model, model_options=model_options)
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
out, pooled, extra = super().encode_token_weights(token_weight_pairs)
|
||||
|
||||
out = torch.stack((out[:, 0], out[:, 1], out[:, 2]), dim=1)
|
||||
out = out.movedim(1, 2)
|
||||
out = out.reshape(out.shape[0], out.shape[1], -1)
|
||||
return out, pooled, extra
|
||||
|
||||
def flux2_te(dtype_llama=None, llama_quantization_metadata=None, pruned=False):
|
||||
class Flux2TEModel_(Flux2TEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["quantization_metadata"] = llama_quantization_metadata
|
||||
if pruned:
|
||||
model_options = model_options.copy()
|
||||
model_options["num_layers"] = 30
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return Flux2TEModel_
|
||||
|
||||
@ -26,12 +26,12 @@ class MochiT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
|
||||
|
||||
|
||||
def mochi_te(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||||
def mochi_te(dtype_t5=None, t5_quantization_metadata=None):
|
||||
class MochiTEModel_(MochiT5XXL):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
if t5_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
|
||||
if dtype is None:
|
||||
dtype = dtype_t5
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
|
||||
@ -142,14 +142,14 @@ class HiDreamTEModel(torch.nn.Module):
|
||||
return self.llama.load_sd(sd)
|
||||
|
||||
|
||||
def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None):
|
||||
def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5_quantization_metadata=None, llama_quantization_metadata=None):
|
||||
class HiDreamTEModel_(HiDreamTEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
if t5_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
|
||||
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["llama_scaled_fp8"] = llama_scaled_fp8
|
||||
model_options["llama_quantization_metadata"] = llama_quantization_metadata
|
||||
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, dtype_t5=dtype_t5, dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
|
||||
return HiDreamTEModel_
|
||||
|
||||
@ -40,10 +40,10 @@ class HunyuanImageTokenizer(QwenImageTokenizer):
|
||||
|
||||
class Qwen25_7BVLIModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}):
|
||||
llama_scaled_fp8 = model_options.get("qwen_scaled_fp8", None)
|
||||
if llama_scaled_fp8 is not None:
|
||||
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = llama_scaled_fp8
|
||||
model_options["quantization_metadata"] = llama_quantization_metadata
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
|
||||
@ -91,12 +91,12 @@ class HunyuanImageTEModel(QwenImageTEModel):
|
||||
else:
|
||||
return super().load_sd(sd)
|
||||
|
||||
def te(byt5=True, dtype_llama=None, llama_scaled_fp8=None):
|
||||
def te(byt5=True, dtype_llama=None, llama_quantization_metadata=None):
|
||||
class QwenImageTEModel_(HunyuanImageTEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["qwen_scaled_fp8"] = llama_scaled_fp8
|
||||
model_options["llama_quantization_metadata"] = llama_quantization_metadata
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
super().__init__(byt5=byt5, device=device, dtype=dtype, model_options=model_options)
|
||||
|
||||
@ -1,11 +1,12 @@
|
||||
from comfy import sd1_clip
|
||||
import comfy.model_management
|
||||
import comfy.text_encoders.llama
|
||||
from .hunyuan_image import HunyuanImageTokenizer
|
||||
from transformers import LlamaTokenizerFast
|
||||
import torch
|
||||
import os
|
||||
import numbers
|
||||
|
||||
import comfy.utils
|
||||
|
||||
def llama_detect(state_dict, prefix=""):
|
||||
out = {}
|
||||
@ -13,9 +14,9 @@ def llama_detect(state_dict, prefix=""):
|
||||
if t5_key in state_dict:
|
||||
out["dtype_llama"] = state_dict[t5_key].dtype
|
||||
|
||||
scaled_fp8_key = "{}scaled_fp8".format(prefix)
|
||||
if scaled_fp8_key in state_dict:
|
||||
out["llama_scaled_fp8"] = state_dict[scaled_fp8_key].dtype
|
||||
quant = comfy.utils.detect_layer_quantization(state_dict, prefix)
|
||||
if quant is not None:
|
||||
out["llama_quantization_metadata"] = quant
|
||||
|
||||
return out
|
||||
|
||||
@ -27,10 +28,10 @@ class LLAMA3Tokenizer(sd1_clip.SDTokenizer):
|
||||
|
||||
class LLAMAModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}, special_tokens={"start": 128000, "pad": 128258}):
|
||||
llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None)
|
||||
if llama_scaled_fp8 is not None:
|
||||
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = llama_scaled_fp8
|
||||
model_options["quantization_metadata"] = llama_quantization_metadata
|
||||
|
||||
textmodel_json_config = {}
|
||||
vocab_size = model_options.get("vocab_size", None)
|
||||
@ -73,6 +74,14 @@ class HunyuanVideoTokenizer:
|
||||
return {}
|
||||
|
||||
|
||||
class HunyuanVideo15Tokenizer(HunyuanImageTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.llama_template = "<|im_start|>system\nYou are a helpful assistant. Describe the video by detailing the following aspects:\n1. The main content and theme of the video.\n2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.\n3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.\n4. background environment, light, style and atmosphere.\n5. camera angles, movements, and transitions used in the video.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
return super().tokenize_with_weights(text, return_word_ids, prevent_empty_text=True, **kwargs)
|
||||
|
||||
class HunyuanVideoClipModel(torch.nn.Module):
|
||||
def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
@ -149,11 +158,11 @@ class HunyuanVideoClipModel(torch.nn.Module):
|
||||
return self.llama.load_sd(sd)
|
||||
|
||||
|
||||
def hunyuan_video_clip(dtype_llama=None, llama_scaled_fp8=None):
|
||||
def hunyuan_video_clip(dtype_llama=None, llama_quantization_metadata=None):
|
||||
class HunyuanVideoClipModel_(HunyuanVideoClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["llama_scaled_fp8"] = llama_scaled_fp8
|
||||
model_options["llama_quantization_metadata"] = llama_quantization_metadata
|
||||
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
|
||||
return HunyuanVideoClipModel_
|
||||
|
||||
219
comfy/text_encoders/jina_clip_2.py
Normal file
219
comfy/text_encoders/jina_clip_2.py
Normal file
@ -0,0 +1,219 @@
|
||||
# Jina CLIP v2 and Jina Embeddings v3 both use their modified XLM-RoBERTa architecture. Reference implementation:
|
||||
# Jina CLIP v2 (both text and vision): https://huggingface.co/jinaai/jina-clip-implementation/blob/39e6a55ae971b59bea6e44675d237c99762e7ee2/modeling_clip.py
|
||||
# Jina XLM-RoBERTa (text only): http://huggingface.co/jinaai/xlm-roberta-flash-implementation/blob/2b6bc3f30750b3a9648fe9b63448c09920efe9be/modeling_xlm_roberta.py
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch import nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.ops
|
||||
from comfy import sd1_clip
|
||||
from .spiece_tokenizer import SPieceTokenizer
|
||||
|
||||
class JinaClip2Tokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
# The official NewBie uses max_length=8000, but Jina Embeddings v3 actually supports 8192
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=1024, embedding_key='jina_clip_2', tokenizer_class=SPieceTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=False, max_length=8192, min_length=1, pad_token=1, end_token=2, tokenizer_args={"add_bos": True, "add_eos": True}, tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
|
||||
class JinaClip2TokenizerWrapper(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, tokenizer=JinaClip2Tokenizer, name="jina_clip_2")
|
||||
|
||||
# https://huggingface.co/jinaai/jina-embeddings-v3/blob/343dbf534c76fe845f304fa5c2d1fd87e1e78918/config.json
|
||||
@dataclass
|
||||
class XLMRobertaConfig:
|
||||
vocab_size: int = 250002
|
||||
type_vocab_size: int = 1
|
||||
hidden_size: int = 1024
|
||||
num_hidden_layers: int = 24
|
||||
num_attention_heads: int = 16
|
||||
rotary_emb_base: float = 20000.0
|
||||
intermediate_size: int = 4096
|
||||
hidden_act: str = "gelu"
|
||||
hidden_dropout_prob: float = 0.1
|
||||
attention_probs_dropout_prob: float = 0.1
|
||||
layer_norm_eps: float = 1e-05
|
||||
bos_token_id: int = 0
|
||||
eos_token_id: int = 2
|
||||
pad_token_id: int = 1
|
||||
|
||||
class XLMRobertaEmbeddings(nn.Module):
|
||||
def __init__(self, config, device=None, dtype=None, ops=None):
|
||||
super().__init__()
|
||||
embed_dim = config.hidden_size
|
||||
self.word_embeddings = ops.Embedding(config.vocab_size, embed_dim, padding_idx=config.pad_token_id, device=device, dtype=dtype)
|
||||
self.token_type_embeddings = ops.Embedding(config.type_vocab_size, embed_dim, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, input_ids=None, embeddings=None):
|
||||
if input_ids is not None and embeddings is None:
|
||||
embeddings = self.word_embeddings(input_ids)
|
||||
|
||||
if embeddings is not None:
|
||||
token_type_ids = torch.zeros(embeddings.shape[1], device=embeddings.device, dtype=torch.int32)
|
||||
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
||||
embeddings = embeddings + token_type_embeddings
|
||||
return embeddings
|
||||
|
||||
class RotaryEmbedding(nn.Module):
|
||||
def __init__(self, dim, base, device=None):
|
||||
super().__init__()
|
||||
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||
self._seq_len_cached = 0
|
||||
self._cos_cached = None
|
||||
self._sin_cached = None
|
||||
|
||||
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
||||
if seqlen > self._seq_len_cached or self._cos_cached is None or self._cos_cached.device != device or self._cos_cached.dtype != dtype:
|
||||
self._seq_len_cached = seqlen
|
||||
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
||||
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
self._cos_cached = emb.cos().to(dtype)
|
||||
self._sin_cached = emb.sin().to(dtype)
|
||||
|
||||
def forward(self, q, k):
|
||||
batch, seqlen, heads, head_dim = q.shape
|
||||
self._update_cos_sin_cache(seqlen, device=q.device, dtype=q.dtype)
|
||||
|
||||
cos = self._cos_cached[:seqlen].view(1, seqlen, 1, head_dim)
|
||||
sin = self._sin_cached[:seqlen].view(1, seqlen, 1, head_dim)
|
||||
|
||||
def rotate_half(x):
|
||||
size = x.shape[-1] // 2
|
||||
x1, x2 = x[..., :size], x[..., size:]
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
|
||||
class MHA(nn.Module):
|
||||
def __init__(self, config, device=None, dtype=None, ops=None):
|
||||
super().__init__()
|
||||
embed_dim = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_dim = embed_dim // config.num_attention_heads
|
||||
|
||||
self.rotary_emb = RotaryEmbedding(self.head_dim, config.rotary_emb_base, device=device)
|
||||
self.Wqkv = ops.Linear(embed_dim, 3 * embed_dim, device=device, dtype=dtype)
|
||||
self.out_proj = ops.Linear(embed_dim, embed_dim, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x, mask=None, optimized_attention=None):
|
||||
qkv = self.Wqkv(x)
|
||||
batch_size, seq_len, _ = qkv.shape
|
||||
qkv = qkv.view(batch_size, seq_len, 3, self.num_heads, self.head_dim)
|
||||
q, k, v = qkv.unbind(2)
|
||||
|
||||
q, k = self.rotary_emb(q, k)
|
||||
|
||||
# NHD -> HND
|
||||
q = q.transpose(1, 2)
|
||||
k = k.transpose(1, 2)
|
||||
v = v.transpose(1, 2)
|
||||
|
||||
out = optimized_attention(q, k, v, heads=self.num_heads, mask=mask, skip_reshape=True)
|
||||
return self.out_proj(out)
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, config, device=None, dtype=None, ops=None):
|
||||
super().__init__()
|
||||
self.fc1 = ops.Linear(config.hidden_size, config.intermediate_size, device=device, dtype=dtype)
|
||||
self.activation = F.gelu
|
||||
self.fc2 = ops.Linear(config.intermediate_size, config.hidden_size, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.activation(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
class Block(nn.Module):
|
||||
def __init__(self, config, device=None, dtype=None, ops=None):
|
||||
super().__init__()
|
||||
self.mixer = MHA(config, device=device, dtype=dtype, ops=ops)
|
||||
self.dropout1 = nn.Dropout(config.hidden_dropout_prob)
|
||||
self.norm1 = ops.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device, dtype=dtype)
|
||||
self.mlp = MLP(config, device=device, dtype=dtype, ops=ops)
|
||||
self.dropout2 = nn.Dropout(config.hidden_dropout_prob)
|
||||
self.norm2 = ops.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, hidden_states, mask=None, optimized_attention=None):
|
||||
mixer_out = self.mixer(hidden_states, mask=mask, optimized_attention=optimized_attention)
|
||||
hidden_states = self.norm1(self.dropout1(mixer_out) + hidden_states)
|
||||
mlp_out = self.mlp(hidden_states)
|
||||
hidden_states = self.norm2(self.dropout2(mlp_out) + hidden_states)
|
||||
return hidden_states
|
||||
|
||||
class XLMRobertaEncoder(nn.Module):
|
||||
def __init__(self, config, device=None, dtype=None, ops=None):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([Block(config, device=device, dtype=dtype, ops=ops) for _ in range(config.num_hidden_layers)])
|
||||
|
||||
def forward(self, hidden_states, attention_mask=None):
|
||||
optimized_attention = comfy.ldm.modules.attention.optimized_attention_for_device(hidden_states.device, mask=attention_mask is not None, small_input=True)
|
||||
for layer in self.layers:
|
||||
hidden_states = layer(hidden_states, mask=attention_mask, optimized_attention=optimized_attention)
|
||||
return hidden_states
|
||||
|
||||
class XLMRobertaModel_(nn.Module):
|
||||
def __init__(self, config, device=None, dtype=None, ops=None):
|
||||
super().__init__()
|
||||
self.embeddings = XLMRobertaEmbeddings(config, device=device, dtype=dtype, ops=ops)
|
||||
self.emb_ln = ops.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device, dtype=dtype)
|
||||
self.emb_drop = nn.Dropout(config.hidden_dropout_prob)
|
||||
self.encoder = XLMRobertaEncoder(config, device=device, dtype=dtype, ops=ops)
|
||||
|
||||
def forward(self, input_ids, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]):
|
||||
x = self.embeddings(input_ids=input_ids, embeddings=embeds)
|
||||
x = self.emb_ln(x)
|
||||
x = self.emb_drop(x)
|
||||
|
||||
mask = None
|
||||
if attention_mask is not None:
|
||||
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, 1, attention_mask.shape[-1]))
|
||||
mask = mask.masked_fill(mask.to(torch.bool), -torch.finfo(x.dtype).max)
|
||||
|
||||
sequence_output = self.encoder(x, attention_mask=mask)
|
||||
|
||||
# Mean pool, see https://huggingface.co/jinaai/jina-clip-implementation/blob/39e6a55ae971b59bea6e44675d237c99762e7ee2/hf_model.py
|
||||
pooled_output = None
|
||||
if attention_mask is None:
|
||||
pooled_output = sequence_output.mean(dim=1)
|
||||
else:
|
||||
attention_mask = attention_mask.to(sequence_output.dtype)
|
||||
pooled_output = (sequence_output * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(dim=-1, keepdim=True)
|
||||
|
||||
# Intermediate output is not yet implemented, use None for placeholder
|
||||
return sequence_output, None, pooled_output
|
||||
|
||||
class XLMRobertaModel(nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.config = XLMRobertaConfig(**config_dict)
|
||||
self.model = XLMRobertaModel_(self.config, device=device, dtype=dtype, ops=operations)
|
||||
self.num_layers = self.config.num_hidden_layers
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.embeddings.word_embeddings
|
||||
|
||||
def set_input_embeddings(self, embeddings):
|
||||
self.model.embeddings.word_embeddings = embeddings
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return self.model(*args, **kwargs)
|
||||
|
||||
class JinaClip2TextModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, textmodel_json_config={}, model_class=XLMRobertaModel, special_tokens={"start": 0, "end": 2, "pad": 1}, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
|
||||
|
||||
class JinaClip2TextModelWrapper(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, clip_model=JinaClip2TextModel, name="jina_clip_2", model_options=model_options)
|
||||
68
comfy/text_encoders/kandinsky5.py
Normal file
68
comfy/text_encoders/kandinsky5.py
Normal file
@ -0,0 +1,68 @@
|
||||
from comfy import sd1_clip
|
||||
from .qwen_image import QwenImageTokenizer, QwenImageTEModel
|
||||
from .llama import Qwen25_7BVLI
|
||||
|
||||
|
||||
class Kandinsky5Tokenizer(QwenImageTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.llama_template = "<|im_start|>system\nYou are a prompt engineer. Describe the video in detail.\nDescribe how the camera moves or shakes, describe the zoom and view angle, whether it follows the objects.\nDescribe the location of the video, main characters or objects and their action.\nDescribe the dynamism of the video and presented actions.\nName the visual style of the video: whether it is a professional footage, user generated content, some kind of animation, video game or screen content.\nDescribe the visual effects, postprocessing and transitions if they are presented in the video.\nPay attention to the order of key actions shown in the scene.<|im_end|>\n<|im_start|>user\n{}<|im_end|>"
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = super().tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class Kandinsky5TokenizerImage(Kandinsky5Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.llama_template = "<|im_start|>system\nYou are a promt engineer. Describe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>"
|
||||
|
||||
|
||||
class Qwen25_7BVLIModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="hidden", layer_idx=-1, dtype=None, attention_mask=True, model_options={}):
|
||||
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["quantization_metadata"] = llama_quantization_metadata
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
|
||||
class Kandinsky5TEModel(QwenImageTEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super(QwenImageTEModel, self).__init__(device=device, dtype=dtype, name="qwen25_7b", clip_model=Qwen25_7BVLIModel, model_options=model_options)
|
||||
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
cond, p, extra = super().encode_token_weights(token_weight_pairs, template_end=-1)
|
||||
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs["l"])
|
||||
|
||||
return cond, l_pooled, extra
|
||||
|
||||
def set_clip_options(self, options):
|
||||
super().set_clip_options(options)
|
||||
self.clip_l.set_clip_options(options)
|
||||
|
||||
def reset_clip_options(self):
|
||||
super().reset_clip_options()
|
||||
self.clip_l.reset_clip_options()
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
|
||||
return self.clip_l.load_sd(sd)
|
||||
else:
|
||||
return super().load_sd(sd)
|
||||
|
||||
def te(dtype_llama=None, llama_quantization_metadata=None):
|
||||
class Kandinsky5TEModel_(Kandinsky5TEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["llama_quantization_metadata"] = llama_quantization_metadata
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return Kandinsky5TEModel_
|
||||
@ -28,6 +28,32 @@ class Llama2Config:
|
||||
mlp_activation = "silu"
|
||||
qkv_bias = False
|
||||
rope_dims = None
|
||||
q_norm = None
|
||||
k_norm = None
|
||||
rope_scale = None
|
||||
final_norm: bool = True
|
||||
|
||||
@dataclass
|
||||
class Mistral3Small24BConfig:
|
||||
vocab_size: int = 131072
|
||||
hidden_size: int = 5120
|
||||
intermediate_size: int = 32768
|
||||
num_hidden_layers: int = 40
|
||||
num_attention_heads: int = 32
|
||||
num_key_value_heads: int = 8
|
||||
max_position_embeddings: int = 8192
|
||||
rms_norm_eps: float = 1e-5
|
||||
rope_theta: float = 1000000000.0
|
||||
transformer_type: str = "llama"
|
||||
head_dim = 128
|
||||
rms_norm_add = False
|
||||
mlp_activation = "silu"
|
||||
qkv_bias = False
|
||||
rope_dims = None
|
||||
q_norm = None
|
||||
k_norm = None
|
||||
rope_scale = None
|
||||
final_norm: bool = True
|
||||
|
||||
@dataclass
|
||||
class Qwen25_3BConfig:
|
||||
@ -46,6 +72,54 @@ class Qwen25_3BConfig:
|
||||
mlp_activation = "silu"
|
||||
qkv_bias = True
|
||||
rope_dims = None
|
||||
q_norm = None
|
||||
k_norm = None
|
||||
rope_scale = None
|
||||
final_norm: bool = True
|
||||
|
||||
@dataclass
|
||||
class Qwen3_4BConfig:
|
||||
vocab_size: int = 151936
|
||||
hidden_size: int = 2560
|
||||
intermediate_size: int = 9728
|
||||
num_hidden_layers: int = 36
|
||||
num_attention_heads: int = 32
|
||||
num_key_value_heads: int = 8
|
||||
max_position_embeddings: int = 40960
|
||||
rms_norm_eps: float = 1e-6
|
||||
rope_theta: float = 1000000.0
|
||||
transformer_type: str = "llama"
|
||||
head_dim = 128
|
||||
rms_norm_add = False
|
||||
mlp_activation = "silu"
|
||||
qkv_bias = False
|
||||
rope_dims = None
|
||||
q_norm = "gemma3"
|
||||
k_norm = "gemma3"
|
||||
rope_scale = None
|
||||
final_norm: bool = True
|
||||
|
||||
@dataclass
|
||||
class Ovis25_2BConfig:
|
||||
vocab_size: int = 151936
|
||||
hidden_size: int = 2048
|
||||
intermediate_size: int = 6144
|
||||
num_hidden_layers: int = 28
|
||||
num_attention_heads: int = 16
|
||||
num_key_value_heads: int = 8
|
||||
max_position_embeddings: int = 40960
|
||||
rms_norm_eps: float = 1e-6
|
||||
rope_theta: float = 1000000.0
|
||||
transformer_type: str = "llama"
|
||||
head_dim = 128
|
||||
rms_norm_add = False
|
||||
mlp_activation = "silu"
|
||||
qkv_bias = False
|
||||
rope_dims = None
|
||||
q_norm = "gemma3"
|
||||
k_norm = "gemma3"
|
||||
rope_scale = None
|
||||
final_norm: bool = True
|
||||
|
||||
@dataclass
|
||||
class Qwen25_7BVLI_Config:
|
||||
@ -64,6 +138,10 @@ class Qwen25_7BVLI_Config:
|
||||
mlp_activation = "silu"
|
||||
qkv_bias = True
|
||||
rope_dims = [16, 24, 24]
|
||||
q_norm = None
|
||||
k_norm = None
|
||||
rope_scale = None
|
||||
final_norm: bool = True
|
||||
|
||||
@dataclass
|
||||
class Gemma2_2B_Config:
|
||||
@ -82,6 +160,34 @@ class Gemma2_2B_Config:
|
||||
mlp_activation = "gelu_pytorch_tanh"
|
||||
qkv_bias = False
|
||||
rope_dims = None
|
||||
q_norm = None
|
||||
k_norm = None
|
||||
sliding_attention = None
|
||||
rope_scale = None
|
||||
final_norm: bool = True
|
||||
|
||||
@dataclass
|
||||
class Gemma3_4B_Config:
|
||||
vocab_size: int = 262208
|
||||
hidden_size: int = 2560
|
||||
intermediate_size: int = 10240
|
||||
num_hidden_layers: int = 34
|
||||
num_attention_heads: int = 8
|
||||
num_key_value_heads: int = 4
|
||||
max_position_embeddings: int = 131072
|
||||
rms_norm_eps: float = 1e-6
|
||||
rope_theta = [1000000.0, 10000.0]
|
||||
transformer_type: str = "gemma3"
|
||||
head_dim = 256
|
||||
rms_norm_add = True
|
||||
mlp_activation = "gelu_pytorch_tanh"
|
||||
qkv_bias = False
|
||||
rope_dims = None
|
||||
q_norm = "gemma3"
|
||||
k_norm = "gemma3"
|
||||
sliding_attention = [1024, 1024, 1024, 1024, 1024, False]
|
||||
rope_scale = [8.0, 1.0]
|
||||
final_norm: bool = True
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None):
|
||||
@ -106,25 +212,40 @@ def rotate_half(x):
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
|
||||
def precompute_freqs_cis(head_dim, position_ids, theta, rope_dims=None, device=None):
|
||||
theta_numerator = torch.arange(0, head_dim, 2, device=device).float()
|
||||
inv_freq = 1.0 / (theta ** (theta_numerator / head_dim))
|
||||
def precompute_freqs_cis(head_dim, position_ids, theta, rope_scale=None, rope_dims=None, device=None):
|
||||
if not isinstance(theta, list):
|
||||
theta = [theta]
|
||||
|
||||
inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
||||
position_ids_expanded = position_ids[:, None, :].float()
|
||||
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
cos = emb.cos()
|
||||
sin = emb.sin()
|
||||
if rope_dims is not None and position_ids.shape[0] > 1:
|
||||
mrope_section = rope_dims * 2
|
||||
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0)
|
||||
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0)
|
||||
else:
|
||||
cos = cos.unsqueeze(1)
|
||||
sin = sin.unsqueeze(1)
|
||||
out = []
|
||||
for index, t in enumerate(theta):
|
||||
theta_numerator = torch.arange(0, head_dim, 2, device=device).float()
|
||||
inv_freq = 1.0 / (t ** (theta_numerator / head_dim))
|
||||
|
||||
return (cos, sin)
|
||||
if rope_scale is not None:
|
||||
if isinstance(rope_scale, list):
|
||||
inv_freq /= rope_scale[index]
|
||||
else:
|
||||
inv_freq /= rope_scale
|
||||
|
||||
inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
||||
position_ids_expanded = position_ids[:, None, :].float()
|
||||
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
cos = emb.cos()
|
||||
sin = emb.sin()
|
||||
if rope_dims is not None and position_ids.shape[0] > 1:
|
||||
mrope_section = rope_dims * 2
|
||||
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0)
|
||||
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0)
|
||||
else:
|
||||
cos = cos.unsqueeze(1)
|
||||
sin = sin.unsqueeze(1)
|
||||
out.append((cos, sin))
|
||||
|
||||
if len(out) == 1:
|
||||
return out[0]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def apply_rope(xq, xk, freqs_cis):
|
||||
@ -152,6 +273,14 @@ class Attention(nn.Module):
|
||||
self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=config.qkv_bias, device=device, dtype=dtype)
|
||||
self.o_proj = ops.Linear(self.inner_size, config.hidden_size, bias=False, device=device, dtype=dtype)
|
||||
|
||||
self.q_norm = None
|
||||
self.k_norm = None
|
||||
|
||||
if config.q_norm == "gemma3":
|
||||
self.q_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
|
||||
if config.k_norm == "gemma3":
|
||||
self.k_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
@ -168,6 +297,11 @@ class Attention(nn.Module):
|
||||
xk = xk.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2)
|
||||
xv = xv.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
if self.q_norm is not None:
|
||||
xq = self.q_norm(xq)
|
||||
if self.k_norm is not None:
|
||||
xk = self.k_norm(xk)
|
||||
|
||||
xq, xk = apply_rope(xq, xk, freqs_cis=freqs_cis)
|
||||
|
||||
xk = xk.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
|
||||
@ -192,7 +326,7 @@ class MLP(nn.Module):
|
||||
return self.down_proj(self.activation(self.gate_proj(x)) * self.up_proj(x))
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
|
||||
def __init__(self, config: Llama2Config, index, device=None, dtype=None, ops: Any = None):
|
||||
super().__init__()
|
||||
self.self_attn = Attention(config, device=device, dtype=dtype, ops=ops)
|
||||
self.mlp = MLP(config, device=device, dtype=dtype, ops=ops)
|
||||
@ -226,7 +360,7 @@ class TransformerBlock(nn.Module):
|
||||
return x
|
||||
|
||||
class TransformerBlockGemma2(nn.Module):
|
||||
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
|
||||
def __init__(self, config: Llama2Config, index, device=None, dtype=None, ops: Any = None):
|
||||
super().__init__()
|
||||
self.self_attn = Attention(config, device=device, dtype=dtype, ops=ops)
|
||||
self.mlp = MLP(config, device=device, dtype=dtype, ops=ops)
|
||||
@ -235,6 +369,13 @@ class TransformerBlockGemma2(nn.Module):
|
||||
self.pre_feedforward_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
|
||||
self.post_feedforward_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
|
||||
|
||||
if config.sliding_attention is not None:
|
||||
self.sliding_attention = config.sliding_attention[index % len(config.sliding_attention)]
|
||||
else:
|
||||
self.sliding_attention = False
|
||||
|
||||
self.transformer_type = config.transformer_type
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
@ -242,6 +383,19 @@ class TransformerBlockGemma2(nn.Module):
|
||||
freqs_cis: Optional[torch.Tensor] = None,
|
||||
optimized_attention=None,
|
||||
):
|
||||
if self.transformer_type == 'gemma3':
|
||||
if self.sliding_attention:
|
||||
if x.shape[1] > self.sliding_attention:
|
||||
sliding_mask = torch.full((x.shape[1], x.shape[1]), float("-inf"), device=x.device, dtype=x.dtype)
|
||||
sliding_mask.tril_(diagonal=-self.sliding_attention)
|
||||
if attention_mask is not None:
|
||||
attention_mask = attention_mask + sliding_mask
|
||||
else:
|
||||
attention_mask = sliding_mask
|
||||
freqs_cis = freqs_cis[1]
|
||||
else:
|
||||
freqs_cis = freqs_cis[0]
|
||||
|
||||
# Self Attention
|
||||
residual = x
|
||||
x = self.input_layernorm(x)
|
||||
@ -276,7 +430,7 @@ class Llama2_(nn.Module):
|
||||
device=device,
|
||||
dtype=dtype
|
||||
)
|
||||
if self.config.transformer_type == "gemma2":
|
||||
if self.config.transformer_type == "gemma2" or self.config.transformer_type == "gemma3":
|
||||
transformer = TransformerBlockGemma2
|
||||
self.normalize_in = True
|
||||
else:
|
||||
@ -284,10 +438,15 @@ class Llama2_(nn.Module):
|
||||
self.normalize_in = False
|
||||
|
||||
self.layers = nn.ModuleList([
|
||||
transformer(config, device=device, dtype=dtype, ops=ops)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
transformer(config, index=i, device=device, dtype=dtype, ops=ops)
|
||||
for i in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
|
||||
|
||||
if config.final_norm:
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
|
||||
else:
|
||||
self.norm = None
|
||||
|
||||
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[]):
|
||||
@ -305,6 +464,7 @@ class Llama2_(nn.Module):
|
||||
freqs_cis = precompute_freqs_cis(self.config.head_dim,
|
||||
position_ids,
|
||||
self.config.rope_theta,
|
||||
self.config.rope_scale,
|
||||
self.config.rope_dims,
|
||||
device=x.device)
|
||||
|
||||
@ -322,8 +482,12 @@ class Llama2_(nn.Module):
|
||||
|
||||
intermediate = None
|
||||
all_intermediate = None
|
||||
only_layers = None
|
||||
if intermediate_output is not None:
|
||||
if intermediate_output == "all":
|
||||
if isinstance(intermediate_output, list):
|
||||
all_intermediate = []
|
||||
only_layers = set(intermediate_output)
|
||||
elif intermediate_output == "all":
|
||||
all_intermediate = []
|
||||
intermediate_output = None
|
||||
elif intermediate_output < 0:
|
||||
@ -331,7 +495,8 @@ class Llama2_(nn.Module):
|
||||
|
||||
for i, layer in enumerate(self.layers):
|
||||
if all_intermediate is not None:
|
||||
all_intermediate.append(x.unsqueeze(1).clone())
|
||||
if only_layers is None or (i in only_layers):
|
||||
all_intermediate.append(x.unsqueeze(1).clone())
|
||||
x = layer(
|
||||
x=x,
|
||||
attention_mask=mask,
|
||||
@ -341,14 +506,17 @@ class Llama2_(nn.Module):
|
||||
if i == intermediate_output:
|
||||
intermediate = x.clone()
|
||||
|
||||
x = self.norm(x)
|
||||
if self.norm is not None:
|
||||
x = self.norm(x)
|
||||
|
||||
if all_intermediate is not None:
|
||||
all_intermediate.append(x.unsqueeze(1).clone())
|
||||
if only_layers is None or ((i + 1) in only_layers):
|
||||
all_intermediate.append(x.unsqueeze(1).clone())
|
||||
|
||||
if all_intermediate is not None:
|
||||
intermediate = torch.cat(all_intermediate, dim=1)
|
||||
|
||||
if intermediate is not None and final_layer_norm_intermediate:
|
||||
if intermediate is not None and final_layer_norm_intermediate and self.norm is not None:
|
||||
intermediate = self.norm(intermediate)
|
||||
|
||||
return x, intermediate
|
||||
@ -373,6 +541,15 @@ class Llama2(BaseLlama, torch.nn.Module):
|
||||
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||
self.dtype = dtype
|
||||
|
||||
class Mistral3Small24B(BaseLlama, torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
config = Mistral3Small24BConfig(**config_dict)
|
||||
self.num_layers = config.num_hidden_layers
|
||||
|
||||
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||
self.dtype = dtype
|
||||
|
||||
class Qwen25_3B(BaseLlama, torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
@ -382,6 +559,24 @@ class Qwen25_3B(BaseLlama, torch.nn.Module):
|
||||
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||
self.dtype = dtype
|
||||
|
||||
class Qwen3_4B(BaseLlama, torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
config = Qwen3_4BConfig(**config_dict)
|
||||
self.num_layers = config.num_hidden_layers
|
||||
|
||||
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||
self.dtype = dtype
|
||||
|
||||
class Ovis25_2B(BaseLlama, torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
config = Ovis25_2BConfig(**config_dict)
|
||||
self.num_layers = config.num_hidden_layers
|
||||
|
||||
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||
self.dtype = dtype
|
||||
|
||||
class Qwen25_7BVLI(BaseLlama, torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
@ -433,3 +628,12 @@ class Gemma2_2B(BaseLlama, torch.nn.Module):
|
||||
|
||||
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||
self.dtype = dtype
|
||||
|
||||
class Gemma3_4B(BaseLlama, torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
config = Gemma3_4B_Config(**config_dict)
|
||||
self.num_layers = config.num_hidden_layers
|
||||
|
||||
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||
self.dtype = dtype
|
||||
|
||||
@ -11,29 +11,52 @@ class Gemma2BTokenizer(sd1_clip.SDTokenizer):
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
|
||||
class Gemma3_4BTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=2560, embedding_key='gemma3_4b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, disable_weights=True, tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
|
||||
class LuminaTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="gemma2_2b", tokenizer=Gemma2BTokenizer)
|
||||
|
||||
class NTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="gemma3_4b", tokenizer=Gemma3_4BTokenizer)
|
||||
|
||||
class Gemma2_2BModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}):
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma2_2B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
class Gemma3_4BModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}):
|
||||
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["quantization_metadata"] = llama_quantization_metadata
|
||||
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_4B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
class LuminaModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, name="gemma2_2b", clip_model=Gemma2_2BModel, model_options=model_options)
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, name="gemma2_2b", clip_model=Gemma2_2BModel):
|
||||
super().__init__(device=device, dtype=dtype, name=name, clip_model=clip_model, model_options=model_options)
|
||||
|
||||
|
||||
def te(dtype_llama=None, llama_scaled_fp8=None):
|
||||
def te(dtype_llama=None, llama_quantization_metadata=None, model_type="gemma2_2b"):
|
||||
if model_type == "gemma2_2b":
|
||||
model = Gemma2_2BModel
|
||||
elif model_type == "gemma3_4b":
|
||||
model = Gemma3_4BModel
|
||||
|
||||
class LuminaTEModel_(LuminaModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = llama_scaled_fp8
|
||||
model_options["quantization_metadata"] = llama_quantization_metadata
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
super().__init__(device=device, dtype=dtype, name=model_type, model_options=model_options, clip_model=model)
|
||||
return LuminaTEModel_
|
||||
|
||||
62
comfy/text_encoders/newbie.py
Normal file
62
comfy/text_encoders/newbie.py
Normal file
@ -0,0 +1,62 @@
|
||||
import torch
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.text_encoders.jina_clip_2
|
||||
import comfy.text_encoders.lumina2
|
||||
|
||||
class NewBieTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
self.gemma = comfy.text_encoders.lumina2.Gemma3_4BTokenizer(embedding_directory=embedding_directory, tokenizer_data={"spiece_model": tokenizer_data["gemma_spiece_model"]})
|
||||
self.jina = comfy.text_encoders.jina_clip_2.JinaClip2Tokenizer(embedding_directory=embedding_directory, tokenizer_data={"spiece_model": tokenizer_data["jina_spiece_model"]})
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = {}
|
||||
out["gemma"] = self.gemma.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["jina"] = self.jina.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
raise NotImplementedError
|
||||
|
||||
def state_dict(self):
|
||||
return {}
|
||||
|
||||
class NewBieTEModel(torch.nn.Module):
|
||||
def __init__(self, dtype_gemma=None, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
dtype_gemma = comfy.model_management.pick_weight_dtype(dtype_gemma, dtype, device)
|
||||
self.gemma = comfy.text_encoders.lumina2.Gemma3_4BModel(device=device, dtype=dtype_gemma, model_options=model_options)
|
||||
self.jina = comfy.text_encoders.jina_clip_2.JinaClip2TextModel(device=device, dtype=dtype, model_options=model_options)
|
||||
self.dtypes = {dtype, dtype_gemma}
|
||||
|
||||
def set_clip_options(self, options):
|
||||
self.gemma.set_clip_options(options)
|
||||
self.jina.set_clip_options(options)
|
||||
|
||||
def reset_clip_options(self):
|
||||
self.gemma.reset_clip_options()
|
||||
self.jina.reset_clip_options()
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs_gemma = token_weight_pairs["gemma"]
|
||||
token_weight_pairs_jina = token_weight_pairs["jina"]
|
||||
|
||||
gemma_out, gemma_pooled, gemma_extra = self.gemma.encode_token_weights(token_weight_pairs_gemma)
|
||||
jina_out, jina_pooled, jina_extra = self.jina.encode_token_weights(token_weight_pairs_jina)
|
||||
|
||||
return gemma_out, jina_pooled, gemma_extra
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "model.layers.0.self_attn.q_norm.weight" in sd:
|
||||
return self.gemma.load_sd(sd)
|
||||
else:
|
||||
return self.jina.load_sd(sd)
|
||||
|
||||
def te(dtype_llama=None, llama_quantization_metadata=None):
|
||||
class NewBieTEModel_(NewBieTEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["llama_quantization_metadata"] = llama_quantization_metadata
|
||||
super().__init__(dtype_gemma=dtype_llama, device=device, dtype=dtype, model_options=model_options)
|
||||
return NewBieTEModel_
|
||||
@ -32,12 +32,12 @@ class Omnigen2Model(sd1_clip.SD1ClipModel):
|
||||
super().__init__(device=device, dtype=dtype, name="qwen25_3b", clip_model=Qwen25_3BModel, model_options=model_options)
|
||||
|
||||
|
||||
def te(dtype_llama=None, llama_scaled_fp8=None):
|
||||
def te(dtype_llama=None, llama_quantization_metadata=None):
|
||||
class Omnigen2TEModel_(Omnigen2Model):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = llama_scaled_fp8
|
||||
model_options["quantization_metadata"] = llama_quantization_metadata
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
|
||||
66
comfy/text_encoders/ovis.py
Normal file
66
comfy/text_encoders/ovis.py
Normal file
@ -0,0 +1,66 @@
|
||||
from transformers import Qwen2Tokenizer
|
||||
import comfy.text_encoders.llama
|
||||
from comfy import sd1_clip
|
||||
import os
|
||||
import torch
|
||||
import numbers
|
||||
|
||||
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='qwen3_2b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=284, pad_token=151643, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class OvisTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_2b", tokenizer=Qwen3Tokenizer)
|
||||
self.llama_template = "<|im_start|>user\nDescribe the image by detailing the color, quantity, text, shape, size, texture, spatial relationships of the objects and background: {}<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
|
||||
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs):
|
||||
if llama_template is None:
|
||||
llama_text = self.llama_template.format(text)
|
||||
else:
|
||||
llama_text = llama_template.format(text)
|
||||
|
||||
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs)
|
||||
return tokens
|
||||
|
||||
class Ovis25_2BModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Ovis25_2B, enable_attention_masks=attention_mask, return_attention_masks=False, zero_out_masked=True, model_options=model_options)
|
||||
|
||||
|
||||
class OvisTEModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, name="qwen3_2b", clip_model=Ovis25_2BModel, model_options=model_options)
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs, template_end=-1):
|
||||
out, pooled = super().encode_token_weights(token_weight_pairs)
|
||||
tok_pairs = token_weight_pairs["qwen3_2b"][0]
|
||||
count_im_start = 0
|
||||
if template_end == -1:
|
||||
for i, v in enumerate(tok_pairs):
|
||||
elem = v[0]
|
||||
if not torch.is_tensor(elem):
|
||||
if isinstance(elem, numbers.Integral):
|
||||
if elem == 4004 and count_im_start < 1:
|
||||
template_end = i
|
||||
count_im_start += 1
|
||||
|
||||
if out.shape[1] > (template_end + 1):
|
||||
if tok_pairs[template_end + 1][0] == 25:
|
||||
template_end += 1
|
||||
|
||||
out = out[:, template_end:]
|
||||
return out, pooled, {}
|
||||
|
||||
|
||||
def te(dtype_llama=None, llama_quantization_metadata=None):
|
||||
class OvisTEModel_(OvisTEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options["quantization_metadata"] = llama_quantization_metadata
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return OvisTEModel_
|
||||
@ -30,12 +30,12 @@ class PixArtTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
|
||||
|
||||
def pixart_te(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||||
def pixart_te(dtype_t5=None, t5_quantization_metadata=None):
|
||||
class PixArtTEModel_(PixArtT5XXL):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
if t5_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
|
||||
if dtype is None:
|
||||
dtype = dtype_t5
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
|
||||
@ -179,36 +179,36 @@
|
||||
"special": false
|
||||
},
|
||||
"151665": {
|
||||
"content": "<|img|>",
|
||||
"content": "<tool_response>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
"special": false
|
||||
},
|
||||
"151666": {
|
||||
"content": "<|endofimg|>",
|
||||
"content": "</tool_response>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
"special": false
|
||||
},
|
||||
"151667": {
|
||||
"content": "<|meta|>",
|
||||
"content": "<think>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
"special": false
|
||||
},
|
||||
"151668": {
|
||||
"content": "<|endofmeta|>",
|
||||
"content": "</think>",
|
||||
"lstrip": false,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false,
|
||||
"special": true
|
||||
"special": false
|
||||
}
|
||||
},
|
||||
"additional_special_tokens": [
|
||||
|
||||
@ -17,12 +17,14 @@ class QwenImageTokenizer(sd1_clip.SD1Tokenizer):
|
||||
self.llama_template = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
|
||||
self.llama_template_images = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n"
|
||||
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], **kwargs):
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], prevent_empty_text=False, **kwargs):
|
||||
skip_template = False
|
||||
if text.startswith('<|im_start|>'):
|
||||
skip_template = True
|
||||
if text.startswith('<|start_header_id|>'):
|
||||
skip_template = True
|
||||
if prevent_empty_text and text == '':
|
||||
text = ' '
|
||||
|
||||
if skip_template:
|
||||
llama_text = text
|
||||
@ -83,12 +85,12 @@ class QwenImageTEModel(sd1_clip.SD1ClipModel):
|
||||
return out, pooled, extra
|
||||
|
||||
|
||||
def te(dtype_llama=None, llama_scaled_fp8=None):
|
||||
def te(dtype_llama=None, llama_quantization_metadata=None):
|
||||
class QwenImageTEModel_(QwenImageTEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = llama_scaled_fp8
|
||||
model_options["quantization_metadata"] = llama_quantization_metadata
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
|
||||
@ -6,14 +6,15 @@ import torch
|
||||
import os
|
||||
import comfy.model_management
|
||||
import logging
|
||||
import comfy.utils
|
||||
|
||||
class T5XXLModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
|
||||
t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None)
|
||||
if t5xxl_scaled_fp8 is not None:
|
||||
t5xxl_quantization_metadata = model_options.get("t5xxl_quantization_metadata", None)
|
||||
if t5xxl_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = t5xxl_scaled_fp8
|
||||
model_options["quantization_metadata"] = t5xxl_quantization_metadata
|
||||
|
||||
model_options = {**model_options, "model_name": "t5xxl"}
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
@ -25,9 +26,9 @@ def t5_xxl_detect(state_dict, prefix=""):
|
||||
if t5_key in state_dict:
|
||||
out["dtype_t5"] = state_dict[t5_key].dtype
|
||||
|
||||
scaled_fp8_key = "{}scaled_fp8".format(prefix)
|
||||
if scaled_fp8_key in state_dict:
|
||||
out["t5xxl_scaled_fp8"] = state_dict[scaled_fp8_key].dtype
|
||||
quant = comfy.utils.detect_layer_quantization(state_dict, prefix)
|
||||
if quant is not None:
|
||||
out["t5_quantization_metadata"] = quant
|
||||
|
||||
return out
|
||||
|
||||
@ -156,11 +157,11 @@ class SD3ClipModel(torch.nn.Module):
|
||||
else:
|
||||
return self.t5xxl.load_sd(sd)
|
||||
|
||||
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5xxl_scaled_fp8=None, t5_attention_mask=False):
|
||||
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_quantization_metadata=None, t5_attention_mask=False):
|
||||
class SD3ClipModel_(SD3ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
if t5_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
|
||||
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options)
|
||||
return SD3ClipModel_
|
||||
|
||||
@ -25,12 +25,12 @@ class WanT5Model(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options, name="umt5xxl", clip_model=UMT5XXlModel, **kwargs)
|
||||
|
||||
def te(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||||
def te(dtype_t5=None, t5_quantization_metadata=None):
|
||||
class WanTEModel(WanT5Model):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "scaled_fp8" not in model_options:
|
||||
if t5_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = t5xxl_scaled_fp8
|
||||
model_options["quantization_metadata"] = t5_quantization_metadata
|
||||
if dtype_t5 is not None:
|
||||
dtype = dtype_t5
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
|
||||
45
comfy/text_encoders/z_image.py
Normal file
45
comfy/text_encoders/z_image.py
Normal file
@ -0,0 +1,45 @@
|
||||
from transformers import Qwen2Tokenizer
|
||||
import comfy.text_encoders.llama
|
||||
from comfy import sd1_clip
|
||||
import os
|
||||
|
||||
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
|
||||
|
||||
|
||||
class ZImageTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_4b", tokenizer=Qwen3Tokenizer)
|
||||
self.llama_template = "<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
|
||||
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs):
|
||||
if llama_template is None:
|
||||
llama_text = self.llama_template.format(text)
|
||||
else:
|
||||
llama_text = llama_template.format(text)
|
||||
|
||||
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs)
|
||||
return tokens
|
||||
|
||||
|
||||
class Qwen3_4BModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}):
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_4B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
|
||||
class ZImageTEModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, name="qwen3_4b", clip_model=Qwen3_4BModel, model_options=model_options)
|
||||
|
||||
|
||||
def te(dtype_llama=None, llama_quantization_metadata=None):
|
||||
class ZImageTEModel_(ZImageTEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options["quantization_metadata"] = llama_quantization_metadata
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return ZImageTEModel_
|
||||
171
comfy/utils.py
171
comfy/utils.py
@ -29,6 +29,7 @@ import itertools
|
||||
from torch.nn.functional import interpolate
|
||||
from einops import rearrange
|
||||
from comfy.cli_args import args
|
||||
import json
|
||||
|
||||
MMAP_TORCH_FILES = args.mmap_torch_files
|
||||
DISABLE_MMAP = args.disable_mmap
|
||||
@ -39,7 +40,11 @@ if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in
|
||||
pass
|
||||
ModelCheckpoint.__module__ = "pytorch_lightning.callbacks.model_checkpoint"
|
||||
|
||||
from numpy.core.multiarray import scalar
|
||||
def scalar(*args, **kwargs):
|
||||
from numpy.core.multiarray import scalar as sc
|
||||
return sc(*args, **kwargs)
|
||||
scalar.__module__ = "numpy.core.multiarray"
|
||||
|
||||
from numpy import dtype
|
||||
from numpy.dtypes import Float64DType
|
||||
from _codecs import encode
|
||||
@ -48,7 +53,7 @@ if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in
|
||||
ALWAYS_SAFE_LOAD = True
|
||||
logging.info("Checkpoint files will always be loaded safely.")
|
||||
else:
|
||||
logging.info("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended.")
|
||||
logging.warning("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended as older versions of pytorch are no longer supported.")
|
||||
|
||||
def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
|
||||
if device is None:
|
||||
@ -671,6 +676,72 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
|
||||
|
||||
return key_map
|
||||
|
||||
def z_image_to_diffusers(mmdit_config, output_prefix=""):
|
||||
n_layers = mmdit_config.get("n_layers", 0)
|
||||
hidden_size = mmdit_config.get("dim", 0)
|
||||
n_context_refiner = mmdit_config.get("n_refiner_layers", 2)
|
||||
n_noise_refiner = mmdit_config.get("n_refiner_layers", 2)
|
||||
key_map = {}
|
||||
|
||||
def add_block_keys(prefix_from, prefix_to, has_adaln=True):
|
||||
for end in ("weight", "bias"):
|
||||
k = "{}.attention.".format(prefix_from)
|
||||
qkv = "{}.attention.qkv.{}".format(prefix_to, end)
|
||||
key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
|
||||
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
|
||||
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))
|
||||
|
||||
block_map = {
|
||||
"attention.norm_q.weight": "attention.q_norm.weight",
|
||||
"attention.norm_k.weight": "attention.k_norm.weight",
|
||||
"attention.to_out.0.weight": "attention.out.weight",
|
||||
"attention.to_out.0.bias": "attention.out.bias",
|
||||
"attention_norm1.weight": "attention_norm1.weight",
|
||||
"attention_norm2.weight": "attention_norm2.weight",
|
||||
"feed_forward.w1.weight": "feed_forward.w1.weight",
|
||||
"feed_forward.w2.weight": "feed_forward.w2.weight",
|
||||
"feed_forward.w3.weight": "feed_forward.w3.weight",
|
||||
"ffn_norm1.weight": "ffn_norm1.weight",
|
||||
"ffn_norm2.weight": "ffn_norm2.weight",
|
||||
}
|
||||
if has_adaln:
|
||||
block_map["adaLN_modulation.0.weight"] = "adaLN_modulation.0.weight"
|
||||
block_map["adaLN_modulation.0.bias"] = "adaLN_modulation.0.bias"
|
||||
for k, v in block_map.items():
|
||||
key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, v)
|
||||
|
||||
for i in range(n_layers):
|
||||
add_block_keys("layers.{}".format(i), "{}layers.{}".format(output_prefix, i))
|
||||
|
||||
for i in range(n_context_refiner):
|
||||
add_block_keys("context_refiner.{}".format(i), "{}context_refiner.{}".format(output_prefix, i))
|
||||
|
||||
for i in range(n_noise_refiner):
|
||||
add_block_keys("noise_refiner.{}".format(i), "{}noise_refiner.{}".format(output_prefix, i))
|
||||
|
||||
MAP_BASIC = [
|
||||
("final_layer.linear.weight", "all_final_layer.2-1.linear.weight"),
|
||||
("final_layer.linear.bias", "all_final_layer.2-1.linear.bias"),
|
||||
("final_layer.adaLN_modulation.1.weight", "all_final_layer.2-1.adaLN_modulation.1.weight"),
|
||||
("final_layer.adaLN_modulation.1.bias", "all_final_layer.2-1.adaLN_modulation.1.bias"),
|
||||
("x_embedder.weight", "all_x_embedder.2-1.weight"),
|
||||
("x_embedder.bias", "all_x_embedder.2-1.bias"),
|
||||
("x_pad_token", "x_pad_token"),
|
||||
("cap_embedder.0.weight", "cap_embedder.0.weight"),
|
||||
("cap_embedder.1.weight", "cap_embedder.1.weight"),
|
||||
("cap_embedder.1.bias", "cap_embedder.1.bias"),
|
||||
("cap_pad_token", "cap_pad_token"),
|
||||
("t_embedder.mlp.0.weight", "t_embedder.mlp.0.weight"),
|
||||
("t_embedder.mlp.0.bias", "t_embedder.mlp.0.bias"),
|
||||
("t_embedder.mlp.2.weight", "t_embedder.mlp.2.weight"),
|
||||
("t_embedder.mlp.2.bias", "t_embedder.mlp.2.bias"),
|
||||
]
|
||||
|
||||
for c, diffusers in MAP_BASIC:
|
||||
key_map[diffusers] = "{}{}".format(output_prefix, c)
|
||||
|
||||
return key_map
|
||||
|
||||
def repeat_to_batch_size(tensor, batch_size, dim=0):
|
||||
if tensor.shape[dim] > batch_size:
|
||||
return tensor.narrow(dim, 0, batch_size)
|
||||
@ -732,12 +803,17 @@ def safetensors_header(safetensors_path, max_size=100*1024*1024):
|
||||
return None
|
||||
return f.read(length_of_header)
|
||||
|
||||
ATTR_UNSET={}
|
||||
|
||||
def set_attr(obj, attr, value):
|
||||
attrs = attr.split(".")
|
||||
for name in attrs[:-1]:
|
||||
obj = getattr(obj, name)
|
||||
prev = getattr(obj, attrs[-1])
|
||||
setattr(obj, attrs[-1], value)
|
||||
prev = getattr(obj, attrs[-1], ATTR_UNSET)
|
||||
if value is ATTR_UNSET:
|
||||
delattr(obj, attrs[-1])
|
||||
else:
|
||||
setattr(obj, attrs[-1], value)
|
||||
return prev
|
||||
|
||||
def set_attr_param(obj, attr, value):
|
||||
@ -1102,3 +1178,90 @@ def upscale_dit_mask(mask: torch.Tensor, img_size_in, img_size_out):
|
||||
dim=1
|
||||
)
|
||||
return out
|
||||
|
||||
def pack_latents(latents):
|
||||
latent_shapes = []
|
||||
tensors = []
|
||||
for tensor in latents:
|
||||
latent_shapes.append(tensor.shape)
|
||||
tensors.append(tensor.reshape(tensor.shape[0], 1, -1))
|
||||
|
||||
latent = torch.cat(tensors, dim=-1)
|
||||
return latent, latent_shapes
|
||||
|
||||
def unpack_latents(combined_latent, latent_shapes):
|
||||
if len(latent_shapes) > 1:
|
||||
output_tensors = []
|
||||
for shape in latent_shapes:
|
||||
cut = math.prod(shape[1:])
|
||||
tens = combined_latent[:, :, :cut]
|
||||
combined_latent = combined_latent[:, :, cut:]
|
||||
output_tensors.append(tens.reshape([tens.shape[0]] + list(shape)[1:]))
|
||||
else:
|
||||
output_tensors = combined_latent
|
||||
return output_tensors
|
||||
|
||||
def detect_layer_quantization(state_dict, prefix):
|
||||
for k in state_dict:
|
||||
if k.startswith(prefix) and k.endswith(".comfy_quant"):
|
||||
logging.info("Found quantization metadata version 1")
|
||||
return {"mixed_ops": True}
|
||||
return None
|
||||
|
||||
def convert_old_quants(state_dict, model_prefix="", metadata={}):
|
||||
if metadata is None:
|
||||
metadata = {}
|
||||
|
||||
quant_metadata = None
|
||||
if "_quantization_metadata" not in metadata:
|
||||
scaled_fp8_key = "{}scaled_fp8".format(model_prefix)
|
||||
|
||||
if scaled_fp8_key in state_dict:
|
||||
scaled_fp8_weight = state_dict[scaled_fp8_key]
|
||||
scaled_fp8_dtype = scaled_fp8_weight.dtype
|
||||
if scaled_fp8_dtype == torch.float32:
|
||||
scaled_fp8_dtype = torch.float8_e4m3fn
|
||||
|
||||
if scaled_fp8_weight.nelement() == 2:
|
||||
full_precision_matrix_mult = True
|
||||
else:
|
||||
full_precision_matrix_mult = False
|
||||
|
||||
out_sd = {}
|
||||
layers = {}
|
||||
for k in list(state_dict.keys()):
|
||||
if not k.startswith(model_prefix):
|
||||
out_sd[k] = state_dict[k]
|
||||
continue
|
||||
k_out = k
|
||||
w = state_dict.pop(k)
|
||||
layer = None
|
||||
if k_out.endswith(".scale_weight"):
|
||||
layer = k_out[:-len(".scale_weight")]
|
||||
k_out = "{}.weight_scale".format(layer)
|
||||
|
||||
if layer is not None:
|
||||
layer_conf = {"format": "float8_e4m3fn"} # TODO: check if anyone did some non e4m3fn scaled checkpoints
|
||||
if full_precision_matrix_mult:
|
||||
layer_conf["full_precision_matrix_mult"] = full_precision_matrix_mult
|
||||
layers[layer] = layer_conf
|
||||
|
||||
if k_out.endswith(".scale_input"):
|
||||
layer = k_out[:-len(".scale_input")]
|
||||
k_out = "{}.input_scale".format(layer)
|
||||
if w.item() == 1.0:
|
||||
continue
|
||||
|
||||
out_sd[k_out] = w
|
||||
|
||||
state_dict = out_sd
|
||||
quant_metadata = {"layers": layers}
|
||||
else:
|
||||
quant_metadata = json.loads(metadata["_quantization_metadata"])
|
||||
|
||||
if quant_metadata is not None:
|
||||
layers = quant_metadata["layers"]
|
||||
for k, v in layers.items():
|
||||
state_dict["{}.comfy_quant".format(k)] = torch.tensor(list(json.dumps(v).encode('utf-8')), dtype=torch.uint8)
|
||||
|
||||
return state_dict, metadata
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user